Lecture 17: Support Vector Machine (nonlinear) Kernel Trick and in Practice
Where are we? ➡
Five major sections of this course

- Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
- Graphical models
Support Vector Machine (SVM)

- History of SVM
- Large Margin Linear Classifier
- Define Margin (M) in terms of model parameter
- Optimization to learn model parameters (w, b)
- Non linearly separable case
- Optimization with dual form
- Nonlinear decision boundary
- Practical Guide
Dual SVM for linearly separable case – Training / Testing

Our dual target function:

$$\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

$$\sum_i \alpha_i y_i = 0$$

$$\alpha_i \geq 0 \quad \forall i$$

To evaluate a new sample x_{ts} we need to compute:

$$w^T x_{ts} + b = \sum_i \alpha_i y_i x_i^T x_{ts} + b$$

$$\hat{y}_{ts} = \text{sign} \left(\sum_{i \in \text{SupportVectors}} \alpha_i y_i \left(x_i^T x_{ts} \right) + b \right)$$

4/3/18
\[
\max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j
\]
\[
\sum_i \alpha_i y_i = 0
\]
\[
C > \alpha_i \geq 0, \forall i
\]

\[
\max_\alpha \sum_i \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j \Phi(x_i)^T \Phi(x_j)
\]
\[
\sum_i \alpha_i y_i = 0
\]
\[
C > \alpha_i \geq 0, \forall i
\]
\[w^T x_{ts} + b = \sum_{i} \alpha_i y_i x_i^T x_{ts} + b \]

\[\hat{y}_{ts} = \text{sign} \left(\sum_{i \in \text{SupportVectors}} \alpha_i y_i (x_i^T x_{ts}) + b \right) \]

\[\Rightarrow \sum_{i} \alpha_i y_i \phi(x_i) \phi(x_{ts}) + b \]
Classifying in 1-d

Can an SVM correctly classify this data?

What about this?
Classifying in 1-d

Can an SVM correctly classify this data?

And now? (extend with polynomial basis)

\[f \rightarrow \text{separable} \]

\[\rightarrow \text{nonlinear} \]
RECAP: Polynomial regression

For example, $\phi(x) = [1, x, x^2]$
Non-linear SVMs: 2D

- The original input space \((x)\) can be mapped to some higher-dimensional feature space \((\phi(x))\) where the training set is separable:

\[
\mathbf{x} = (x_1, x_2) \\
\phi(\mathbf{x}) = (x_1^2, x_2^2, 2x_1x_2)
\]

\[\Phi: \mathbf{x} \rightarrow \phi(\mathbf{x})\]
Non-linear SVMs: 2D

- The original input space \((x) \) can be mapped to some higher-dimensional feature space \((\phi(x)) \) where the training set is separable:

\[
x = (x_1, x_2)
\]

\[
\phi(x) = (x_1^2, x_2^2, 2x_1x_2)
\]

If data is mapped into sufficiently high dimension, then samples will in general be linearly separable; \(N \) data points are in general separable in a space of \(N-1 \) dimensions or more!!!
A little bit theory: Vapnik-Chervonenkis (VC) dimension

If data is mapped into sufficiently high dimension, then samples will in general be linearly separable; N data points are in general separable in a space of N-1 dimensions or more!!

- **VC dimension of the set of oriented lines in** \mathbb{R}^2 **is 3**
 - It can be shown that the VC dimension of the family of oriented separating hyperplanes in \mathbb{R}^N is at least N+1
If data is mapped into sufficiently high dimension, then samples will in general be linearly separable;

N data points are in general separable in a space of N-1 dimensions or more!!!

\[X \rightarrow \Phi(X) \]

- Possible problems
 - High computation burden due to high-dimensionality
 - Many more parameters to estimate
SVM solves these two issues simultaneously

- “Kernel tricks” for efficient computation
- Dual formulation only assigns parameters to samples, not to features
• SVM solves these two issues simultaneously
 – “Kernel tricks” for efficient computation
 – Dual formulation only assigns parameters to samples, not features

(1). “Kernel tricks” for efficient computation

Never represent features explicitly
☐ Compute dot products in closed form
Very interesting theory – Reproducing Kernel Hilbert Spaces
☐ Not covered in detail here
$K(x_i, x_j) \equiv \phi(x_i)^T \phi(x_j)$ is called the kernel function.

- **Linear kernel** (we've seen it)
 \[K(x, z) = x^T z \]

- **Polynomial kernel** (we will see an example)
 \[K(x, z) = \left(1 + x^T z\right)^d \]
 where $d = 2, 3, \ldots$. To get the feature vectors we concatenate all dth order polynomial terms of the components of x (weighted appropriately).

- **Radial basis kernel**
 \[K(x, z) = \exp\left(-r \|x - z\|^2\right) \]
 In this case, r is hyperparameter. The feature space of the RBF kernel has an infinite number of dimensions.

Never represent features explicitly

☐ Compute dot products with a closed form

Very interesting theory – Reproducing Kernel Hilbert Spaces

☐ Not covered in detail here
Example: Quadratic kernels

\[K(x,z) = (1 + x^T z)^d \]

\[K(x,z) := \Phi(x)^T \Phi(z) \]

- Consider all quadratic terms for \(x_1, x_2 \ldots x_p\)

\[\max_{\alpha} \sum_i \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j \Phi(x_i)^T \Phi(x_j) \]

\[\sum_i \alpha_i y_i = 0 \]

\[\alpha_i \geq 0 \quad \forall i \]

\[\Phi(x) = \begin{bmatrix} 1 \\ \sqrt{2}x_1 \\ \vdots \\ \sqrt{2}x_p \\ x_1^2 \\ \vdots \\ x_p^2 \\ \sqrt{2}x_1 x_2 \\ \vdots \\ \sqrt{2}x_{p-1} x_p \end{bmatrix} \]
\[K(x, z) = \left(1 + x^T z\right)^2, \quad \begin{bmatrix} d = 2 \\ \rho = 2 \end{bmatrix} \]

\[k(x, z) = \left(1 + x_1 \delta_1 + x_2 \delta_2\right)^2 \Rightarrow O(\rho) \]

\[O(\rho^2) \left\{ \begin{array}{c} = \\ \begin{bmatrix} 1, \sqrt{2} x_1, \sqrt{2} x_2, x_1^2, x_2^2, f_2 x_1 x_2 \\ 1, \sqrt{2} \delta_1, \sqrt{2} \delta_2, \delta_1^2, \delta_2^2, \sqrt{2} \delta_1 \delta_2 \end{bmatrix} \\ = \Phi(x)^T \Phi(\delta) \end{array} \right. \]
The kernel trick

So, if we define the **kernel function** as follows, there is no need to carry out basis function explicitly

\[
K(x, z) = (x^T z + 1)^{d=2}
\]

\[
\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j)
\]

\[
\sum_i \alpha_i y_i = 0
\]

\[
C > \alpha_i \geq 0, \forall i \in \text{train}
\]
Summary: Modification Due to Kernel Trick

- Change all inner products to kernel functions
- For training,

\[
\begin{align*}
\text{Original Linear} & \quad \max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j \\
& \quad \sum_i \alpha_i y_i = 0 \\
& \quad C > \alpha_i \geq 0, \forall i \in \text{train}
\end{align*}
\]

\[
\begin{align*}
\text{With kernel function - nonlinear} & \quad \max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j) \\
& \quad \sum_i \alpha_i y_i = 0 \\
& \quad C > \alpha_i \geq 0, \forall i \in \text{train}
\end{align*}
\]
Summary:
Modification Due to Kernel Function

- For testing, the new data \mathbf{x}_{ts}

Original Linear

$\hat{y}_{ts} = \text{sign}\left(\sum_{i \in \text{train}} \alpha_i y_i \mathbf{x}_i^T \mathbf{x}_{ts} + b \right)$

With kernel function - nonlinear

$\hat{y}_{ts} = \text{sign}\left(\sum_{i \in \text{supportVectors}} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_{ts}) + b \right)$
An example: Support vector machines with polynomial kernel

Figure 5.29. Decision boundary produced by a nonlinear SVM with polynomial kernel.
Kernel Trick: Implicit Basis Representation

• For some kernels (e.g. RBF) the implicit transform basis form $\phi(x)$ is infinite-dimensional!
 – But calculations with kernel are done in original space, so computational burden and curse of dimensionality aren’t a problem.

$$K(x,z) = \exp\left(-r\|x-z\|^2\right)$$

$O(n^2)$ operations in building a RBF-kernel matrix for training

Gaussian RBF Kernel corresponds to an infinite-dimensional vector space.

YouTube video of Caltech: Abu-Mostafa explaining this in more detail
https://www.youtube.com/watch?v=XUj5JbQihlU&t=25m53s
Kernel Functions *(Extra)*

- In practical use of SVM, only the kernel function (and not basis function) is specified.

- Kernel function can be thought of as a similarity measure between the input objects.

- Not all similarity measure can be used as kernel function, however Mercer's condition states that any positive semi-definite kernel $K(x, y)$, i.e.

$$\sum_{i,j} K(x_i, x_j)c_ic_j \geq 0$$

 can be expressed as a dot product in a high dimensional space.
Kernel Matrix

- Kernel function creates the kernel matrix, which summarizes all the data.

\[
\begin{pmatrix}
X_1 & x_2 & \ldots & \cdots & x_n \\
X_2 & & k(x_i, x_j) & & \\
& & & \ddots & \\
& & & & \ddots \\
X_n & & & & \\
\end{pmatrix} \Rightarrow \begin{pmatrix}
X_1 & X_2 & \cdots & \cdots & X_n \\
X_2 & & k(X_i, X_j) & & \\
& & & \ddots & \\
& & & & \ddots \\
X_n & & & & \\
\end{pmatrix}
\]

\(n \times n \) positive semi-definite
Choosing the Kernel Function

• Probably the most tricky part of using SVM.

• The kernel function is important because it creates the kernel matrix, which summarize all the data.

• Many principles have been proposed (diffusion kernel, Fisher kernel, string kernel, tree kernel, graph kernel, ...)
 – Kernel trick has helped Non-traditional data like strings and trees able to be used as input to SVM, instead of feature vectors.

• In practice, a low degree polynomial kernel or RBF kernel with a reasonable width is a good initial try for most applications.
Kernel trick has helped Non-traditional data like strings and trees able to be used as input to SVM, instead of feature vectors.

Vector vs. Relational data

\[k(x, \mathbf{z}) \]

e.g. Graphs, Sequences, 3D structures,

Original Space

Feature Space
Mercer Kernel vs. Smoothing Kernel

• The Kernels used in Support Vector Machines are different from the Kernels used in LocalWeighted / Kernel Regression.

• We can think
 – Support Vector Machines’ kernels as **Mercer Kernels**
 – Local Weighted / Kernel Regression’s kernels as **Smoothing Kernels**
Why do SVMs work?

- If we are using huge features spaces (e.g., with kernels), how come we are not overfitting the data?
 - Number of parameters remains the same (and most are set to 0)
 - While we have a lot of input values, at the end we only care about the support vectors and these are usually a small group of samples
 - The minimization (or the maximizing of the margin) function acts as a sort of regularization term leading to reduced overfitting
Why SVM Works? (Extra)

- Vapnik argues that the fundamental problem is not the number of parameters to be estimated. Rather, the problem is about the flexibility of a classifier.

- Vapnik argues that the flexibility of a classifier should not be characterized by the number of parameters, but by the capacity of a classifier.
 - This is formalized by the "VC-dimension" of a classifier.

- The SVM objective can also be justified by structural risk minimization: the empirical risk (training error), plus a term related to the generalization ability of the classifier, is minimized.

- Another view: the SVM loss function is analogous to ridge regression. The term $\frac{1}{2}||w||^2$ "shrinks" the parameters towards zero to avoid overfitting.
Today

- Support Vector Machine (SVM)
 - History of SVM
 - Large Margin Linear Classifier
 - Define Margin (M) in terms of model parameter
 - Optimization to learn model parameters (w, b)
 - Non linearly separable case
 - Optimization with dual form
 - Nonlinear decision boundary
 - Practical Guide
Software

- A list of SVM implementation can be found at
 - http://www.kernel-machines.org/software.html

- Some implementation (such as LIBSVM) can handle multi-class classification
- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available
Summary: Steps for Using SVM in HW

- Prepare the feature-data matrix
- Select the kernel function to use
- Select the parameter of the kernel function and the value of C
 - You can use the values suggested by the SVM software, or you can set apart a validation set to determine the values of the parameter
- Execute the training algorithm and obtain the α_i
- Unseen data can be classified using the α_i and the support vectors
Practical Guide to SVM

• From authors of as LIBSVM:
 – A Practical Guide to Support Vector Classification Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, 2003-2010
LIBSVM

 - Developed by Chih-Jen Lin etc.
 - Tools for Support Vector classification
 - Also support multi-class classification
 - C++/Java/Python/Matlab/Perl wrappers
 - Linux/UNIX/Windows
 - SMO implementation, fast!!!
(a) Data file formats for LIBSVM

• Training.dat
+1 1:0.708333 2:1 3:1 4:-0.320755
-1 1:0.583333 2:-1 4:-0.603774 5:1
+1 1:0.166667 2:1 3:-0.333333 4:-0.433962
-1 1:0.458333 2:1 3:1 4:-0.358491 5:0.374429
...
• Testing.dat
(b) Feature Preprocessing

• (1) Categorical Feature
 – Recommend using m numbers to represent an m-category attribute.
 – Only one of the m numbers is one, and others are zero.

 – For example, a three-category attribute such as \{red, green, blue\} can be represented as \((0,0,1)\), \((0,1,0)\), and \((1,0,0)\)
Feature Preprocessing

• (2) Scaling before applying SVM is very important
 – to avoid attributes in greater numeric ranges dominating those in smaller numeric ranges.
 – to avoid numerical difficulties during the calculation
 – Recommend linearly scaling each attribute to the range \([1, +1]\) or \([0, 1]\).

\[
\begin{align*}
\text{Normalization} & \rightarrow \begin{cases} \text{mean} & \text{0} \\
\text{std} & \text{1} \end{cases} \\
\begin{bmatrix}
\frac{X - X_{\text{min}}}{\text{max} - X_{\text{min}}} \\
\end{bmatrix} & \leftrightarrow \text{Scaling} \rightarrow \text{linear} \\
& \rightarrow [aX + b]
\end{align*}
\]
For i-th feature \[\text{Column operation on } X_{n \times p} \]

\[
\begin{aligned}
\text{Centering } : & \quad X_i - \bar{X}_i \quad \Rightarrow \quad E(X_i) = 0 \\
\text{Scaling } : & \quad aX_i + b \quad \Rightarrow \quad \text{e.g. } \frac{X_i - \min(X_i)}{\max(X_i) - \min(X_i)} \\
\text{Normalization } & \quad \text{for } \begin{cases}
E(X_i) = 0 \\
\text{Var}(X_i) = 1
\end{cases}
\end{aligned}
\]
Of course we have to use the same method to scale both training and testing data. For example, suppose that we scaled the first attribute of training data from $[-10, +10]$ to $[-1, +1]$. If the first attribute of testing data lies in the range $[-11, +8]$, we must scale the testing data to $[-1.1, +0.8]$. See Appendix B for some real examples.

If training and testing sets are separately scaled to $[0, 1]$, the resulting accuracy is lower than 70%.

```
$ ../svm-scale -l 0 svmguide4 > svmguide4.scale
$ ../svm-scale -l 0 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 69.2308% (216/312) (classification)
```

Using the same scaling factors for training and testing sets, we obtain much better accuracy.

```
$ ../svm-scale -l 0 -s range4 svmguide4 > svmguide4.scale
$ ../svm-scale -r range4 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 89.4231% (279/312) (classification)
```
Feature Preprocessing

• (3) missing value
 – Very very tricky !
 – **Easy way:** to substitute the missing values by the mean value of the variable
 – A little bit harder way: imputation using nearest neighbors
 – Even more complex: e.g. EM based (beyond the scope)
(c) Model Selection

Our goal: find the model M which minimizes the test error:
(c) Model Selection (e.g. for linear kernel)

- **linear:** $K(x_i, x_j) = x_i^T x_j$.

Select the right penalty parameter C.
(c) Model Selection

- radial basis function (RBF): $K(x_i, x_j) = \exp(-\gamma \|x_i - x_j\|^2)$, $\gamma > 0$.

 two parameters for an RBF kernel: C and γ

- polynomial: $K(x_i, x_j) = (\gamma x_i^T x_j + r)^d$, $\gamma > 0$.

Three parameters for a polynomial kernel
(d) Pipeline Procedures

• (1) train / test
• (2) k-folds cross validation
• (3) k-CV on train to choose hyperparameter / then test
Evaluation Choice-I: Train and Test

Training dataset consists of input-output pairs.

- **Training dataset**
 - Input-output pairs:
 - A
 - B

- **Test dataset**
 - Input-output pairs:
 - ?
 - ?
 - ?
 - ?

- **Model** f is learned from the training dataset.

- **Evaluation**
 - Measure Loss on pair $(f(x), y)$
Evaluation Choice-II: Cross Validation

• Problem: don’t have enough data to set aside a test set
• Solution: Each data point is used both as train and test
• Common types:
 - K-fold cross-validation (e.g. K=5, K=10)
 - 2-fold cross-validation
 - Leave-one-out cross-validation (LOOCV)

A good practice is: to random shuffle all training sample before splitting
Why Maximum Margin for SVM?

1. Intuitively this feels safest.
2. If we’ve made a small error in the location of the boundary (it’s been jolted in its perpendicular direction) this gives us least chance of causing a misclassification.
3. **LOOCV is easy since the model is immune to removal of any non-support-vector datapoints.**
4. There’s some theory (using VC dimension) that is related to (but not the same as) the proposition that this is a good thing.
5. Empirically it works very very well.

- denotes +1
- denotes -1

Support Vectors are those datapoints that the margin pushes up against
Evaluation Choice-III:

Many beginners use the following procedure now:

- Transform data to the format of an SVM package
- Randomly try a few kernels and parameters
- Test

We propose that beginners try the following procedure first:

- Transform data to the format of an SVM package
- Conduct simple scaling on the data
- Consider the RBF kernel $K(x, y) = e^{-\gamma \|x-y\|^2}$
- Use cross-validation to find the best parameter C and γ
- Use the best parameter C and γ to train the whole training set
- Test
A Practical Guide to Support Vector Classification

Run the file with app.py. You then have to give the path of hoo.txt as input file in plugin/swsvm.html.
Today: Review & Practical Guide

- Support Vector Machine (SVM)
 - History of SVM
 - Large Margin Linear Classifier
 - Define Margin (M) in terms of model parameter
 - Optimization to learn model parameters \((w, b)\)
 - Non linearly separable case
 - Optimization with dual form
 - Nonlinear decision boundary

- Practical Guide
 - File format / LIBSVM
 - Feature preprocessing
 - Model selection
 - Pipeline procedure
Support Vector Machine

Task

- Representation
- Score Function
- Search/Optimization

Models, Parameters

classification

Kernel Tric- Func $K(x_i, x_j)$

Margin + Hinge Loss (optional)

$K(x, z) := \Phi(x)^T \Phi(z)$

QP with Dual form

$w = \sum_i \alpha_i x_i y_i$

Dual Weights

Maximization

$\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j$

subject to

- $\forall x_i \in D_{train}: y_i (x_i \cdot w + b) \geq 1 - \epsilon_i$
- $\sum_i \alpha_i y_i = 0$
- $\alpha_i \geq 0$
- $\forall i$

Support Vector Machine

$\text{argmin}_{w,b} \sum_{i=1}^{p} w_i^2 + C \sum_{i=1}^{n} \epsilon_i$

$\forall x_i \in D_{train}: y_i (x_i \cdot w + b) \geq 1 - \epsilon_i$
References

• Big thanks to Prof. Ziv Bar-Joseph and Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
• Elements of Statistical Learning, by Hastie, Tibshirani and Friedman
• Prof. Andrew Moore @ CMU’s slides
• Tutorial slides from Dr. Tie-Yan Liu, MSR Asia
• A Practical Guide to Support Vector Classification Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, 2003-2010
• Tutorial slides from Stanford “Convex Optimization I — Boyd & Vandenberghe