UVA CS 6316: Machine Learning

Lecture 1: Introduction

Dr. Yanjun Qi

University of Virginia Department of Computer Science

Welcome

- Course Website:
 - <u>https://qiyanjun.github.io/2019f-UVA-CS6316-</u> <u>MachineLearning/</u>

We focus on learning fundamental principles, mathematical formulation, algorithm design and learning theory.

Objective

- To help students able to build simple machine learning tools
 - (not just a tool user!!!)
- Key Results:
 - Able to build a few simple machine learning methods from scratch
 - Able to understand a few complex machine learning methods at the source code level
 - To re-produce one cutting-edge machine learning paper and understand the pipeline

Objective

- To help students able to build simple machine learning tools
 - (not just a tool user!!!)
- Key Results:
 - Able to build a few simple machine learning methods from scratch
 - We focus on developing skills,
 more than feeding knowledge

Course Staff

- Instructor: Prof. Yanjun Qi
 - QI: /ch ee/
 - You can call me "professor", "professor Qi";
 - I have been teaching Graduate-level and Under-Level Machine Learning course for years!
 - My research is about machine learning
- TA and Office Hour information @ CourseWeb

Course Material

- Text books for this class is:
 - NONE
- My slides if it is not mentioned in my slides, it is not an official topic of the course
- Your UVA Collab for Assignments and Project
- Google Forms for Quizzes

Course Background Needed

Background Needed

- Calculus, Basic linear algebra, Basic probability and Basic Algorithm
- Statistics is recommended.
- Students should already have good programming skills, i.e. python is required for all programming assignments

OUR DATA-RICH WORLD

- Biomedicine
 - Patient records, brain imaging, MRI & CT scans, ...
 - Genomic sequences, bio-structure, drug effect info, ...
- Science
 - Historical documents, scanned books, databases from astronomy, environmental data, climate records, ...
- Social media
 - Social interactions data, twitter, facebook records, online reviews, ...
- Business
 - Stock market transactions, corporate sales, airline traffic, ...
- Entertainment
 - Internet images, Hollywood movies, music audio files, ...

What can we do with the data wealth? REAL-WORLD IMPACT

- Business efficiencies
- Scientific breakthroughs
- Improve quality-of-life:
 - healthcare,
 - energy saving / generation,
 - environmental disasters,
 - nursing home,
 - transportation,

BIG DATA CHALLENGES

- Data capturing (sensor, smart devices, medical instruments, et al.)
- Data transmission
- Data storage
- Data management
- High performance data processing
- Data visualization

e.g. HCI

12

- Data security & privacy (e.g. multiple individuals)
- • Data analytics • Data analytics • Data analytics • Data analytics • OHow can we analyze this big data wealth ? • OE.g. Machine learning and data mining

MACHINE LEARNING IS CHANGING THE WORLD

One of 18 learned rules:

If No previous vaginal delivery, and Abnormal 2nd Trimester Ultrasound, and Malpresentation at admission Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63, Over test data: 12/20 = .60

Mining Databases

Speech Recognition

Control learning

CS

Text analysis

Peter H. van Oppen, Chairman of the Board & Chief Executive Officer
Mr. van Oppen has served as chairman of the board and chief executive officer of ADIC
since its acquisition by Interpoint in 1994 and a director of ADIC since 1986. Until its
acquisition by Crane Co. in October 1996, Mr. van Oppen served as chairman of the board
of directors, president and chief executive officer of Interpoint . Prior to 1985, Mr. van
Oppen worked as a consulting manager at Price Waterhouse LLP and at Bain & Company
in Boston and London. He has additional experience in medical electronics and venture
capital. Mr. van Oppen also serves as a director of Seattle FilmWorks Inc. and Spacelabs
Medical, Inc., He holds a B.A. from Whitman College and an M.B.A. from Harvard
Business School, where he was a Baker Scholar.

Object recognition

BASICS OF MACHINE LEARNING

- "The goal of machine learning is to build computer systems that can learn and adapt from their experience." – Tom Dietterich
- "Experience" in the form of available data examples (also called as instances, samples)
- Available examples are described with properties (data points in feature space X)

e.g. SUPERVISED LEARNING

- Find function to map input space X to output space Y $f: X \longrightarrow Y$
- So that the difference between y and f(x) of each example x is small.

e.g.

Х

I believe that this book is not at all helpful since it does not explain thoroughly the material . it just provides the reader with tables and calculations that sometimes are not easily understood ...

Input X : e.g. a piece of English text

SUPERVISED Linear Binary Classifier

Now let us check out a VERY SIMPLE case of

e.g.: Binary y / Linear f / X as R² $f(x, w, b) = sign(w^T x + b)$ $x = (x_1, x_2)$ **Traditional Programming**

Machine Learning (training phase)

SUPERVISED Linear Binary Classifier

Yanjun Qi Courtesy slide from Prof. Andrew Moore's tutorial

SUPERVISED Linear Binary Classifier

Yanjun Qi Courtesy slide from Prof. Andrew Moore's tutorial

Basic Concepts

- Training (i.e. learning parameters *W,b*)
 - Training set includes
 - available examples x_1, \ldots, x_L
 - available corresponding labels y_1, \dots, y_L
 - Find (*W*,*b*) by minimizing loss
 - (i.e. difference between *y* and *f*(**x**) on available examples in training set)

$$(W, b) = \underset{W, b}{\operatorname{argmin}} \sum_{i=1}^{L} \ell(f(x_i), y_i)$$

Basic Concepts

- Testing (i.e. evaluating performance on "future" points)
 - Difference between true $y_{?}$ and the predicted $f(x_{?})$ on a set of testing examples (i.e. *testing set*)
 - Key: example $x_{?}$ not in the training set

 Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

Basic Concepts

- Loss function
 - e.g. hinge loss for binary classification task

$$\sum_{i=1}^{L} \ell(f(x_i), y_i) = \sum_{i=1}^{L} \max(0, 1 - y_i f(x_i))$$

- e.g. pairwise ranking loss for ranking task (i.e. ordering examples by preference)
- Regularization
 - E.g. additional information added on loss function to control *f*

$$C \sum_{i=1}^{L} \ell(f(x_i), y_i) + \frac{1}{2} \|w\|^2$$

Machine Learning in a Nutshell

ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

Traditional Programming

Machine Learning (training phase)

TYPICAL MACHINE LEARNING Pipeline (Learning Mode)

Operational (Deployment) Mode

TYPICAL MACHINE LEARNING Pipeline (Learning Mode)

UNSUPERVISED LEARNING : [COMPLEXITY in Y]

- No labels are provided (e.g. No Y provided)
- Find patterns from unlabeled data, e.g. clustering

e.g. clustering => to find "natural" grouping of instances given un-labeled data

STRUCTURAL OUTPUT LEARNING : [COMPLEXITY OF Y]

• Many prediction tasks involve output labels having structured correlations or constraints among instances

Structure between	ed Dependency Examples' Y	Sequence	Tree	Grid
	Input X	APAFSVSPASGACGPECA	The dog chased the cat	
	Output Y	CCEEEEECCCCCCHHHCCCC	Det N V Det N	Sky Building Car Road

Many more possible structures between y_i, e.g. spatial, temporal, relational ...

Yanjun Qi / UVA CS

STRUCTURAL INPUT : Kernel Methods [**COMPLEXITY OF X**]

MORE RECENT: FEATURE LEARNING [COMPLEXITY OF X]

Deep Learning

Supervised Embedding

Yanjun Qi / UVA CS

DEEP LEARNING / FEATURE LEARNING : [COMPLEXITY OF X]

Reinforcement Learning (RL) [COMPLEXITY OF (X,Y)]

What's Reinforcement Learning?

{Observation, Reward}

- Agent interacts with an environment and learns by maximizing a scalar reward signal
 - Basic version: No labels or any other supervision signal.
 - Variation like imitation learning: supervised
- Previously suffering from hand-craft states or representation

Deep Reinforcement Learning [COMPLEXITY OF (X,Y)]

• Human

So what's DEEP RL?

When to use Machine Learning (Adapt to / learn from data) ?

- 1. Extract knowledge from data
 - Relationships and correlations can be hidden within large amounts of data
 - The amount of knowledge available about certain tasks is simply too large for explicit encoding (e.g. rules) by humans
- 2. Learn tasks that are difficult to formalise
 - Hard to be defined well, except by examples, e.g., face recognition
- 3. Create software that improves over time
 - New knowledge is constantly being discovered.
 - Rule or human encoding-based system is difficult to continuously re-design "by hand".

"Big Data" Challenges for Machine Learning

LARGE-SCALE

HIGH-COMPLEXITY

✓ Large size of samples✓ High dimensional features

Not the focus, being covered in my advancedlevel course

Large-Scale Machine Learning: SIZE MATTERS

LARGE-SCALE

Those are not different numbers, those are different mindsets !!!

- One thousand data instances
- •One million data instances
- •One billion data instances
- •One trillion data instances

Course Content Plan -> Six major sections of this course Y is a continuous Regression (supervised) Classification (supervised) Y is a discrete Unsupervised models NO Y Learning theory About f() Graphical models About interactions among X1,... Xp Reinforcement Learning Learn program to Interacts with its environment

Machine Learning in a Nutshell

ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

What we have covered

Task	
Representation	
Score Function	
Search/Optimization	
Models, Parameters	42

What we will cover

Task	Regression, classification, clustering, dimen-reduction
Representation	Linear func, nonlinear function (e.g. polynomial expansion), local linear, logistic function (e.g. p(c x)), tree, multi-layer, prob-density family (e.g. Bernoulli, multinomial, Gaussian, mixture of Gaussians), local func smoothness, kernel matrix, local smoothness, partition of feature space,
Score Function	MSE, Margin, log-likelihood, EPE (e.g. L2 loss for KNN, 0-1 loss for Bayes classifier), cross-entropy, cluster points distance to centers, variance, conditional log-likelihood, complete data-likelihood, regularized loss func (e.g. L1, L2), goodness of inter-cluster similar
Search/ Optimization	Normal equation, gradient descent, stochastic GD, Newton, Linear programming, Quadratic programming (quadratic objective with linear constraints), greedy, EM, asyn-SGD, eigenDecomp, backprop
Models, Parameters	Linear weight vector, basis weight vector, local weight vector, dual weights, training samples, tree-dendrogram, multi-layer weights, principle components, member (soft/hard) assignment, cluster centroid, cluster covariance (shape),

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

Main Types of Columns

- *Continuous*: a real number, for example, weight
- *Discrete*: a symbol, like "Good" or "Bad"

e.g. SUPERVISED Classification

e.g. SUPERVISED Regression

target variable

apply

model

?

2

5

7

How to know the program works well?

- Inputs
 - X_j (j-th element of a vector variable X) : random variables written in capital letter
 - *p* #input variables, *n* #observations
 - X : matrix written in bold capital
 - Vectors are assumed to be column vectors
 - Discrete inputs often described by characteristic vector (dummy variables)

Notation

- Outputs
 - quantitative Y
 - qualitative C (for categorical)
- Observed written in lower case
 - The i-th observed sample of the random variable X_j is $x_{j,i}$ (a scalar)

a few sample slides

 $J(0) = (X0 - Y)^{T} (X0 - Y)^{\frac{1}{2}}$ $= ((\chi_0)^T - \chi^T)(\chi_0 - \chi)^{\perp}$ $= (\theta^{\mathsf{T}} X^{\mathsf{T}} - \mathcal{Y}^{\mathsf{T}}) (X \theta - \mathcal{Y}) \stackrel{!}{\prec}$ $= \left(\Theta^{T} X^{T} X \Theta - \Theta^{T} X^{T} Y - Y^{T} X \Theta + Y^{T} Y \right) \frac{1}{2}.$ Since OTXTY = YT XO (X0, Y> <1, X0> $\left(\begin{array}{c} 0^{T} \mathbf{x}^{T} \mathbf{x} \mathbf{0} - \mathbf{z} \begin{array}{c} 0^{T} \mathbf{x}^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y} \end{array} \right)^{-1}$ Id case) (0) quadratic func of O; (θ)

Deriving the Maximum Likelihood Estimate for Bernoulli

Today

Course Logistics
 Machine Learning Basics
 A Rough Plan of Course Content
 Machine Learning History

MACHINE LEARNING IN COMPUTER SCIENCE

• Machine learning is already the preferred approach for

- Speech recognition, natural language processing
- Computer vision
- Medical outcome analysis
- Robot control ...

- Why growing ?
 - Improved machine learning algorithms
 - Improved CPU / GPU powers
 - Increased data capture, new sensors, networking
 - Systems/Software too complex to control manually
 - Demand to self-customization for user, environment,

HISTORY OF MACHINE LEARNING

- 1950s
 - Samuel's checker player
 - Selfridge's Pandemonium
- 1960s:
 - Neural networks: Perceptron
 - Pattern recognition
 - Learning in the limit theory
 - Minsky and Papert prove limitations of Perceptron
- 1970s:
 - Symbolic concept induction
 - Winston's arch learner
 - Expert systems and the knowledge acquisition bottleneck
 - Quinlan's DT ID3
 - Michalski's AQ and soybean diagnosis
 - Scientific discovery with BACON
 - Mathematical discovery with AM

^{Yan}Adapted From Prof. Raymond J. Mooney's slides

HISTORY OF MACHINE LEARNING (CONT.)

- 1980s:
 - Advanced decision tree and rule learning
 - Explanation-based Learning (EBL)
 - Learning and planning and problem solving
 - Utility problem
 - Analogy
 - Cognitive architectures
 - Resurgence of neural networks (connectionism, backpropagation)
 - Valiant's PAC Learning Theory
 - Focus on experimental methodology
- 1990s
 - Data mining
 - Adaptive software agents and web applications
 - Text learning
 - Reinforcement learning (RL)
 - Inductive Logic Programming (ILP)
 - Ensembles: Bagging, Boosting, and Stacking
- ^{9/2/19} Bayes Net learning ^{Yan}Adapted From Prof. Raymond J. Mooney's slides

HISTORY OF MACHINE LEARNING (CONT.)

- 2000s
 - Support vector machines
 - Kernel methods
 - Graphical models
 - Statistical relational learning
 - Transfer learning
 - Sequence labeling
 - Collective classification and structured outputs
 - Computer Systems Applications
 - Compilers
 - Debugging
 - Graphics
 - Security (intrusion, virus, and worm detection)
 - Email management
 - Personalized assistants that learn
 - Learning in robotics and vision

HISTORY OF MACHINE LEARNING (CONT.)

- 2010s
 - Speech translation, voice recognition (e.g. SIRI)
 - Google search engine uses numerous machine learning techniques (e.g. grouping news, spelling corrector, improving search ranking, image retrieval,)
 - 23 and me (scan sample of person genome, predict likelihood of genetic disease, ...)
 - DeepMind, Google Brain, ...
 - IBM waston QA system
 - Machine Learning as a service (e.g. google prediction API, bigml.com, cloud autoML .)
 - IBM healthcare analytics
 - •

RELATED DISCIPLINES

- Artificial Intelligence
- Data Mining
- Probability and Statistics
- Information theory
- Numerical optimization
- Computational complexity theory
- Control theory (adaptive)
- Psychology (developmental, cognitive)
- Neurobiology
- Linguistics
- Philosophy

What are the goals of AI research?

How can we build more intelligent <u>computer / machine ?</u>

- Able to
 - perceive the world
 - understand the world
 - react to the world
- This needs
 - Basic speech capabilities
 - Basic vision capabilities
 - Language/semantic understanding
 - User behavior / emotion understanding
 - Able to act
 - Able to think ?

How can we build more intelligent computer / machine ? : Milestones in Recent Vision/AI Fields

Reason of the recent breakthroughs:

Plenty of (Labeled) Data

Advanced Computer Architecture that fits DNNs

Powerful DNN platforms / Libraries

Detour: three planned programming <u>assignments about AI tasks</u>

- HW: Semantic language understanding (sentiment classification on movie review text)
- HW: Visual object recognition (labeling images about handwritten digits)
- HW: Audio speech recognition (unsupervised learning based speech recognition task)

References

- Prof. Andrew Moore's tutorials
- Prof. Raymond J. Mooney's slides
- Prof. Alexander Gray's slides
- Prof. Eric Xing's slides
- http://scikit-learn.org/
- □ Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
- □ Prof. M.A. Papalaskar's slides