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Course Content Plan è
Six major sections of this course

q Regression (supervised)
q Classification (supervised)
q Unsupervised models 
q Learning theory 

q Graphical models 

qReinforcement Learning 
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Y is a continuous

Y is a discrete

NO Y 

About f()

About interactions among X1,… Xp

Learn program to Interact with its 
environment



Today:  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum 
of X’s 

Sum of Squared Error 
(Least Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients
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Task:   y 

Representation:   x, f() 

Score Function:   L() 

Search/Optimization 
: argmin() 

Models, Parameters : 
f(), w, b

ŷ =θ Tx

ŷ = f (x) =θ T x
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Method I: normal equations
• Write the cost function in matrix form:

To minimize J(θ), take its gradient and set to zero:
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Learning Regression Models (supervised)

q Four ways to train / perform optimization 
for learning linear regression models
q Normal Equation
q Gradient Descent (GD) 
q Stochastic GD / Mini-Batch
q Connecting to Newton’s method 
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A little bit more about [ Optimization ]

•Objective function
•Variables
•Constraints
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To find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

F(x)
x



Today

q More ways to train / perform optimization 
for linear regression models
q Review: Gradient Descent
q Gradient Descent (GD) for LR
q Stochastic GD (SGD) for LR
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Review: two ways of Illustrating an Objective 
Function (e.g. 2D case)
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Surface 
map

Contour 
map

Gradient vector points to the direction of greatest rate of increase of the objective 
function and its magnitude is the slope of the surface  graph in that direction..

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Magnitude_(mathematics)
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Review: Definitions of gradient (in L2-note)  

• Size of gradient vector is always the same 
as the size of the variable vector

if 

A vector whose entries respectively 
contain the p partial derivatives 
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Review: Derivative of a Quadratic Function
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The derivative is often described as the "instantaneous rate of change",
è the ratio of the instantaneous change in F(x) to in x

𝐹(𝑥) = 𝑥' − 3

𝐹H(𝑥) = lim
L→N

AOL PQRQ APQR
L

= 2𝑥

Review: Definitions of derivative (1D case)  



Gradient Descent (GD): 
An iterative Algorithm

• Initialize k=0, (randomly or by prior) choose x0 

•While k<kmax

!!xk = xk−1 −α∇xF(xk−1)
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For  the k-th epoch 



Gradient Descent 
( Steepest Descent ) 
– contour map view

A first-order optimization 
algorithm. 

To find a local minimum of a 
function using gradient 
descent, one takes steps 
proportional to the negative
of the gradient of the 
function at the current 
point. 
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The gradient (in the 
variable space ) points 
in the direction of the 
greatest rate of 
increase of the function 
and its magnitude is 
the slope of the surface 
graph in that direction

)−𝛻A𝐹(𝑥SQ&
Contour 
map view



Illustration of Gradient Descent (2D case)
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x1

x0

F(x)

xk

xk xk−1
To find a local minimum of a function using 
gradient descent, one takes steps proportional 
to the negative of the gradient of the function 
at the current point. Surface  

map view



Illustration of Gradient Descent (2D case)
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F(x)

Original point in
Variable space

New point in
Variable space

xk

xk xk−1

x1

x0

Surface  
map view



WHY ? Optimize through Gradient Descent 
(iterative) Algorithms

•Works on any objective function F(x) 
•as long as we can evaluate the gradient
•this can be very useful for minimizing 
complex functions
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Two ways of Illustrating the Objective Function 
and Gradient Descent (e.g. , 2D case)
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The gradient points in 
the direction (in the 
variable space) of the 
greatest rate of 
increase of the function 
and its magnitude is 
the slope of the surface 
graph in that direction
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Surface map view Contour map view
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F (x) = x2 − 3

∇xF (x) = F '(x) = 2x

Review: Derivative of a Quadratic Function
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xk = xk−1 −α∇xF(xk−1)
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!!xk = xk−1 −α∇xF(xk−1) ∇xF (x) = F '(x) = 2x
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!!xk = xk−1 −α∇xF(xk−1)

x0 = �3,↵ = 0.1

∇xF (x) = F '(x) = 2x
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!!xk = xk−1 −α∇xF(xk−1)
x0 = 3,↵ = 0.1



Gradient Descent (Iteratively Optimize)

•Learning Rate Matters

•Starting point matters 

• Objective function matters  
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!!xk = xk−1 −α∇xF(xk−1)
x0 = 3,↵ = 0.6
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!!xk = xk−1 −α∇xF(xk−1)



Gradient Descent (Iteratively Optimize)

•Learning Rate Matters

•Starting point matters 

• Objective function matters  
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!!xk = xk−1 −α∇xF(xk−1)

x0 = �0.6,↵ = 0.1



Gradient Descent (Iteratively Optimize)

•Learning Rate Matters

•Starting point matters 

• Objective function matters  
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!!xk = xk−1 −α∇xF(xk−1)
x0 = 3,↵ = 0.1
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x

F (x)

During optimization, We don’t want to jump from the good side to the bad side 
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X_t X_(t+1)
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Comments on Gradient Descent Algorithm

• Works on any objective function F(x) 
• as long as we can evaluate the gradient
• this can be very useful for minimizing complex functions

• Local minima

• Can have multiple local minima
• (note: for LR, its cost function only has a single global minimum, so this is not a problem)
• If gradient descent goes to the closest local minimum:

• solution: random restarts from multiple places in weight space



Today

q More ways to train / perform optimization 
for linear regression models
q Review: Gradient Descent
q Gradient Descent (GD) for LR
q Stochastic GD (SGD) for LR
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Review: Loss function of Least Square LR 
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J(θ )= 12 ( f (x i )− yi )2
i=1

n

∑

= 12 θT XT Xθ −θT XT !y − !yT Xθ + !yT !y( )
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	∇θ J(θ )
= XTXθ − XT !y
= XT(Xθ − !y)



LR with batch GD

•A Batch gradient descent algorithm:
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )

		GD : xk = xk−1 −α∇xF(xk−1)
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )

0

		θ t+1	θ
t



Choosing the Right Step-Size /Learning-Rate 
is critical 

9/25/19 Dr. Yanjun Qi / UVA CS 40



Today

q More ways to train / perform optimization 
for linear regression models
q Review: Gradient Descent
q Gradient Descent (GD) for LR
q Stochastic GD (SGD) for LR
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LR with batch GD

• The Cost Function:

• Consider a gradient descent algorithm and reformulate:
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )

=θ t +α ( yi −
!x i
Tθ t )!x i

i=1

n

∑
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LR with Stochastic GD è

•Batch GD rule: 

•For a single training point (i-th), we have: 

ØA "stochastic” descent algorithm, can be used 
as an on-line algorithm

			 θ
t+1 =θ t +α( yi −

!x i
Tθ t )!x i

θ t+1 =θ t +α ( yi −
!x ii
Tθ t )!x ii

i=1

n

∑
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Stochastic gradient descent /
Online Learning Algorithm

SGD
GD
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versus



Stochastic gradient descent : 
More variations 

• Mini-batch:  

• Single-sample: 
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𝜃1O& = 𝜃1 + 𝛼8
U*&

V

W𝑦XU − ⇀𝐱 XU 𝑇𝜃1) ⇀𝐱 XU
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Mini-batch: (stochastic gradient descent)
• Motivation: datasets are often highly redundant.
• Compute the gradient on a small mini-batch of samples (e.g. B=32/64/)
• Much faster computationally



(Stochastic) Gradient Descent (Iteratively Optimize)

•Learning Rate Matters

•Starting point matters 

• Objective function matters

• Stop criterion matters!   
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Each pass of SGD repeated cycling through 
all samples in the whole trainè an epoch !

			
Jtrain−MSE =

1
n

(x iTθ * − yi )2
i=1

n

∑



9/25/19 Dr. Yanjun Qi / 50

• Train MSE Error to observe: 

In Homework, when we ask for plots of training error, we ask for the MSE per-sample
train errors; Because it is comparable to test MSE error (later to cover). 

In many situations, visualizing Train-MSE can be helpful to understand the behavior of 
your method, e.g., the influence of the hyper parameter you chose; e.g., how it decreases 
with epochs, … 
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When to stop (S)GD ? 

• Lots of stopping rules in the literature,
• There are advantages and disadvantages to each, depending 

on context
• E.g., a predetermined maximum number of iterations
• E.g., stop when the improvement drops below a threshold
• ….
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e.g. HW1 discussions 



Today:  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum 
of X’s 

Sum of Squared Error 
(Least Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients
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Task:   y 

Representation:   x, f() 

Score Function:   L() 

Search/Optimization 
: argmin() 

Models, Parameters :

ŷ = f (x) =θ T x



We aim to make the learned model 

•1. Generalize Well 

• 2. Computational Scalable and Efficient

• 3. Robust / Trustworthy / Interpretable 
•Especially for some domains, this is about trust! 
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Stochastic gradient descent (1)
•Very useful when training with massive datasets , e.g. 
not fit in main memory 
•Very useful when training data arrives online (e.g. 
streaming).. 
•SGD can be used for offline training, by repeated 
cycling through the whole data 
• Each such pass over the whole data è an epoch ! 

• In offline case, often better to use mini-batch SGD
• B=1 standard SGD
• B=N standard batch GD
• E.g. B=50  



Stochastic gradient descent (2)
•Efficiency: Good approximation of Gradient: 
• Intuitively fairly good estimation of the gradient by looking at 

just a few examples
• Carefully evaluating precise gradient using large set of 

examples is often a waste of time (because need to calculate 
the gradient  of the next t any way)
• Better to get a noisy estimate and move rapidly in the 

parameter space  

•SGD is often less prone to stuck in shallow local minima 
• Because of the certain “noise”, 
• popular for nonconvex optimization cases

9/25/19 Dr. Yanjun Qi / UVA CS 56



9/25/19 57

Varying the value B In 𝜃1O& = 𝜃1 + 𝛼8
U*&

V

W𝑦XU − ⇀𝐱 XU 𝑇𝜃 )⇀𝐱 XU
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Summary so far: Four ways to learn LR
• Normal equations

• Pros: a single-shot algorithm! Easiest to implement.
• Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues (e.g., matrix is 

singular ..), although there are ways to get around this …

• GD

• Pros: easy to implement, conceptually clean, guaranteed convergence
• Cons: batch, often slow converging

• Stochastic GD and miniB

• Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local optimum
• Cons: convergence to optimum not always guaranteed

( ) yXXX TT !1-
=*q

			 
θ t+1 ==θ t +αXT( !y − Xθ )=θ t +α ( yi − x iTθ t )x i

i=1

n
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θ t+1 =θ t +α (yi − xi
Tθ t )xi

𝜃1O& = 𝜃1 + 𝛼8
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W𝑦XU − ⇀𝐱 XU 𝑇𝜃 )⇀𝐱 XU



Extra: Computational Cost (Naïve..)
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mostly about Memory Cost à

Interesting discussion in: 
https://stackoverflow.com/que
stions/10326853/why-does-lm-

run-out-of-memory-while-
matrix-multiplication-works-

fine-for-coeffic
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )



Extra: Convergence rate

• Theorem: the steepest descent / GD equation algorithm 
converge to the minimum of the cost characterized by 
normal equation:

If the learning rate parameter satisfy è

• A formal analysis of GD-LR need more math; in practice, one 
can use a small a, or gradually decrease a.
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References

• Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of 
his slides
• http://en.wikipedia.org/wiki/Matrix_calculus
• Prof. Nando de Freitas’s tutorial slide
• An overview of gradient descent optimization algorithms, 

https://arxiv.org/abs/1609.04747
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http://en.wikipedia.org/wiki/Matrix_calculus


LR with batch GD / Per Feature View

• Note that:

• For its j-th variable: 
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θ j

t+1 =θ j
t +α ( yi − x iTθ t )xi , j

i=1

n

∑

		 
∇θ J =

∂
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J ,…, ∂
∂θk

J
⎡
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⎢

⎤

⎦
⎥
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T

θ t+1 =θ t +α ( yi − x iTθ t )x i
i=1

n

∑

Update Rule Per Feature 
(Variable-Wise)



LR with Stochastic GD / Per Feature View

•For a single training point (i-th), we have: 

• For its j-th variable: 
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			 θ
t+1 =θ t +α( yi −

!x i
Tθ t )!x i

			 θ j
t+1 =θ j

t +α( yi −
!x ii
Tθ t )xi , j Update Rule Per Feature 

(Variable-Wise)



Extra: Direct (normal equation) vs. 
Iterative (GD, SGD,) methods

•Direct methods: we can achieve the solution in a 
single step by solving the normal equation
• Using Gaussian elimination or QR decomposition, we 

converge in a finite number of steps
• It can be infeasible when data are streaming in in real 

time, or of very large amount

• Iterative methods: stochastic GD or GD
• Converging in a limiting sense
• But more attractive in large practical problems 
• Caution is needed for deciding the learning rate 
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One concrete example 
(Gaussian Elimination to solve)
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Extra: Newton’s Method and

Connecting to Normal 
Equation
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Review:  Single Var-Func to Multivariate 

Single Var-
Function

Multivariate Calculus

Derivative
Second-order 
derivative 

Partial Derivative 
Gradient 
Directional Partial Derivative 
Vector Field 
Contour map of a function 
Surface map of a function
Hessian matrix  
Jacobian matrix (vector in / vector out) 
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Newton’s method for optimization

• The most basic second-order optimization algorithm 
• Updating parameter with 
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Review: Hessian Matrix / n==2 case  

• 1st derivative to gradient,

• 2nd derivative to Hessian
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Review: Hessian Matrix 
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Newton’s method for optimization

• Making a quadratic/second-order Taylor series approximation 
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Finding the minimum 
solution of the above 
right quadratic 
approximation 
(quadratic function 
minimization is easy !)
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Newton’s Method / second-order Taylor series 
approximation 
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θk+1θk



Newton’s Method / second-order Taylor 
series approximation 
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Newton’s Method / second-order Taylor 
series approximation 
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Newton’s Method / second-order Taylor 
series approximation 
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Newton’s Method

• At each step:

• Requires 1st and 2nd derivatives
• Quadratic convergence
•è However, finding the inverse of the Hessian matrix is often 

expensive
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θk+1 =θk −
"f (θk )
""f (θk )

θk+1 =θk −H
−1(θk )∇f (θk )



Newton vs. GD for optimization

• Newton: a quadratic/second-order Taylor series approximation 

• GD: an approximation 
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Finding the minimum solution of 
the above right quadratic 
approximation (quadratic 
function minimization is easy !)

1

↵



Comparison

• Newton’s method vs. Gradient descent
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A comparison of  gradient descent 
(green) and Newton's method (red) 
for minimizing a function (with 
small step sizes). 

Newton’s method uses curvature 
information to get a more direct 
route  … 
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Newton’s method
for Linear Regression 

???
Normal 

Equation? 


