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Course Content Plan è
Six major sections of this course

q Regression (supervised)
q Classification (supervised)
q Unsupervised models 
q Learning theory 

q Graphical models 

qReinforcement Learning 
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Y is a continuous

Y is a discrete

NO Y 

About f()

About interactions among X1,… Xp

Learn program to Interact with its 
environment



Last:  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum 
of X’s 

Sum of Squared Error 
(Least Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients

9/11/19 Dr. Yanjun Qi / UVA CS 3

Task:   y 

Representation:   x, f() 

Score Function:   L() 

Search/Optimization 
: argmin() 

Models, Parameters :

ŷ = f (x) =θ T x



Today:  Multivariate Linear Regression with basis Expansion

Regression: y continuous

Y = Weighted linear sum 
of (X basis expansion)

Sum of Squared Error 
(Least Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients
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Task:   y 

Representation:   x, f() 

Score Function:   L() 

Search/Optimization 
: argmin() 

Models, Parameters :

!! ŷ =θ0 + θ jϕ j(x)j=1
m∑ =ϕ(x)Tθ



LR with non-linear basis functions

•LR does not mean we can only deal with 
linear relationships
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ŷ =θ0 + θ jϕ j(x)j=1
m∑ =θTϕ(x)ŷ =θ Tx



LR with non-linear basis functions

• We are free to design basis functions (e.g., non-linear features: 

Here             are predefined basis functions (also                )

• E.g.: polynomial regression with degree up-to two (d=2) :
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		ϕ(x):= 1,x ,x2⎡⎣ ⎤⎦
T

!!ϕ j(x) !!ϕ0(x)=1
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e.g. (1) polynomial regression

θ * = ϕTϕ( )
−1
ϕT !y( ) yXXX TT !1-

=*q

			 ŷ =θ
Tϕ(x)ŷ =θ Tx

		ϕ(x):= 1,x ,x2⎡⎣ ⎤⎦
T



e.g. (1) polynomial regression
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KEY: when the bases are given, the problem of 

learning the parameters from data is still linear.

			 ŷ =θ
Tϕ(x)ŷ =θ Tx
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Many Possible Basis functions

• There are many basis functions, e.g.:
• Polynomial

• Radial basis functions

• Sigmoidal

• Splines, 
• Fourier,
• Wavelets, etc

ϕ j (x) = x
j−1

÷÷
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ϕ j (x) = x
j−1
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e.g. (2) LR with radial-basis functions

• E.g.: LR with RBF regression:
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!! ŷ =θ0 + θ jϕ j(x)j=1
m∑ =ϕ(x)Tθ

𝜑" 𝑥 := 𝐾12 𝑥, 𝑟5 = exp −
𝑥 − 𝜇"

,

2𝜆𝑗,

𝜑(𝑥):
= 71, 𝐾19(𝑥, 𝑟:), 𝐾1,(𝑥, 𝑟,), 𝐾1;(𝑥, 𝑟<), 𝐾1=(𝑥, 𝑟>

?

E.g. with four predefined RBF kernels 



e.g. (2) LR with radial-basis functions

• E.g.: LR with RBF regression:
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!! ŷ =θ0 + θ jϕ j(x)j=1
m∑ =ϕ(x)Tθ

!!ϕ(x):= 1,Kλ1
(x ,r1),Kλ2(x ,r2),Kλ3

(x ,r3),Kλ4(x ,r4 )⎡
⎣

⎤
⎦
T

θ * = ϕTϕ( )
−1
ϕT !y



		
Kλ(x ,r)= exp − (x − r)

2

2λ2
⎛

⎝⎜
⎞

⎠⎟

RBF = radial-basis function: a function which depends
only on the radial distance from a centre point

Gaussian RBF è

as distance from the center  r increases, the 
output of the RBF decreases 

1D case 2D case 
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Kλ(x ,r)= exp − (x − r)

2

2λ2
⎛

⎝⎜
⎞

⎠⎟

X =

1
0.6065307

0.1353353

0.0001234098

		Kλ(x ,r)=
	r

	r +λ

		r +2λ
		r +3λ



e.g. another regression with 3 1D RBF basis functions 
(given 3 predefined centres and width)
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		ϕ(x):= 1,Kλ1
(x ,r1),Kλ2(x ,r2),Kλ3

(x ,r3)⎡
⎣

⎤
⎦
T

θ * = ϕTϕ( )−1ϕT !y
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After fit:

Given Training Data’s scatter plot: 



e.g. another regression with 3 1D RBF basis functions 
(assuming 3 predefined centres and width)
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		ϕ(x):= 1,Kλ1
(x ,r1),Kλ2(x ,r2),Kλ3

(x ,r3)⎡
⎣

⎤
⎦
T

θ * = ϕTϕ( )−1ϕT !y



e.g. Another dataset: even more possible Basis 
Function: RBF, or Piecewise Linear based? 
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e.g. Even more possible Basis Func?

9/11/19 Dr. Yanjun Qi / UVA CS 19



9/11/19

20

e.g. 2D Good and Bad RBF Basis

• A good set of 2D predefined RBF basis

• A Bad set of predefined 2D RBFs



Today:  Multivariate Linear Regression with basis Expansion

Regression: y continuous

Y = Weighted linear sum 
of (X basis expansion)

Sum of Squared Error 
(Least Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients
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Task:   y 

Representation:   x, f() 

Score Function:   L() 

Search/Optimization 
: argmin() 

Models, Parameters :

@𝑦 = 𝜑 𝑥 ?𝜃

𝜑 𝑥 : Which and what type? 



Main issues: Model Selection 

• How to select the right model? 
• E.g. what polynomial degree d for polynomial regression 
• E.g., where to put the centers for the RBF kernels? How wide?  
• E.g. which basis type? Polynomial or RBF? 

9/11/19 Dr. Yanjun Qi / UVA CS 22



To Avoid: Overfitting or Underfitting

x

y

Can we learn a regression f from the data?

Let’s consider three methods…



Linear Regression

x

y



Quadratic Regression

x

y



Join-the-dots

x

y

Also known as piecewise linear 
nonparametric regression if that makes 
you feel better



Which is best?

x

y

x

y

Why not choose the method with the best fit to the training data?



What do we really want?

x

y

x

y

Why not choose the method with the best fit to the 
data?

“How well are you going to predict future 
data drawn from the same distribution?”



What Model Type to Select? 

x

y

x

y

Why not choose the method with the best fit to the data?

“How well are you going to predict future 
data drawn from the same distribution?”

Underfit Good? Overfit

K-fold Cross 
Validation / 
Train-Test / 



What Model Order to Select? 

9/11/19 Dr. Yanjun Qi / UVA CS 

30

xy 10 qq += 2
210 xxy qqq ++= å =

=
5

0j
j

j xy q

K-fold Cross 
Validation / 
Train-Test / 

Generalisation: learn function / 
hypothesis from past data in order 
to “explain”, “predict”, “model” or 
“control” new data examples 

Under fit Looks good Over fit



Choice-I: Train-Test (Leave m out)

9/11/19 31

Xtrain =

−− x1
T −−

−− x2
T −−

! ! !
−− xn

T −−

"

#

$
$
$
$
$

%

&

'
'
'
'
'

!ytrain =

y1
y2
"
yn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

Xtest =

−− xn+1
T −−

−− xn+2
T −−

! ! !
−− xn+m

T −−

"

#

$
$
$
$
$

%

&

'
'
'
'
'

!ytest =

yn+1
yn+2
"
yn+m

!

"

#
#
#
#
#

$

%

&
&
&
&
&



The test set method

x

y

1. Randomly choose some percentage like 
30% of the labeled data to be in a test set
2. The remainder is a training set

Credit: Prof. Andrew Moore



The test set method

x

y

1. Randomly choose some 
percentage like 30% of the labeled 
data to be in a test set
2. The remainder is a training set
3. Perform your regression on the 
training set

(Linear regression example)

Credit: Prof. Andrew Moore



The test set method

x

y

1. Randomly choose 30% of the data 
to be in a test set
2. The remainder is a training set
3. Perform your regression on the 
training set
4. Estimate your future performance 
with the test set

(Linear regression example)
Mean Squared Error = 2.4

Credit: Prof. Andrew Moore
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• Testing Mean Squared Error - MSE to report: 

e.g. for Regression Models 

Jtest =
1
m

(x iTθ * − yi )2
i=n+1

n+m

∑ = 1
m

ε i
2

i=n+1

n+m

∑

Dr. Yanjun Qi / UVA CS 



The test set method

x

y

1. Randomly choose 30% of the data 
to be in a test set
2. The remainder is a training set
3. Perform your regression on the 
training set
4. Estimate your future performance 
with the test set

(Quadratic regression example)
Mean Squared Error = 0.9

Credit: Prof. Andrew Moore



The test set method

x

y

1. Randomly choose 30% of the data 
to be in a test set
2. The remainder is a training set
3. Perform your regression on the 
training set
4. Estimate your future performance 
with the test set

(Join the dots example)
Mean Squared Error = 2.2

Credit: Prof. Andrew Moore



The test set method

Good news:
•Very very simple
•Can then simply choose the method with 
the best test-set score

Bad news:
•Wastes data: we get an estimate of the best 
method to apply to 30% less data
•If we don’t have much data, our test-set 
might just be lucky or unlucky

We say the 
“test-set 
estimator of 
performance 
has high 
variance”

Credit: Prof. Andrew Moore



Choice-II: k-Fold Cross Validation

•Problem of train-test: in many cases we don’t have 
enough data to set aside a test set

•Solution: Each data point is used both as train and 
test

•Common types:
• K-fold cross-validation (e.g. K=5, K=10)
• Leave-one-out cross-validation (LOOCV, i.e., k=n)



e.g. By k=10 fold Cross Validation
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model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

1 train train train train train train train train train test

2 train train train train train train train train test train

3 train train train train train train train test train train

4 train train train train train train test train train train

5 train train train train train test train train train train

6 train train train train test train train train train train

7 train train train test train train train train train train

8 train train test train train train train train train train

9 train test train train train train train train train train

10 test train train train train train train train train train

• Divide data into 10 
equal pieces 

• 9 pieces as training 
set, the rest 1 as 
test set

• Collect the scores 
from each test

• We normally use 
the mean of the 
scores
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Image Credit: Stanford Machine Learning course 



e.g. Leave-one-out / LOOCV
(n-fold cross validation)
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LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to n

1. Let (xk,yk) be the kth record

Credit: Prof. Andrew Moore



LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to n

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset



LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to n

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining n-1 
datapoints

Credit: Prof. Andrew Moore



LOOCV (Leave-one-out Cross Validation)
For k=1 to n

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints

4. Note your error (xk,yk)

x

y



LOOCV (Leave-one-out Cross Validation)
For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints

4. Note your error (xk,yk)

When you’ve done all points, 
report the mean error.

x

y



LOOCV for Linear Regression
For k=1 to n

1. Let (xk,yk)
be the kth

record

2. Temporarily 
remove 
(xk,yk)
from the 
dataset

3. Train on the 
remaining 
n-1 
datapoint
s

4. Note your 
error 
(xk,yk)

When you’ve 
done all points, 
report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV = 2.12
Credit: Prof. Andrew Moore



LOOCV for Quadratic Regression
For k=1 to n

1. Let (xk,yk) be 
the kth record

2. Temporarily 
remove 
(xk,yk) from 
the dataset

3. Train on the 
remaining n-
1 datapoints

4. Note your error 
(xk,yk)

When you’ve done 
all points, report 
the mean error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV=0.962

Credit: Prof. Andrew Moore



LOOCV for Join The Dots
For k=1 to n

1. Let (xk,yk)
be the kth

record

2. Temporarily 
remove 
(xk,yk)
from the 
dataset

3. Train on the 
remaining 
R-1 
datapoint
s

4. Note your 
error 
(xk,yk)

When you’ve 
done all points, 
report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV=3.33

Credit: Prof. Andrew Moore



Which kind of Cross Validation?
Downside Upside

Test-set Variance: unreliable 
estimate of future 
performance

Cheap

Leave-
one-out

Expensive. 
Has some weird 
behavior

Doesn’t 
waste data

..can we get the best of both worlds?

Credit: Prof. Andrew Moore



k-fold Cross Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Purple Green and Blue)

Credit: Prof. Andrew Moore



k-fold Cross Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Purple Green and Blue)

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the blue 
points.

Credit: Prof. Andrew Moore



k-fold Cross Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Purple Green and 
Blue)

For the blue partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

Credit: Prof. Andrew Moore



k-fold Cross Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Purple Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. Find 
the test-set sum of errors on the 
green points.

For the purple partition: Train on all the 
points not in the purple partition. Find 
the test-set sum of errors on the 
purple points.

Credit: Prof. Andrew Moore



k-fold Cross Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Purple Green and 
Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the purple partition: Train on all the 
points not in the purple partition. 
Find the test-set sum of errors on 
the purple points.

Then report the mean error

Linear Regression MSE3FOLD=2.05

Credit: Prof. Andrew Moore



k-fold Cross Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Purple Green and 
Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the purple partition: Train on all the 
points not in the purple partition. 
Find the test-set sum of errors on 
the purple points.

Then report the mean error

Quadratic Regression MSE3FOLD=1.11

Credit: Prof. Andrew Moore



k-fold Cross Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Purple Green and 
Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

Then report the mean error

Joint-the-dots MSE3FOLD=2.93

Credit: Prof. Andrew Moore



Which kind of Cross Validation?

Downside Upside

Test-set Variance: unreliable 
estimate of future 
performance

Cheap

Leave-
one-out

Expensive. 
Has some weird behavior

Doesn’t waste data

10-fold Wastes 10% of the data. 10 
times more expensive than 
test set

Only wastes 10%. Only 
10 times more 
expensive instead of n 
times.

3-fold Wastier than 10-fold. More 
Expensive than test set style

better than test-set

n-fold Identical to Leave-one-out



CV-based Model Selection

• We’re trying to decide which algorithm/model to use.
• We train/learn/fit each model and make a table…

i fi TRAINERR k-FOLD-CV-ERR Choice
1 f1
2 f2
3 f3 �
4 f4
5 f5
6 f6

Credit: Prof. Andrew Moore



Next: More Regression (supervised)

q Four ways to train / perform optimization for linear regression 
models
q Normal Equation
q Gradient Descent (GD) 
q Stochastic GD 
q Newton’s method 

qSupervised regression models 
qLinear regression (LR) 
qLR with non-linear basis functions
qLocally weighted LR
qLR with Regularizations
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Later: Complexity versus Goodness of Fit
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x

y

x

y

x

y

x

y

Too simple?

Too complex ? About right ?

Training data

What ultimately matters: GENERALIZATION

Low Variance / 
High Bias

Low Bias 
/ High Variance



Lecture 5 Extra: K-Nearest Neighbor

Regression/ 
classification

Local Smoothness

NA

NA

Training 
Samples

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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Lecture 5 Extra: Nonparametric Regression 
Models

• K-Nearest Neighbor (KNN) and Locally weighted linear regression are  
non-parametric algorithms. 

• The (unweighted) linear regression algorithm that we saw earlier is 
known as a parametric learning algorithm 

• because it has a fixed, finite number of parameters which are fit to the data;
• Once we've fit the \theta and stored them away, we no longer need to keep 

the training data around to make future predictions.
• In contrast, to make predictions using KNN or locally weighted linear 

regression, we need to keep the entire training set around. 

• The term "non-parametric" (roughly) refers to the fact that the 
amount of knowledge we need to keep,  in order to represent the 
hypothesis grows with linearly  the size of the training set.
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