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Where are we ? è
Five major sections of this course

q Regression (supervised)
q Classification (supervised)
q Unsupervised models 
q Learning theory 
q Graphical models 
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Regression (supervised)

q Four ways to train / perform optimization for 
linear regression models
q Normal Equation
q Gradient Descent (GD) 
q Stochastic GD 
q Newton’s method 

qSupervised regression models 
qLinear regression (LR) 
qLR with non-linear basis functions
qLocally weighted LR
qLR with Regularizations
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Today Extra è
Nonparametric Regression (supervised)

q Four ways to train / perform optimization for linear regression models
q Normal Equation
q Gradient Descent (GD) 
q Stochastic GD 
q Newton’s method 

qSupervised regression models 
qLinear regression (LR) 
qLR with non-linear basis functions
q kNN based LR
qLocally weighted LR
qLR with Regularizations
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K-Nearest Neighbor

• Features
• All instances correspond to points in an p-dimensional Euclidean space
• Regression is delayed till a new instance arrives
• Regression is done by comparing feature vectors of the different points
• Target function may be discrete or real-valued

• When target is continuous, the prediction is the mean value of the k nearest training 
examples



K=5-Nearest Neighbor (1D input)
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K=1-Nearest Neighbor (1D input)
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K-Nearest Neighbor

Regression/ 
classification

Local Smoothness

NA

NA

Training 
Samples

Task 
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Score Function 

Search/Optimization 

Models, 
Parameters
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Variants: Distance-Weighted k-Nearest 
Neighbor Algorithm

• Assign weights to the neighbors based on their “distance” from the 
query point

• Weight “may” be inverse square of the distances

• All training points may influence a particular instance
• E.g., Shepard’s method/ Modified Shepard, … by Geospatial Analysis



Instance-based Regression 
vs. Linear Regression

• Linear Regression Learning
• Explicit description of target function on the whole training set

• Instance-based Learning
• Learning=storing all training instances
• Referred to as “Lazy” learning



Today Extra è
Nonparametric Regression (supervised)

q Four ways to train / perform optimization for linear regression models
q Normal Equation
q Gradient Descent (GD) 
q Stochastic GD 
q Newton’s method 

qSupervised regression models 
qLinear regression (LR) 
qLR with non-linear basis functions
q kNN based LR
qLocally weighted LR
qLR with Regularizations
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Locally weighted regression
• aka locally weighted regression, local linear regression, LOESS, 

…
• A combination of kNN and Linear regression 
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Kλ (xi, x0 )



Locally weighted regression
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Use RBF 
function to pick 
out/emphasize  
the neighbor 
region of x_0 
è

Kλ (xi, x0 )

Kλ (xi, x0 )



Locally weighted regression
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A linear_func(x)->y 
èOnly to represent 

the neighbor 
region of x_0

Kλ (xi, x0 )

		 f̂ (x0)=θ0
!(x0)+θ1

!(x0)x0



Locally weighted linear regression

Instead of minimizing

now we fit to minimize
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where x_0 is the query point for 
which we'd like to know its 
corresponding y



Locally weighted linear regression

We fit \theta to minimize

wi comes from:                                              

• x_0 is the query point for which we'd like to know its corresponding y
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Essentially we put higher weights on 
training examples that are close to the 
query point x_0 (than those that are 
further away from the query point x_0)



Locally weighted linear regression

• The width of RBF matters ! 
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LEARNING of Locally weighted linear 
regression
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x0

• Separate weighted least squares training 
and inference  at each target point x0

		 f̂ (x0)=θ0
!(x0)+θ1

!(x0)x0



Locally weighted linear regression

•èSeparate weighted least square error 
minimization at each target point x0:
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f̂ (x0)= x0Tθ *(x0)
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Extra: Solution of Locally weighted 
linear/NonLinearBasis regression
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*(x0)= (BTW(x0)B)−1BTW(x0)y

versus LR θ * = XTX( )−1 XT !y

LWR



More è Local Weighted Polynomial 
Regression

• Local polynomial fits of any degree d
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Extra: Parametric vs. non-parametric

• Locally weighted linear regression is a non-parametric algorithm. 

• The (unweighted) linear regression algorithm that we saw earlier is known as 
a parametric learning algorithm 

• because it has a fixed, finite number of parameters (the       ), which are fit to the 
data;

• Once we've fit the \theta and stored them away, we no longer need to keep the 
training data around to make future predictions.

• In contrast, to make predictions using locally weighted linear regression, we need to 
keep the entire training set around. 

• The term "non-parametric" (roughly) refers to the fact that the amount of 
knowledge we need to keep,  in order to represent the hypothesis grows 
with linearly  the size of the training set.
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(3) Locally Weighted / Kernel Linear Regression

Regression

Y = Weighted linear sum 
of X’s 

Weighted SSE

Linear algebra 

Local Regression 
coefficients 

(conditioned on 
each test point) 

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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α (x0 ),β(x0 )
Kλ(x0 ,xi )[ yi −α(x0)−β(x0)xi ]2
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∑
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			θ
*(x0)= (BTW(x0)B)−1BTW(x0)y
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