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Where are we ? =»
Five major sections of this course

(J Regression (supervised)
[ Classification (supervised)
 Unsupervised models
 Learning theory
 Graphical models
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Regression (supervised)

1 Four ways to train / perform optimization for T
linear regression models

J Normal Equation

] Gradient Descent (GD) Jara S é% (9"9\‘“‘”\ L(9>
] Stochastic GD
] Newton’s method

ASupervised regression models
Linear regression (LR)
LR with non-linear basis functions \](m‘tﬁm& ’0% Q(x)
dLocally weighted LR
LR with Regularizations — \)(;)({:(«4‘\% ’% \/(9\
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Today Extra =»

Nonparametric Regression (supervised)
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K-Nearest Neighbor

* Features
 All instances correspond to points in an p-dimensional Euclidean space
e Regression is delayed till a new instance arrives
* Regression is done by comparing feature vectors of the different points

* Target function may be discrete or real-valued

* When target is continuous, the prediction is the mean value of the k nearest training
examples



K=5-Nearest Neighbor (1D input)




K=1-Nearest Neighbor (1D input)

=)
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K-Nearest Neighbor

| Regression/
Task g classification
| |
Representation § Local Smoothness
} }
Score Function ; NA
} - |
Search/Optimization g NA
' 1
Models, | Training
Parameters g Samples
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Variants: Distance-Weighted k-Nearest
Neighbor Algorithm

* Assign weights to the neighbors based on their “distance” from the
guery point
* Weight “may” be inverse square of the distances

* All training points may influence a particular instance
* E.g., Shepard’s method/ Modified Shepard, ... by Geospatial Analysis

QY- % Z\’J W

\<<X1, Xo)



Instance-based Regression
vs. Linear Regression

* Linear Regression Learning

* Explicit description of target function on the whole training set

* Instance-based Learning
* Learning=storing all training instances
 Referred to as “Lazy” learning



Today Extra =»

Nonparametric Regression (supervised)
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Locally weighted regression

 aka locally weighted regression, local linear regression, LOESS,

« A combination of KNN and Linear regression

0
Q 0
o 4 6
0
0
/KA(XNXO)
X

Figure 2: Inlocally weighted regr Ess101L, points are weighted by proximity to the current X in question using
a kernel A regression 1s then computed using the weighted points. 12
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Locally weighted regression

Use RBF

I{;L (xl. ) xo) function to pick
| : out/emphasize
the neighbor

region of x_0O
= K, (x,x,)

Figure 2: Inlocally weighted regr Ess101L, points are weighted by proximity to the current X in question using

9/11 o . : :
a kernel A regression 1s then computed using the weighted points.
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Locally weighted regression

Fx)=6,(x,)+6,(x,)x, .
N 3 (%)

A linear_func(x)->y
=» Only to represent
the neighbor

region of x_0

Figure 2: Inlocally weighted regresson, points are weighted by prozmity to the current X i question using
a kernel. & regression is then computed using the weighted points. 14
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Locally weighted linear regression

Instead of minimizing

1&, 7
now we fit to minimize J(H) — EZ(XZ- 0 — yl-)z gE
i=1
\
J(0)= %;W"(X"TH -y.)’ Wwsst

(x —x )
Wi:Kl(xi,xo):exp[— ’2)’20 ]

where x_0 is the query point for
which we'd like to know its
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Locally weighted linear regression

We fit \theta to minimize J(H) _ %iwi(ng _ yi)2
i=1

w; comes from:

(x,—x,)’

w =K (X,X )= expL—
* x_0is the query point for which we'd

2
ike tozk/%owjts corresponding y

Essentially we put higher weights on
training examples that are close to the
query point x_0 (than those that are

™

further away from the query pointx 0
i y query p _0) .

-
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Locally weighted linear regression

* The width of RBF matters !

) o il

kernel too wide — includes nonlinear region
kernel just right
kernel too narrow — excludes some of linear reg

X
Figure 3: The estimator vantance 15 minirnized when the kernel mcludes as many traimng points as can be
accommodated by the model. Here the linear LOESS model 1s shown. Too large a kernel includes points that
degrade the fit; too small a kernel neglects ponts that increase confidence i the fit.




LEARNING of Locally weighted linear
regression

target,
l B
B model

training learn . ~ ~
dataset 'f(XO)IQO(XO)+91(X0)X0

* Separate weighted least squares training
and inference at each target point x,
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Locally weighted linear regression

« =»Separate weighted least square error T
minimization at each target point x,:

6'(x, )=arg min%Zwi(xiTQ(xo)— v

1 n
= argminEZKl (x,x)(x, 0(x,)-y)
i=1

0. £ (Yo)2

f(x)=x"6"(x,) ) A
f(x)) = G(x,)+ B(x,)x,
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Extra: Solution of Locally weighted
linear/NonLinearBasis regression T

Wy (X)) = a’iag(Ki (xo,xl.)),i =1...,.N

Gally vigad (R = (TW,2) " KT 10,7
LWR ||6"(x,)=(B'W(x,)B) ' B'W(x,)y
Lothly pegeed “eg. fYnamah Regelion X5 B

€ R oy




More =» Local Weighted Polynomial
Regression

F:ee&polynomial fits of any degree d O T
B 12

min ZK (X0, X)) Vi —a(xy) — ZIB (x0)x]

a(xg), ﬂ (x), /=L,

Blue: true f(xo) OC(XO)-I-Z _1:8 (xo)xo

Green: estimated 9 .
Local inearjin Interior LocaljQuadratid{in Interior
had >4
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Extra: Parametric vs. non-parametric

* Locally weighted linear regression is a non-parametric algorithm.

{in s’
* The (unweighted) linear regression algorithm th Q/(éga"w eaflier is known as
a parametric learning algorithm

* because it has a fixed, finite number of parameters (the ), which arefitdojthe
data;

* Once we've fit the \theta and stored them away, we no longer need to the
training data around to make future predictions.

* In contrast, to make predictions using locally weighted linear regression, we need to
keep the entire training set around.

* The term "non-parametric" (roughly) refers to the fact that the amount of

knowledge we need to keep, in order to represent the hypothesis grows
with linearly the size of the training set.
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(3) Locally Weighted / Kernel Linear Regression

Task

v
Representation

\ 4
Score Function

v
Search/Optimization

v

Models,
Parameters

_______________________________________________

Regression

Y= Welghted linear sum
of X's

Weighted SSE
\

Linear algebra

el(x) (B'W(x,)B)" éW(x 1y

¥
Local Regression

coefficients
(conditioned on
each test point)

min 21{ (XO,X)[y —a(x,)- B(x, )x]

a(xy)B(x) 7

o f) =) + B,
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