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Last:  Multivariate Linear Regression with basis Expansion

Regression: y continuous

Y = Weighted linear sum 
of (X basis expansion)

Sum of Squared Error 
(Least Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients
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Task:   y 

Representation:   x, f() 

Score Function:   L() 

Search/Optimization 
: argmin() 

Models, Parameters :

!! ŷ =θ0 + θ jϕ j(x)j=1
m∑ =ϕ(x)Tθ



Today: Regularized multivariate linear regression

Regression

Y = Weighted linear sum 
of X’s 

Least-squares + 
Regularization  

Linear algebra for Ridge / 
sub-GD for Lasso & Elastic

Regression coefficients 
(regularized weights)

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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We aim to make the learned model 

•1. Generalize Well 

• 2. Computational Scalable and Efficient

• 3. Robust / Trustworthy / Interpretable
• Especially for some domains, this is about trust! 
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Today

q Linear Regression Model with Regularizations

üReview: (Ordinary) Least squares: squared loss (Normal Equation)
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Choose Regularization Parameter 
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SUPERVISED Regression

• When, target Y is a 
continuous target 
variable 
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f(x?)

Training dataset 
consists of input-

output pairs



Review: Normal equation for LR
• Write the cost function in matrix form:

To minimize J(θ), take derivative and set to zero:
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J(β)= 12 (x iTβ − yi )2
i=1

n

∑
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		 ⇒ 							XTXβ = XT !y
The normal equations
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Assume 
that XTX is 
invertible



Comments on the normal equation

What if X has less than full column rank? 
àNot Invertible 
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Today

q Linear Regression Model with Regularizations

üReview: (Ordinary) Least squares: squared loss (Normal Equation)
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Choose Regularization Parameter 
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A norm of a vector ||x|| is informally a measure of 
the “length” of the vector.

– Common norms: L1, L2 (Euclidean)

– Linfinity

Review: Vector norms
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Review: Vector Norm (L2, when p=2)
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Lasso Quadratic

Norms



Ridge Regression /  L2 Regularization 

• If not invertible, a classical solution is to add a small positive element to 
diagonal
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β * = XTX +λI( )−1 XT !y

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

		 β
* = XTX( )−1 XT !y
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One important property of positive definite matrices is that 

è They are always full rank, and hence, invertible. 

è Extra: See Proof at Page 17-18 of Linear-Algebra Handout

Extra: Positive Definite Matrix
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		 β
* = XTX +λI( )−1 XT !y

Extra: Positive Definite Matrix



Ridge Regression /  Squared Loss+L2 

• As the solution from

9/18/19 Dr. Yanjun Qi / UVA CS 18

β * = XTX +λI( )−1 XT !y

		 β
! ridge = argmin( y − Xβ)T( y − Xβ)+λβTβ

HW2

to minimize, take derivative and set to zero

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 



Ridge Regression /  Squared Loss+L2 
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β * = XTX +λI( )−1 XT !y

β!
ridge

= argmin( y − Xβ )T( y − Xβ )+λβTβ

HW2

to minimize, take derivative and set to zero

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

• As the solution from



Ridge Regression /  Squared Loss+L2 
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β * = XTX +λI( )−1 XT !y

β!
ridge

= argmin( y − Xβ )T( y − Xβ )+λβTβ

HW2

to minimize, take derivative and set to zero

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

• As the solution from

• Equivalently β!
ridge

= argmin( y − Xβ )T( y − Xβ )
subject		to		

j={1..p}
∑ β j

2 ≤ s2
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Surface 
map

Contour 
map

Review 
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β!
ridge

= argmin( y − Xβ )T( y − Xβ )
subject		to		

j={1..p}
∑ β j

2 ≤ s2



Objective Function’s Contour lines  
from Ridge Regression 
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OLS: Least 
Square 

solution

s

β!
ridge

= argmin( y − Xβ )T( y − Xβ )
subject		to		

j={1..p}
∑ β j

2 ≤ s2



Objective Function’s Contour lines  
from Ridge Regression 
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OLS: Least 
Square 

solution

Ridge 
Regression 

solution

s
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�1

�2

Least Square+L2: 
Ridge solution

s

Least 
Square 

solution

Ridge 
Regression 

solution
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Parameter Shrinkage
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		 βOLS = XTX( )−1 XT !y

Page65 of ESL book @ 
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings
/ESLII_print10.pdf

When

When

		 βRg = XTX +λI( )−1 XT !y



Extra: two forms of Ridge Regression

• Totally equivalent 
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http://stats.stackexchange.com/questions/190
993/how-to-find-regression-coefficients-beta-
in-ridge-regression



Ridge Regression: Squared Loss+L2 

• > 0 penalizes each

• if     = 0 we get the least squares estimator; 

• if               , then           to zero
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�1

�2

üInfluence of Regularization Parameter 

Least 
Square 

solution

Ridge 
Regression 

solution



9/18/19 Dr. Yanjun Qi / UVA CS 31

�1

�2

�1

�2

λ→∞

üInfluence of Regularization Parameter 
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�1

�2 	λ→0üInfluence of 
Regularization 
Parameter 



Today

q Linear Regression Model with Regularizations

üReview: (Ordinary) Least squares: squared loss (Normal Equation)
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Pick Regularization Parameter 
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(2) Lasso (least absolute shrinkage and 
selection operator) / Squared Loss+L1

• The lasso is a shrinkage method like ridge, but acts in a nonlinear 
manner on the outcome y.

• The lasso is defined by
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β̂ lasso = argmin( y − X β )T( y − X β )
subject		to		 β j ≤ s∑

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

( yi − xiTβ )2i=1
n∑



Lasso (least absolute shrinkage 
and selection operator)

• Suppose in 2 dimension
• β= (β1 , β2)
• | β1 |+| β2 |=const
• | β1 |+|- β2 |=const
• | -β1 |+| β2 |=const
• | -β1 |+| -β2 |=const
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s

Least 
Square 

solution

Lasso 
Solution



• In the Figure, the solution has 
eliminated the role of x2, 
leading to sparsity
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s

Least 
Square 

solution

Lasso 
Solution
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Ridge 
Regression

Lasso 
Estimator 

ss



Lasso (least absolute shrinkage and 
selection operator)

• Notice that ridge penalty            is replaced 
by

• Due to the nature of the constraint, if tuning parameter is chosen small 
enough,  then the lasso will set some coefficients exactly to zero. 
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Lasso: Implicit Feature Selection 
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X
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n
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e.g., Leukemia Diagnosis
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Golub et al, Science Vol 286:15 Oct. 1999

-1

+1

n

pʼ

{yi}, 
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Today

q Linear Regression Model with Regularizations

üReview: (Ordinary) Least squares: squared loss (Normal Equation)
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Pick Regularization Parameter 
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Lasso for when p>n
• Prediction accuracy and model interpretation are two important 

aspects of regression models.

• LASSO does shrinkage and variable selection simultaneously for 
better prediction and model interpretation.

Disadvantage:
-In p>n case, lasso selects at most n variable before it saturates 
-If there is a group of variables among which the pairwise 

correlations are very high, then lasso select one from the group
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(3) Hybrid of Ridge and Lasso : 
Elastic Net regularization

• L1 part of the penalty generates a sparse model 
• L2 part of the penalty (extra): 

• Remove the limitation of the number of selected variables 
• Encouraging group effect
• Stabilize the L1 regularization path
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Naïve elastic net
• For any non negative fixed λ1 and λ2, naive elastic net criterion:

• The naive elastic net estimator is the minimizer of above equation

• Equivalently: 
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Naïve elastic net
• For any non negative fixed λ1 and λ2, naive elastic net criterion:

• The naive elastic net estimator is the minimizer of above

• Equivalently: 

9/18/19 Dr. Yanjun Qi / UVA CS 46



Geometry of elastic net
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e.g. A Practical Application of 
Regression Model 
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Proceedings of 
HLT ’2010 
Human 
Language 
Technologies:  
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e.g., Movie Reviews and Revenues: An Experiment in Text 
Regression,  Proceedings of HLT '10 (1.7k n / >3k features) 

e.g. counts 
of a ngram in 

the text 
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The feature weights can be 
directly interpreted as U.S. 
dollars contributed to the 
predicted value yˆ by each 

occurrence of the feature. 

to movies

A REAL APPLICATION: Movie 
Reviews and meta to Revenues
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Movie Reviews and Revenues: An Experiment in Text Regression, 
Proceedings of HLT '10 Human Language Technologies:  

Use linear regression to directly predict the opening weekend gross 
earnings, denoted as y, based on features x extracted from the 

movie metadata and/or the text of the reviews.
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An example of how real 
applications use the elastic net 
and its weights! 

Here, the features are from the text-only 
model annotated in Table 2. 

The feature weights can be directly 
interpreted as U.S. dollars contributed to 
the predicted value   by each occurrence 
of the feature. 

Sentiment-related text features are not 
as prominent as might be expected, and 
their overall proportion in the set of 
features with non-zero weights is quite 
small (estimated in preliminary trials at 
less than 15%). Phrases that refer to 
metadata are the more highly weighted 
and frequent ones. 
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A combination of the meta and text 
features achieves the best 
performance both in terms of MAE 
and pearson r. 



• Pearson correlation coefficient

• For regression:
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r(x , y)=
(xi − x)( yi − y)

i=1

m

∑

(xi − x)2 × ( yi − y)2
i=1

m

∑
i=1

m

∑

where	x = 1
m xi
i=1

m

∑ 		and		 y = 1
m yi
i=1

m

∑ .

		r(x , y) ≤1

More Ways for Measuring Regression Predictions: 
Correlation Coefficient

		 r(
!ypredicted ,

!yknown )

• Measuring the linear correlation
between two sequences, x and y,

• giving a value between +1 and −1 
inclusive, where 1 is total positive 
correlation, 0 is no correlation, and 
−1 is total negative correlation.
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Advantage of Elastic net (Extra)

• Native Elastic set can be converted to lasso 
with augmented data form

• In the augmented formulation, 
• sample size n+p and X* has rank p 
• è can potentially select all the predictors

• Naïve elastic net can perform automatic 
variable selection like lasso
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Summary: 
Regularized multivariate linear regression
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• Model: pp xxY
^
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• Ridge regression estimation:

• LR estimation:

• LASSO estimation:
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Regularized multivariate linear regression

Regression

Y = Weighted linear sum 
of X’s 

Least-squares + 
Regularization  

Linear algebra for Ridge / 
sub-GD for Lasso & Elastic

Regression coefficients 
(regularized weights)

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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min J(β ) = Y −Y
^⎛
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More: A family of shrinkage estimators

• for q >=0,  contours of constant value of                   are shown for 
the case of two inputs.
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β = argminβ ( yi − xiTβ)2i=1
N∑

subject		to			 β j∑
q
≤ s

å j

q

jb



norms visualized

all p-norms penalize larger 
weights

q < 2 tends to create sparse 
(i.e. lots of 0 weights)

q > 2 tends to push for 
similar weights

q



We aim to make the learned model 

•1. Generalize Well 

• 2. Computationally Scalable and Efficient

• 3. Robust / Trustworthy / Interpretable
• Especially for some domains, this is about trust! 
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Today

q Linear Regression Model with Regularizations

üReview: (Ordinary) Least squares: squared loss (Normal Equation)
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to pick Regularization Parameter 
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Regularized multivariate linear regression

Regression

Y = Weighted linear sum 
of X’s 

Least-squares + 
Regularization  

Linear algebra for Ridge / 
sub-GD for Lasso & Elastic

Regression coefficients 
(regularized weights)

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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min J(β ) = Y −Y
^⎛
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Common regularizers

L2: Squared weights penalizes large values more

L1: Sum of weights will penalize small values more
	

β j
j

∑

β 2
j

j

∑

Generally, we don’t want huge weights

If weights are large, a small change in a feature can result in 
a large change in the prediction

Might also prefer weights of 0 for features that aren’t useful



Model Selection & Generalization 

• Generalisation: learn function / hypothesis from past data in order 
to “explain”, “predict”, “model” or “control” new data examples 

• Underfitting: when model is too simple, both 
training and test errors are large

• Overfitting: when model is too complex and test 
errors are large although training errors are small.

• After learning knowledge, model tends to learn “noise”

9/18/19 Dr. Yanjun Qi / UVA CS 65



Issue: Overfitting and underfitting
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xy 10 qq += 2
210 xxy qqq ++= å =

=
5

0j
j

j xy q

K-fold Cross 
Validation !!!! 

Generalisation: learn function / 
hypothesis from past data in order 
to “explain”, “predict”, “model” or 
“control” new data examples 

Under fit Looks good Over fit



Overfitting: Handled by Regularization

A regularizer is an additional criteria to the loss function to make sure 
that we don’t overfit

It’s called a regularizer since it tries to keep the parameters more 
normal/regular

It is a bias on the model forces the learning to prefer certain types of 
weights over others, e.g., 

		 β
! ridge = argminβ ( yi − xiTβ)2i=1

n∑ +λβTβ



WHY and How to Select λ? 

• 1. Generalization ability 
è k-folds CV to decide 

• 2. Control the bias and Variance of the model (details in future lectures) 
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L2: Squared weights penalizes large values more

L1: Sum of weights will penalize small values more
	

β j
j

∑

β 2
j

j
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Regularization 
path of 
a Ridge 
Regression

¥®l λ = 0
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Regularization 
path of 
a Ridge 
Regression

¥®l λ = 0

Weight Decay

An example with 8 features  
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Regularization 
path of a Lasso 
Regression 

¥®l λ = 0

when varying λ, 
how βj varies.

An example with 8 features  



An example 
of  
Ridge Regression

when varying 
λ, how βj
varies.
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λ increases 

λ→∞ λ = 0

Choose λ that 
generalizes well !

An example with 8 features  
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¥®l λ = 0

Choose λ that 
generalizes well !

when varying λ, 
how βj varies.

An example with 8 features  



Today Recap

q Linear Regression Model with Regularizations

üReview: (Ordinary) Least squares: squared loss (Normal Equation)
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üInfluence of Regularization Parameter 
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Regression (supervised)

q Four ways to train / perform optimization for linear regression models
q Normal Equation
q Gradient Descent (GD) 
q Stochastic GD 
q Newton’s method 

qSupervised regression models 
qLinear regression (LR) 
qLR with non-linear basis functions
qLocally weighted LR
qLR with Regularizations
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Extra More

• Optimization of regularized regressions: 
• See L6-extra slide

• Relation between λ and s 
• See L6-extra slide

• Why Elastic Net has a few nice properties 
• See L6-extra slide
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