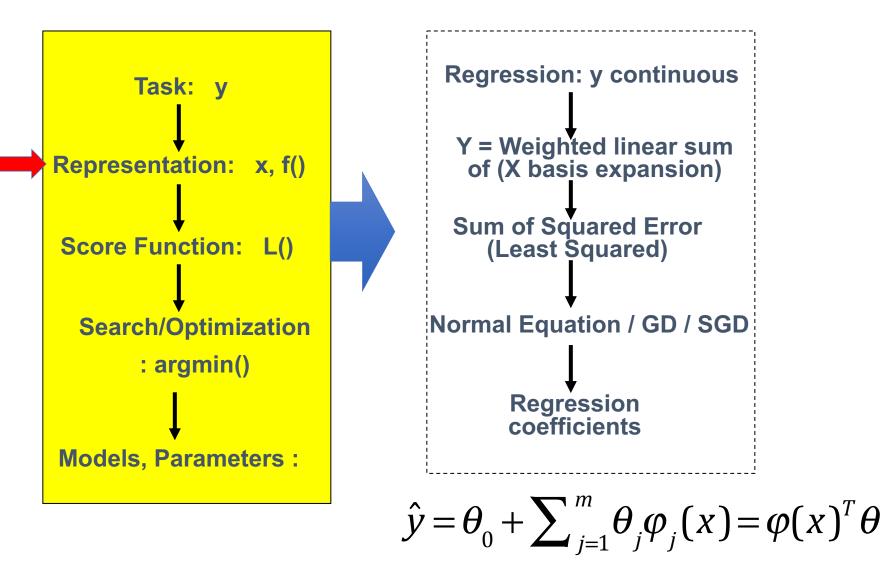
UVA CS 6316: Machine Learning

Lecture 6: Linear Regression Model with Regularizations

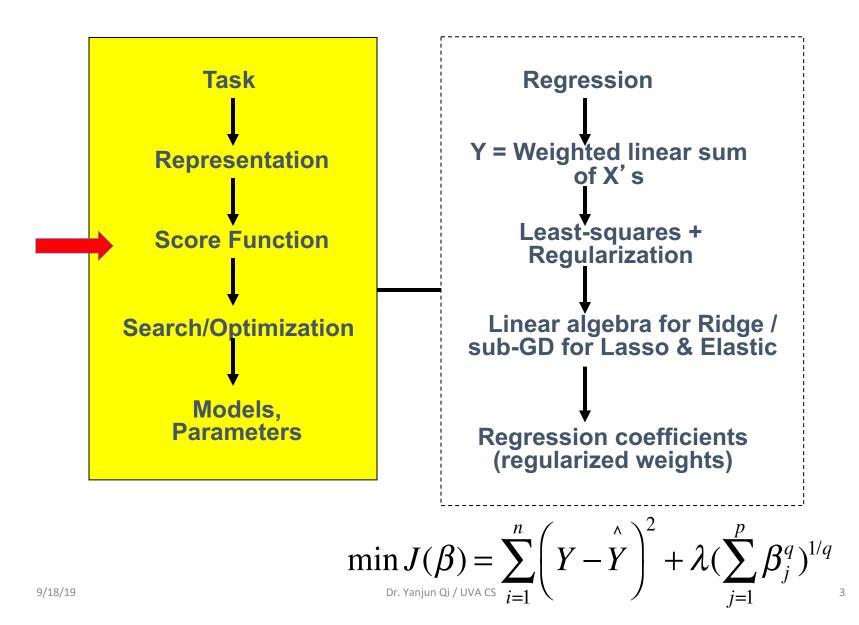
Dr. Yanjun Qi

University of Virginia Department of Computer Science

Last: Multivariate Linear Regression with basis Expansion



Today: Regularized multivariate linear regression



We aim to make the learned model

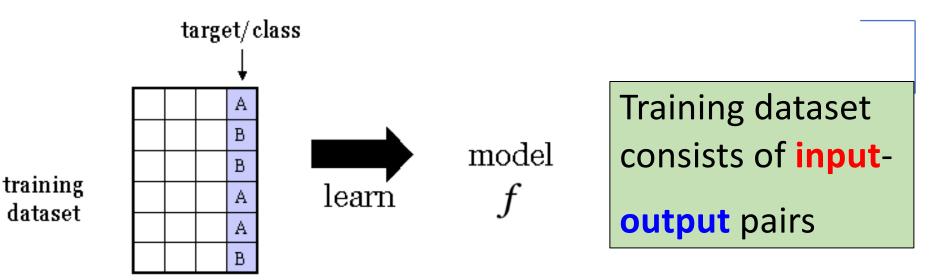
- •1. Generalize Well
- 2. Computational Scalable and Efficient
- 3. Robust / Trustworthy / Interpretable
 Especially for some domains, this is about trust!

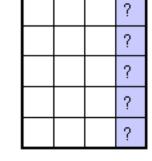
Today

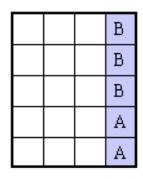
Linear Regression Model with Regularizations

Review: (Ordinary) Least squares: squared loss (Normal Equation)
 Ridge regression: squared loss with L2 regularization
 Lasso regression: squared loss with L1 regularization
 Elastic regression: squared loss with L1 AND L2 regularization
 How to Choose Regularization Parameter

SUPERVISED Regression







 $f(\mathbf{x}_2)$

• When, target Y is a continuous target variable

Review: Normal equation for LR

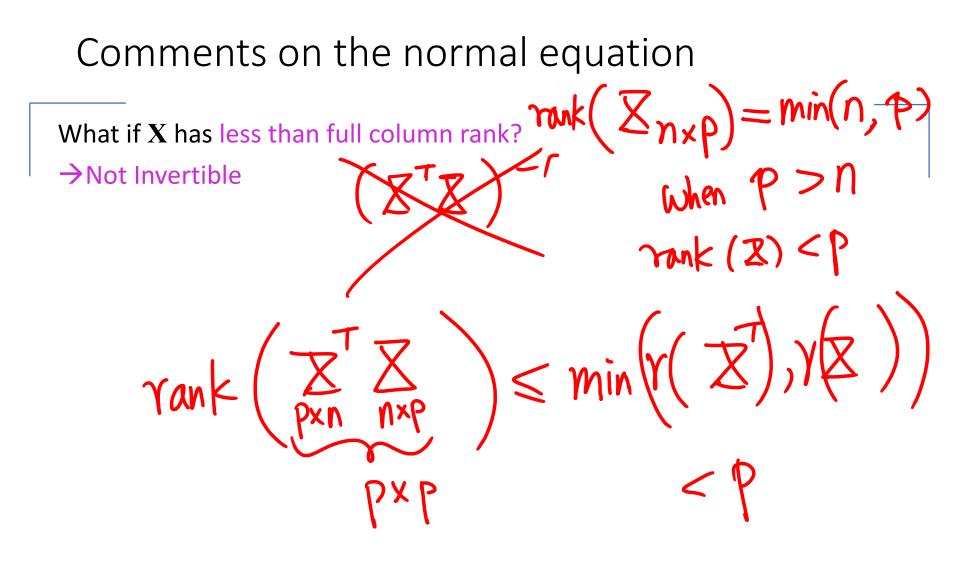
• Write the cost function in matrix form:

$$J(\beta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \beta - y_{i})^{2}$$
$$= \frac{1}{2} (X\beta - \bar{y})^{T} (X\beta - \bar{y})$$
$$= \frac{1}{2} (\beta^{T} X^{T} X\beta - \beta^{T} X^{T} \bar{y} - \bar{y}^{T} X\beta + \bar{y}^{T} \bar{y})$$

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_1^T & -- \\ -- & \mathbf{x}_2^T & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n^T & -- \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

To minimize $J(\theta)$, take derivative and set to zero:

Assume that X^TX is invertible



For any matrix $A \in \mathbb{R}^{m \times n}$, it turns out that the column rank of A is equal to the row rank of A (though we will not prove this), and so both quantities are referred to collectively as the **rank** of A, denoted as rank(A). The following are some basic properties of the rank:

• For $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A) \leq \min(m, n)$. If $\operatorname{rank}(A) = \min(m, n)$, then A is said to be full rank.

For
$$A \in \mathbb{R}^{m \times n}$$
, $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.

- For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(AB) \le \min(\operatorname{rank}(A), \operatorname{rank}(B))$.
- For $A, B \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

 $rank(X^TX) \leq rank(X) \leq min(n,p)$ when (n<p) rank (XX) < P Singular/not invertible

Page11 Of

Handout L2

Today

Linear Regression Model with Regularizations

Review: (Ordinary) Least squares: squared loss (Normal Equation)
 Ridge regression: squared loss with L2 regularization
 Lasso regression: squared loss with L1 regularization
 Elastic regression: squared loss with L1 AND L2 regularization
 How to Choose Regularization Parameter

Review: Vector norms

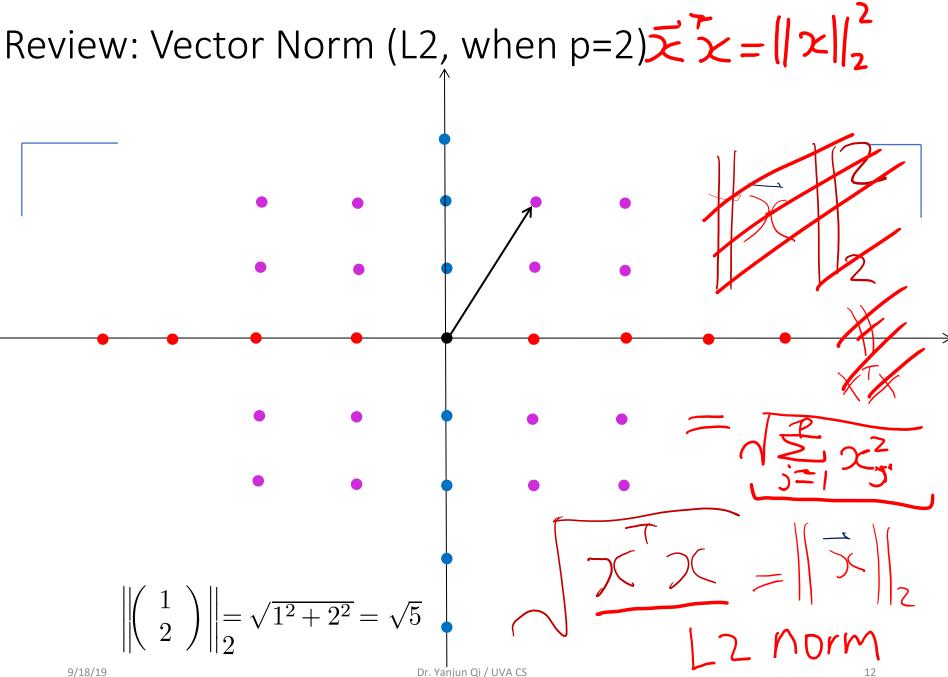
A norm of a vector ||x|| is informally a measure of the "length" of the vector.

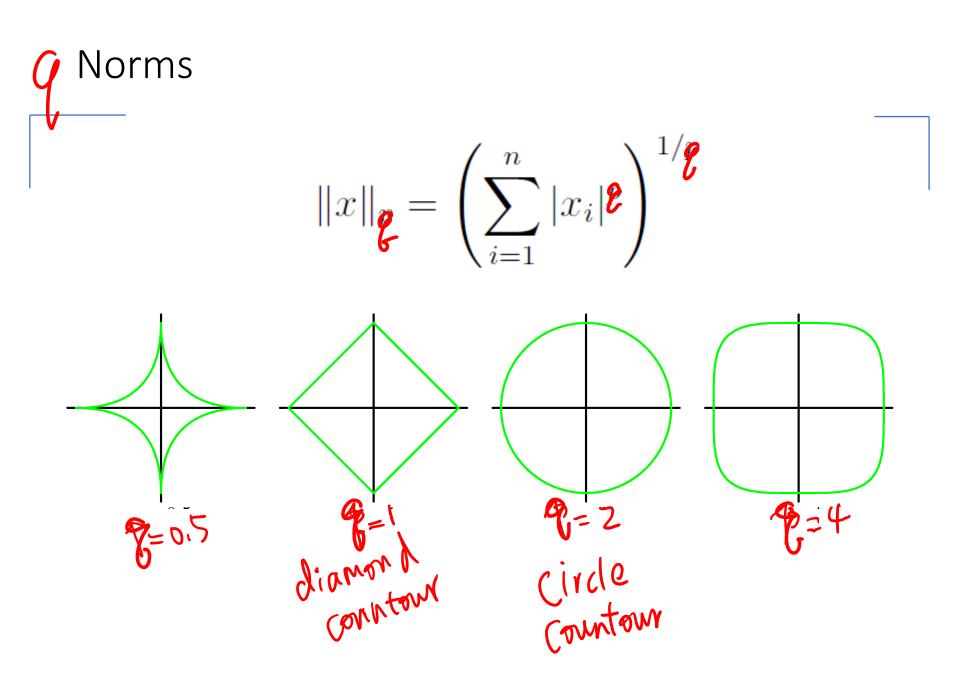
$$||x||_{\mathbf{Q}} = \left(\sum_{i=1}^{n} |x_i|_{\mathbf{Q}}\right)^{1/\mathbf{Q}} \qquad \mathbf{Q} = 1, 2, \cdots$$

– Common norms: L₁, L₂ (Euclidean)

$$\|x\|_1 = \sum_{i=1}^n |x_i| \qquad \|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
- L_{infinity}

$$||x||_{\infty} = \max_i |x_i|$$





Ridge Regression / L2 Regularization

$$\beta_{\text{ols}} = \beta^* = (X^T X)^{-1} X^T \overline{y}$$

• If not invertible, a classical solution is to add a small positive element to diagonal

$$\boldsymbol{\lambda} > \boldsymbol{0}$$
$$\boldsymbol{\beta}^* = \left(\boldsymbol{X}^T \boldsymbol{X} + \boldsymbol{\lambda} \boldsymbol{I}\right)^{-1} \boldsymbol{X}^T \, \boldsymbol{\bar{y}}$$

Extra: Positive Definite Matrix

- A symmetric matrix $A \in \mathbb{S}^n$ is **positive definite** (PD) if for all non-zero vectors $x \in \mathbb{R}^n, x^T A x > 0$. This is usually denoted $A \succ 0$ (or just A > 0), and often times the set of all positive definite matrices is denoted \mathbb{S}^n_{++} .
- A symmetric matrix $A \in \mathbb{S}^n$ is **positive semidefinite** (PSD) if for all vectors $x^T A x \ge 0$. 0. This is written $A \succeq 0$ (or just $A \ge 0$), and the set of all positive semidefinite matrices is often denoted \mathbb{S}^n_+ .

One important property of positive definite matrices is that

They are always full rank, and hence, invertible.

Extra: See Proof at Page 17-18 of Linear-Algebra Handout

positive definite (PD) $\forall a \neq 0 \quad a(X^T Z + \lambda I) a > 0$

 $= \alpha' x^T X a + \lambda a^T a$ $= \|Xa\|_{2}^{2} + \lambda \|a\|_{2}^{2} > 0$

$$\beta^{*} = (X^{T}X + \lambda I)^{-1} X^{T} \overline{y}$$
Extra: Positive Definite Matrix

$$\forall \overline{a} \neq 0, \quad \overline{a}^{T} A a \gg 0 \implies A \gg 0$$

$$(\forall \overline{a} \neq 0, \quad \overline{a}^{T} A = (X a)^{T} (X a) = ||Xa||_{2}^{2}$$

$$(\forall \overline{a} \neq 0, \quad \overline{a} = (X a)^{T} (X a) = ||Xa||_{2}^{2}$$

$$(\forall \overline{a} \neq 0, \quad \overline{a} = (X a)^{T} (X a) = ||Xa||_{2}^{2}$$

$$(\forall \overline{a} \neq 0, \quad \overline{a} = (X a)^{T} (X a) = ||Xa||_{2}^{2}$$

$$(\forall \overline{a} \neq 0, \quad \overline{a} = (X a)^{T} (X a) = (X a)^{T} (X a) = ||Xa||_{2}^{2}$$

$$(\forall \overline{a} \neq 0, \quad \overline{a} = (X a)^{T} (X a) = (X a)^{T} (X a$$

Ridge Regression / Squared Loss+L2

$$\boldsymbol{\beta}^* = \left(\boldsymbol{X}^T\boldsymbol{X} + \boldsymbol{\lambda}\boldsymbol{I}\right)^{-1}\boldsymbol{X}^T\,\boldsymbol{\bar{y}}$$

• As the solution from

$$\hat{\beta}^{ridge} = \operatorname{argmin}(y - X\beta)^{T}(y - X\beta) + \lambda\beta^{T}\beta$$

to minimize, take derivative and set to zero

By convention, the bias/intercept term is typically not regularized. Here we assume data has been centered ... therefore no bias term HW2

Ridge Regression / Squared Loss+L2

$$\beta^* = \left(X^T X + \lambda I\right)^{-1} X^T \bar{y}$$

As the solution from

 $\int_{a}^{b} (\gamma_j - \beta' \chi)$ ∧ ridge = argmin $(y - X\beta)^T (y - X\dot{\beta}) + \lambda\beta^T\beta$ ß to minimize, take derivative and set to zero

y vx1

By convention, the bias/intercept term is typically not regularized. Here we assume data has been centered ... therefore no bias term Ridge Regression / Squared Loss+L2

$$\beta^* = \left(X^T X + \lambda I\right)^{-1} X^T \bar{y}$$

As the solution from

 $\hat{\beta}^{ridge} = \operatorname{argmin}(y - X\beta)^T(y - X\beta) + \lambda\beta^T\beta$ to minimize, take derivative and set to zero

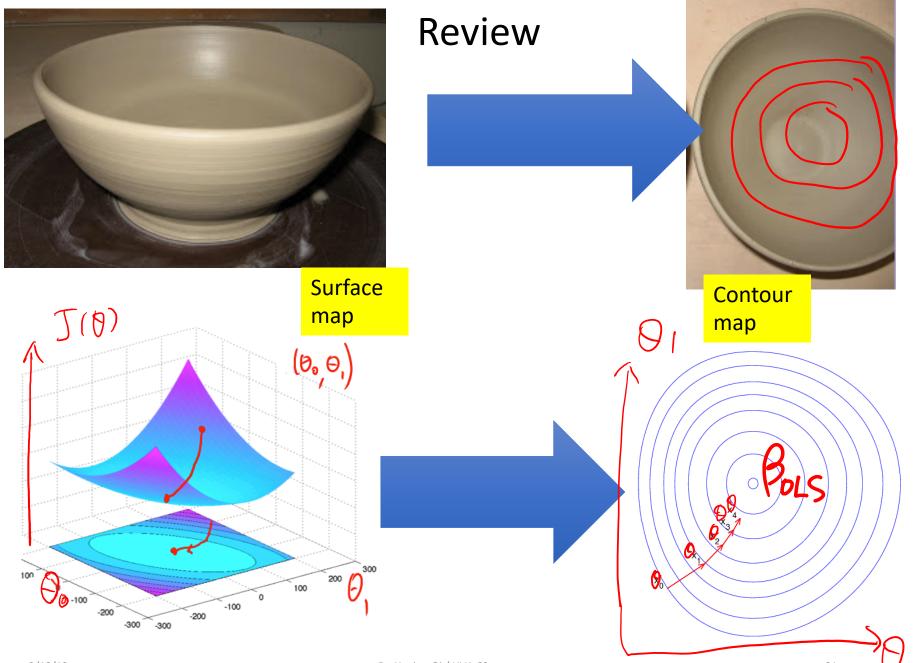
 $\sum_{i=1}^{n} (\gamma_{j} - \beta' \overline{\chi}_{j})$

y Ixi

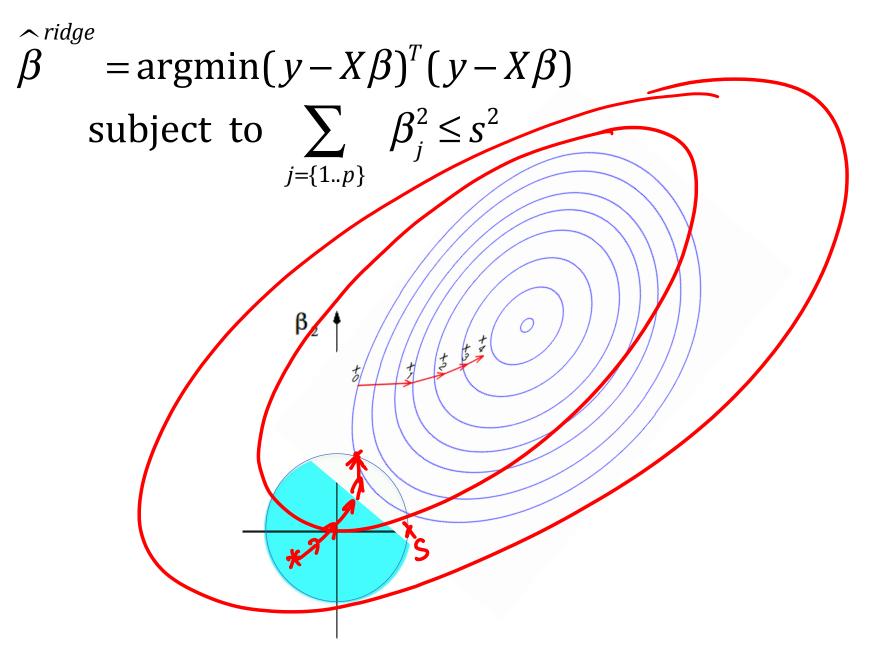
• Equivalently
$$\hat{\beta}^{rage} = \operatorname{argmin}(y - X\beta)^{T}(y - X\beta)$$

subject to $\sum_{j=\{1..p\}} \beta_{j}^{2} \le s^{2}$ Circle

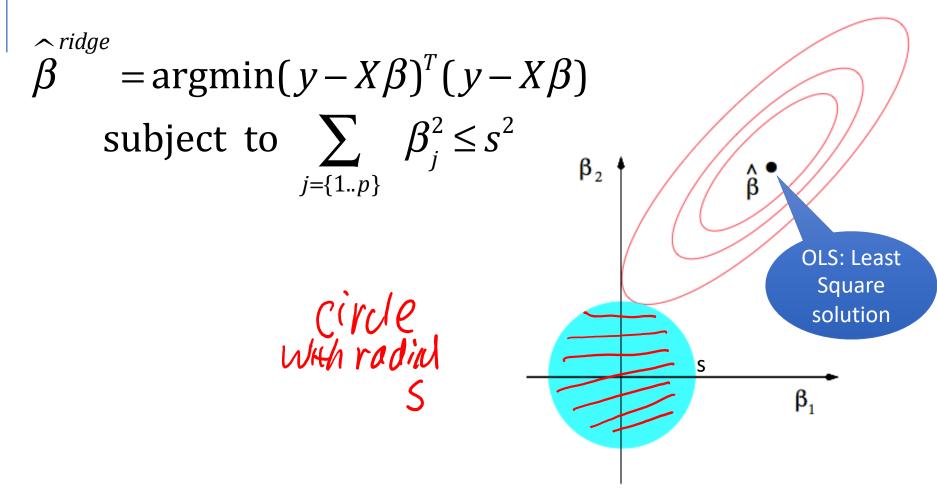
By convention, the bias/intercept term is typically not regularized. Here we assume data has been centered ... therefore no bias term



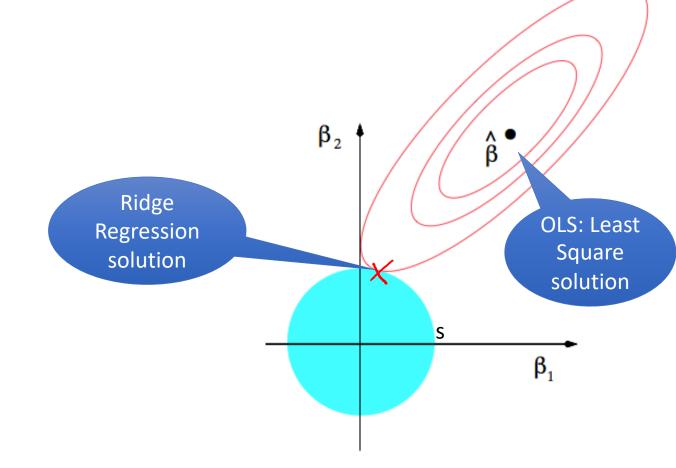
x

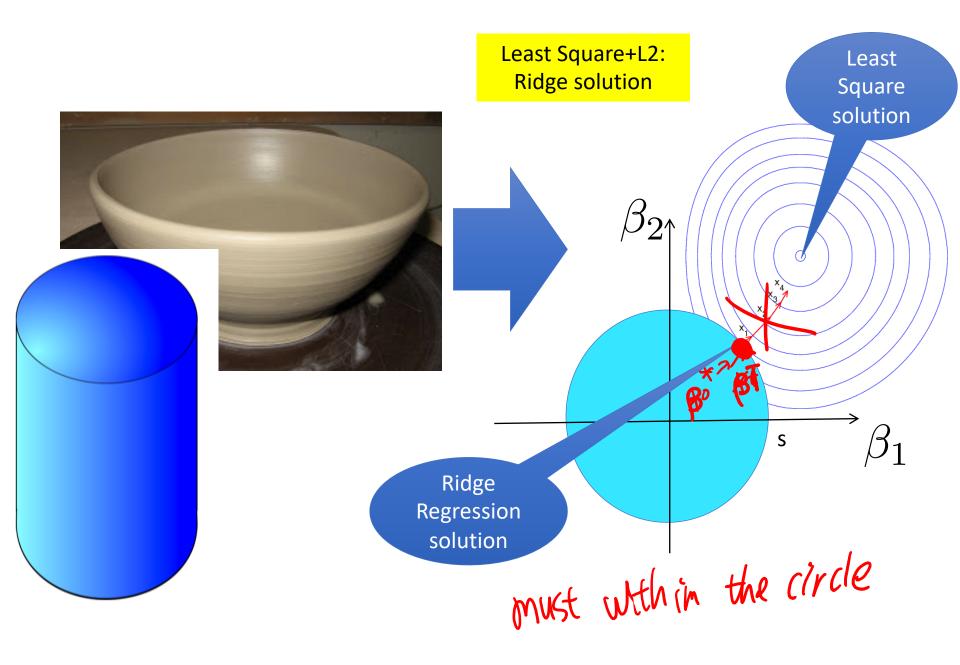


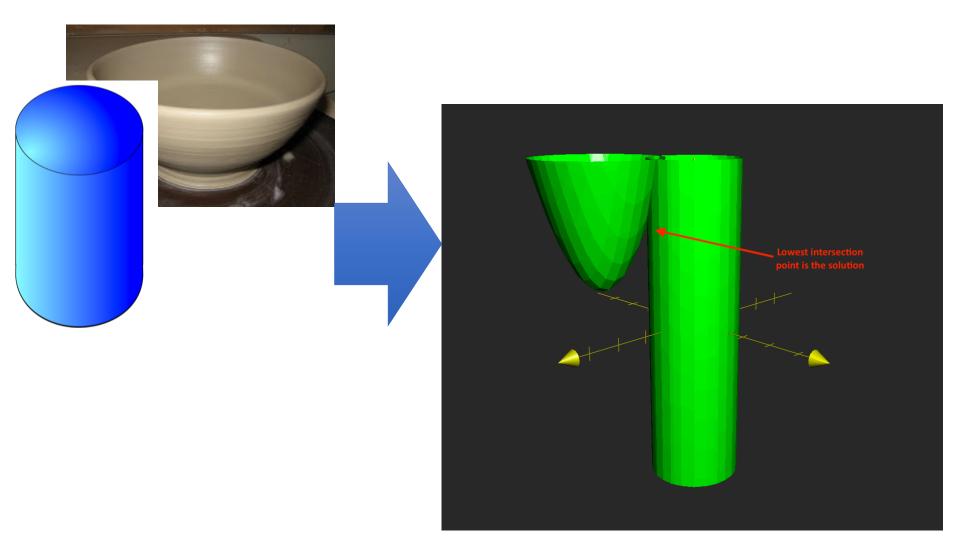
Objective Function's Contour lines from Ridge Regression



Objective Function's Contour lines from Ridge Regression







Parameter Shrinkage

Page65 of ESL book @ http://statweb.stanford.edu/~tibs/ElemStatLearn/printings /ESLII_print10.pdf

A. 6

Extra: two forms of Ridge Regression () argmin $\mathcal{J}(\mathcal{B}) + \lambda \beta^{T}\beta$ (2) argmin $\mathcal{J}(\mathcal{B})$, Sit. $\beta^{T}\beta \leq 5^{2}$ needs (necessary condition) $\lambda \geq 0$ Totally equivalent Optimal Solution BRg When $\chi^T \chi = I$, $S' = \sum_{j} (\beta_{Rg})_{j}^{2} = \frac{1}{(1+\lambda)^{2}} \sum_{j} (\beta_{\delta(S)})_{j}^{2}$ $\sum_{j} \left(\beta_{ols} \right)_{j}^{2}$

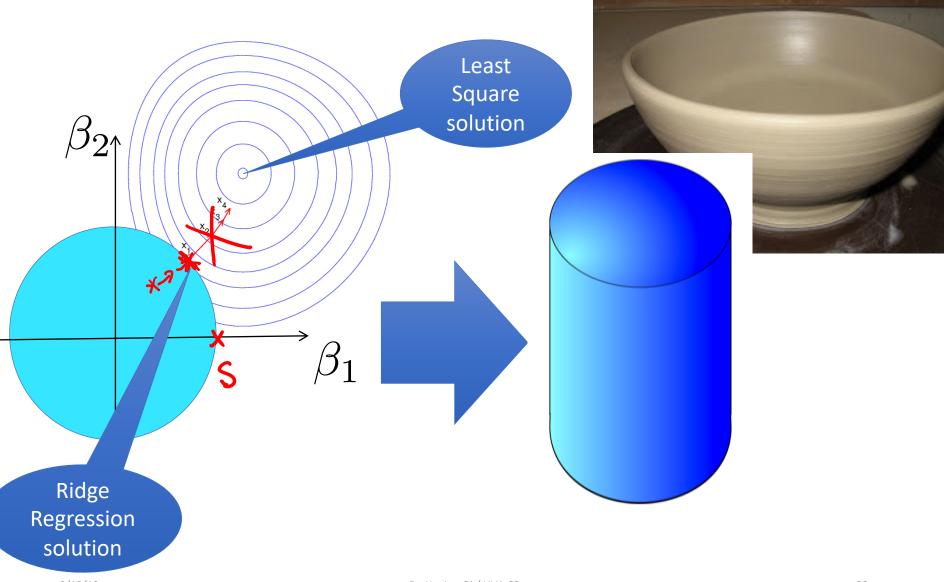
> http://stats.stackexchange.com/questions/190 993/how-to-find-regression-coefficients-betain-ridge-regression

Ridge Regression: Squared Loss+L2

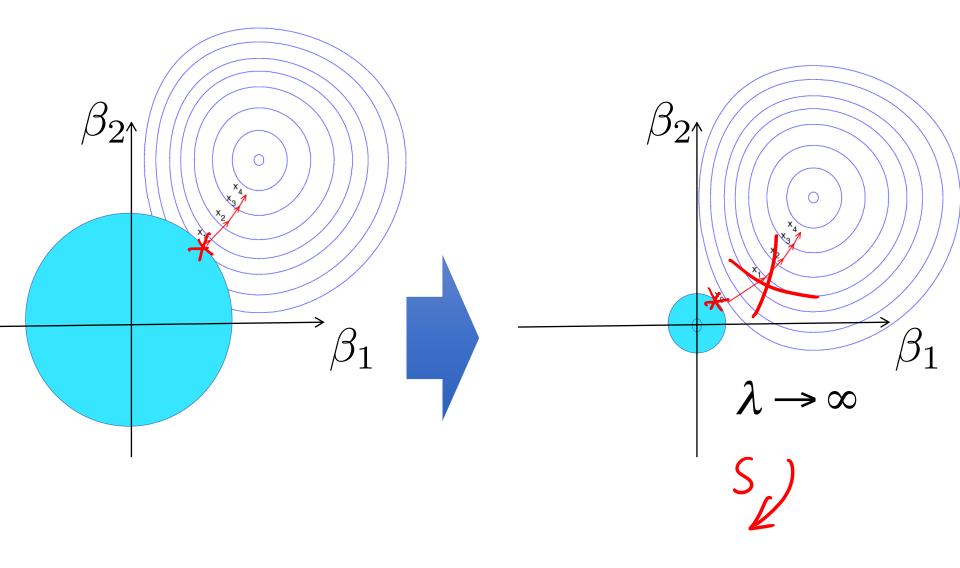
- • λ > 0 penalizes each β_j $1 + \lambda Pols$ When $\mathbb{X}^T \mathbb{X} = \mathbb{I}$
 - if $\lambda = 0$ we get the least squares estimator;

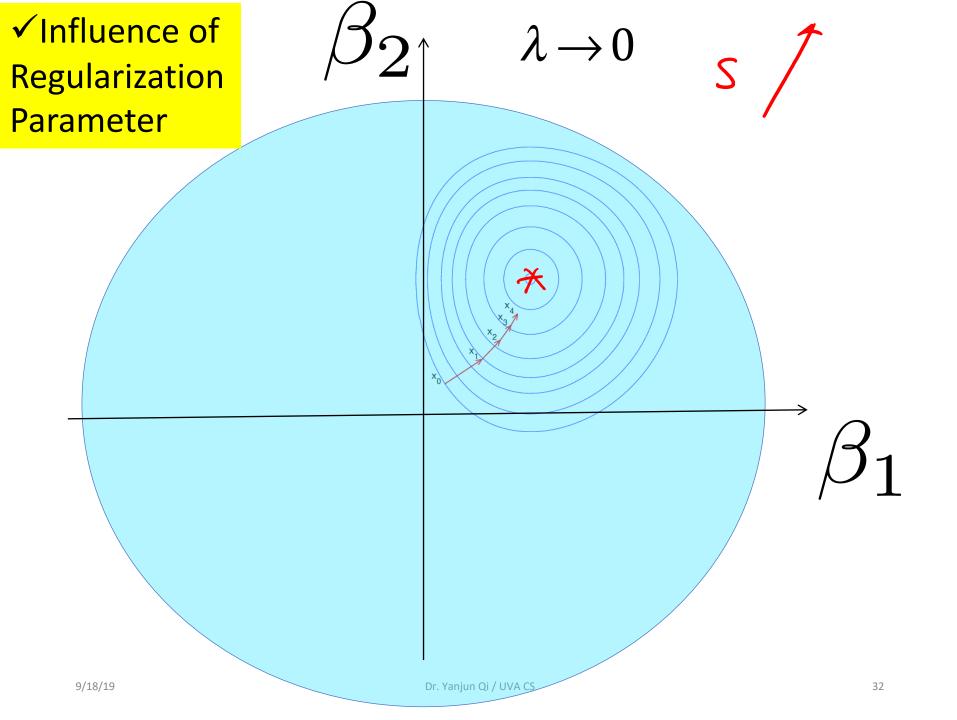
• if
$$\lambda \to \infty$$
, then β_j to zero

✓ Influence of Regularization Parameter



✓ Influence of Regularization Parameter





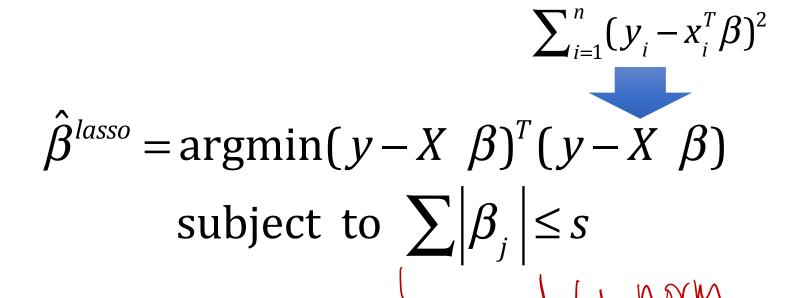
Today

Linear Regression Model with Regularizations

Review: (Ordinary) Least squares: squared loss (Normal Equation)
 Ridge regression: squared loss with L2 regularization
 Lasso regression: squared loss with L1 regularization
 Elastic regression: squared loss with L1 AND L2 regularization
 How to Pick Regularization Parameter

(2) Lasso (least absolute shrinkage and selection operator) / Squared Loss+L1

- The lasso is a shrinkage method like ridge, but acts in a nonlinear manner on the outcome y.
- The lasso is defined by



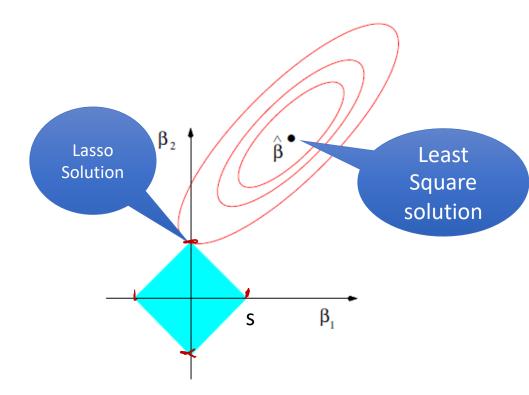
By convention, the bias/intercept term is typically not regularized. Here we assume data has been centered ... therefore no bias term

push Bi = 0 Lasso (least absolute shrinkage and selection operator) $\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \bigg\{ \frac{1}{2} \sum_{i=1}^{N} \big(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \big)^2 + \lambda \sum_{i=1}^{p} |\beta_j| \bigg\}.$ $\beta^{losso} = \begin{bmatrix} 0, S, 0, \end{bmatrix}^T$ Suppose in 2 dimension • $\beta = (\beta_1, \beta_2)$ ß • $| \beta_1 | + | \beta_2 | = const$ Lasso ß Least Solution Square • $|\beta_1| + |\beta_2| = const$ solution • $| -\beta_1 | + | \beta_2 | = const$ • $| -\beta_1 | + | -\beta_2 | = const$ β S

35

y = ∑ Bix; j=1 when many Bis are zero feature ⇒ select feature

 In the Figure, the solution has eliminated the role of x2, leading to sparsity



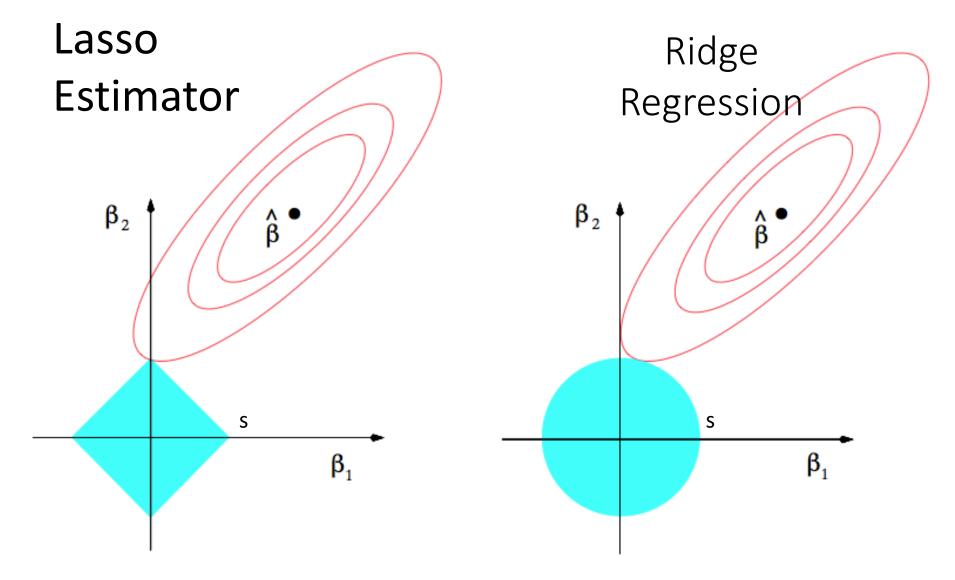


FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \leq t$ and $\beta_1^2 + \beta_2^2 \leq t^2$, respectively, while the red ellipses are the contours of the least squares error function.

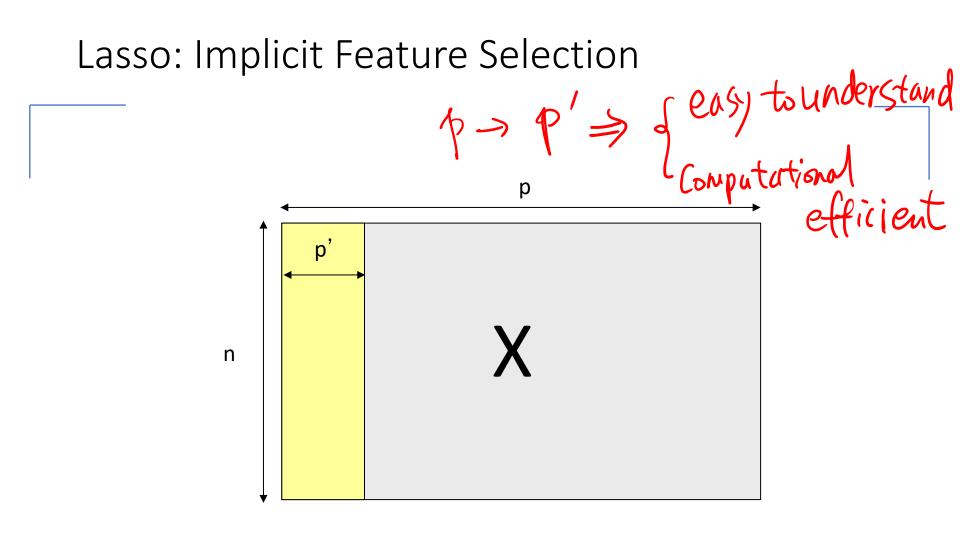
Lasso (least absolute shrinkage and selection operator)

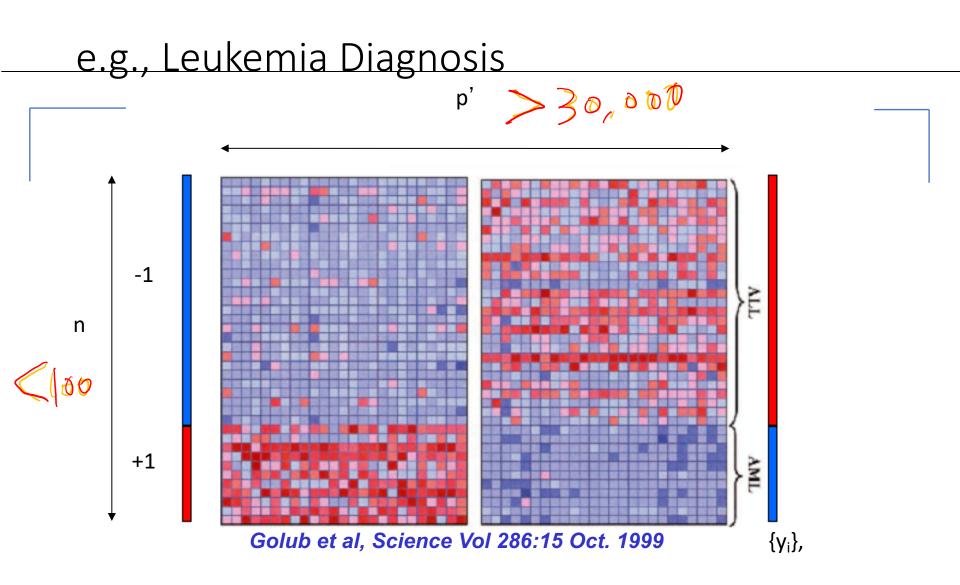
Notice that ridge penalty is replaced

 $\sum |\beta_i|$

 Due to the nature of the constraint, if tuning parameter is chosen small enough, then the lasso will set some coefficients exactly to zero.

by





when n < P, $D(p^3)$ $(X^{T}X + \lambda I)^{-1}X_{Y}$ (omputationally XX prn nxp \Rightarrow NPZ) : () Choose to Make PL $X^{T}X + \lambda I)^{T}$ \Rightarrow $\bigcap (\mathcal{P}^3)$ CAN We O(np)ZY 2

Today

Linear Regression Model with Regularizations

Review: (Ordinary) Least squares: squared loss (Normal Equation)
 Ridge regression: squared loss with L2 regularization
 Lasso regression: squared loss with L1 regularization
 Elastic regression: squared loss with L1 AND L2 regularization
 How to Pick Regularization Parameter

Lasso for when p>n

- Prediction accuracy and model interpretation are two important aspects of regression models.
- LASSO does shrinkage and variable selection simultaneously for better prediction and model interpretation.

Disadvantage:

-In p>n case, lasso selects at most n variable before it saturates
 -If there is a group of variables among which the pairwise correlations are very high, then lasso select one from the group

(3) Hybrid of Ridge and Lasso : Elastic Net regularization

- L1 part of the penalty generates a sparse model
- L2 part of the penalty (extra):
 - Remove the limitation of the number of selected variables
 - Encouraging group effect
 - Stabilize the L1 regularization path

Naïve elastic net

• For any non negative fixed λ_1 and $\lambda_{2,}$ naive elastic net criterion:

 $L(\lambda_1, \lambda_2, \boldsymbol{\beta}) = |\mathbf{y} - \mathbf{X}\boldsymbol{\beta}|^2 + \lambda_2 |\boldsymbol{\beta}|^2 + \lambda_1 |\boldsymbol{\beta}|_1,$

$$|\beta|^2 = \sum_{j=1}^p \beta_j^2, \qquad |\beta|_1 = \sum_{j=1}^p |\beta_j|.$$

• The naive elastic net estimator is the minimizer of above equation

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \{ L(\lambda_1, \lambda_2, \boldsymbol{\beta}) \}.$$

Naïve elastic net

• For any non negative fixed λ_1 and λ_{2_2} naive elastic net criterion:

 $L(\lambda_1, \lambda_2, \boldsymbol{\beta}) = |\mathbf{y} - \mathbf{X}\boldsymbol{\beta}|^2 + \lambda_2 |\boldsymbol{\beta}|^2 + \lambda_1 |\boldsymbol{\beta}|_1,$

$$|\beta|^2 = \sum_{j=1}^p \beta_j^2, \qquad |\beta|_1 = \sum_{j=1}^p |\beta_j|.$$

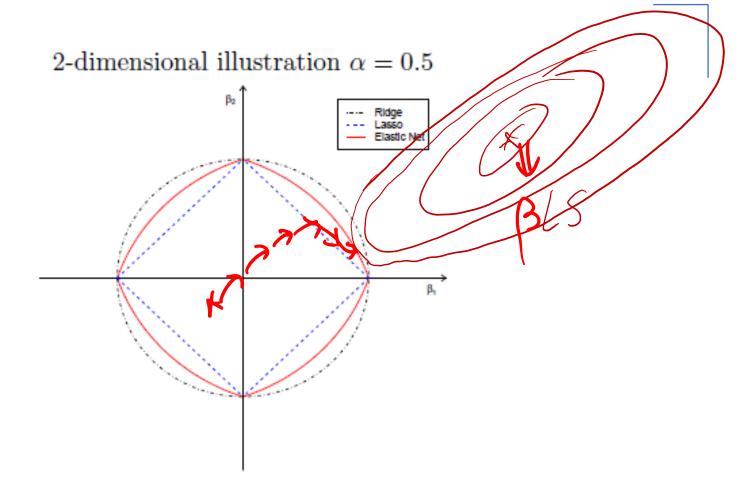
The naive elastic net estimator is the minimizer of above

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \{ L(\lambda_1, \lambda_2, \boldsymbol{\beta}) \}.$$

• Equivalently: $\alpha = \lambda_2/(\lambda_1 + \lambda_2)$

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} |\mathbf{y} - \mathbf{X}\boldsymbol{\beta}|^2, \qquad \text{subject to } (1 - \alpha) |\boldsymbol{\beta}|_1 + \alpha |\boldsymbol{\beta}|^2 \leq t \text{ for some } t.$$

Geometry of elastic net



e.g. A Practical Application of Regression Model

Movie Reviews and Revenues: An Experiment in Text Regression*

Mahesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith

Language Technologies Institute Carnegie Mellon University Pittsburgh, PA 15213, USA

{maheshj,dipanjan,kgimpel,nasmith}@cs.cmu.edu

Abstract

We consider the problem of predicting a movie's opening weekend revenue. Previous work on this problem has used metadata about a movie—e.g., its genre, MPAA rating, and cast—with very limited work making use of text *about* the movie. In this paper, we use the text of film critics' reviews from several sources to predict opening weekend revenue. We describe a new dataset pairing movie reviews with metadata and revenue data, and show that review text can substitute for metadata, and even improve over it, for prediction.

Proceedings of HLT '2010 Human Language Technologies:

I. The Story in Short

- Use metadata and critics' reviews to predict opening weekend revenues of movies
- Feature analysis shows what aspects of reviews predict box office success

II. Data

- 1718 Movies, released 2005-2009
- Metadata (genre, rating, running time, actors, director, etc.): <u>www.metacritic.com</u>
- Critics' reviews (~7K): Austin Chronicle, Boston Globe, Entertainment Weekly, LA Times, NY Times, Variety, Village Voice
- Opening weekend revenues and number of opening screens: <u>www.the-numbers.com</u>

e.g., Movie Reviews and Revenues: An Experiment in Text Regression, Proceedings of HLT '10 (1.7k n / >3k features)

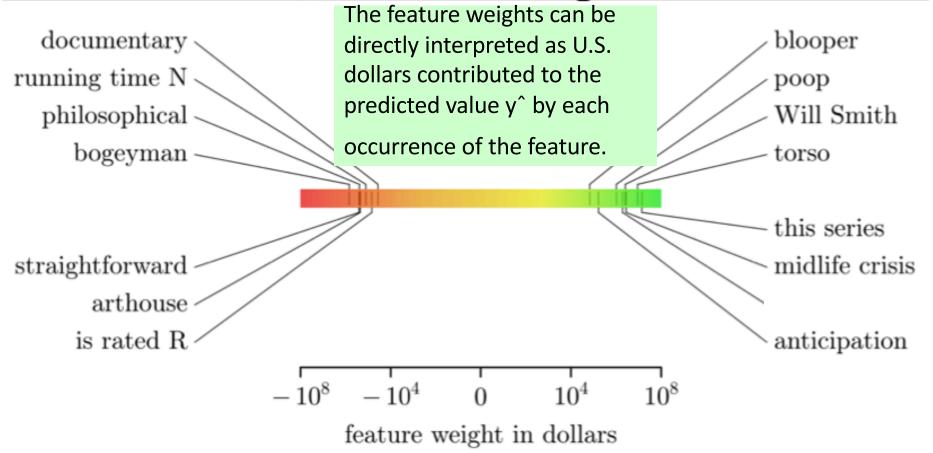
IV. F	e.g. counts of a ngram in			
l	Lexical n-grams (1,2,3)			
11	Part-of-speech n-grams (1,2,3)			
	Dependency relations (nsubj,advmod,)			
Meta	U.S. origin, running time, budget (log), # of opening screens, genre, MPAA rating, holiday release (summer, Christmas, Memorial day,), star power (Oscar winners, high-grossing actors)			
9/18/19	Dr. Yanjun Qi / UAS 1700 735,000			

A REAL APPLICATION: Movie Reviews and meta to Revenues

VIII. Get the Data!

www.ark.cs.cmu.edu/movie\$-data

V. What May Have Brought You to movies



Movie Reviews and Revenues: An Experiment in Text Regression, Proceedings of HLT '10 Human Language Technologies:

III. Model

Linear regression with the elastic net (Zou and Hastie, 2005)

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}=(\beta_0,\boldsymbol{\beta})} \frac{1}{2n} \sum_{i=1}^n \left(y_i - (\beta_0 + \boldsymbol{x}_i^\top \boldsymbol{\beta}) \right)^2 + \lambda P(\boldsymbol{\beta})$$
$$P(\boldsymbol{\beta}) = \sum_{j=1}^p \left(\frac{1}{2} (1-\alpha) \beta_j^2 + \alpha |\beta_j| \right)$$

Use linear regression to directly predict the opening weekend gross earnings, denoted as y, based on features x extracted from the movie metadata and/or the text of the reviews.

	Feature	Weight (\$M)
rating	pg	+0.085
	New York Times: adult	-0.236
	New York Times: rate_r	-0.364
sequels rating	this_series	+13.925
	LA Times: the_franchise	+5.112
	Variety: the_sequel	+4.224
people	Boston Globe: will_smith	+2.560
	Variety: brittany	+1.128
	^_producer_brian	+0.486
genre	Variety: testosterone	+1.945
	<i>Ent. Weekly</i> : comedy_for	+1.143
ge	Variety: a_horror	+0.595
	documentary	-0.037
	independent	-0.127
plot sentiment	Boston Globe: best_parts_of	+1.462
	Boston Globe: smart_enough	+1.449
	LA Times: a_good_thing	+1.117
	shame_\$	-0.098
	bogeyman	-0.689
	Variety: torso	+9.054
	vehicle_in	+5.827
	superhero_\$	+2.020

An example of how real applications use the elastic net and its weights!

Here, the features are from the text-only model annotated in Table 2.

The feature weights can be directly interpreted as U.S. dollars contributed to the predicted value by each occurrence of the feature.

Sentiment-related text features are not as prominent as might be expected, and their overall proportion in the set of features with non-zero weights is quite small (estimated in preliminary trials at less than 15%). Phrases that refer to metadata are the more highly weighted and frequent ones.

Table 3: Highly weighted features categorized manually. ^ and \$ denote sentence boundaries.

	Features			Total		Per Screen	
		Site	MAE		MAE		
			(\$M)	r	(\$K)	r	
	Predict mean		11.672	_	6.862	_	
	Predict median		10.521	_	6.642	_	
meta	Best		5.983	0.722	6.540	0.272	
		_	8.013	0.743	6.509	0.222	
	Ι	+	7.722	0.781	6.071	0.466	
	see Tab. 3	В	7.627	0.793	6.060	0.411	
t			8.060	0.743	6.542	0.233	
text	$\mathrm{I} \cup \mathrm{II}$	+	7.420	0.761	6.240	0.398	
		В	7.447	0.778	6.299	0.363	
			8.005	0.744	6.505	0.223	
	$\mathrm{I} \cup \mathrm{III}$	+	7.721	0.785	6.013	0.473	
		В	7.595	0.796	[†] 6.010	0.421	
meta ∪ text			5.921	0.819	6.509	0.222	
	Ι	+	5.757	0.810	6.063	0.470	
		В	5.750	0.819	6.052	0.414	
		_	5.952	0.818	6.542	0.233	
	$\mathrm{I} \cup \mathrm{II}$	+	5.752	0.800	6.230	0.400	
		В	5.740	0.819	6.276	0.358	
		_	5.921	0.819	6.505	0.223	
	$\mathrm{I} \cup \mathrm{III}$	+	5.738	0.812	6.003	0.477	
		В	5.750	0.819	† 5.998	0.423	

Table 2: Test-set performance for various models, measured using mean absolute error (MAE) and Pearson's correlation (r), for two prediction tasks.

- I. *n*-grams. We considered unigrams, bigrams, and trigrams. A 25-word stoplist was used; bigrams and trigrams were only filtered if all words were stopwords.
- II. Part-of-speech *n*-grams. As with words, we added unigrams, bigrams, and trigrams. Tags were obtained from the Stanford part-of-speech tagger (Toutanova and Manning, 2000).
- III. Dependency relations. We used the Stanford parser (Klein and Manning, 2003) to parse the critic reviews and extract syntactic dependencies. The dependency relation features consist of just the relation part of a dependency triple \langle relation, head word, modifier word \rangle .

A combination of the meta and text features achieves the best performance both in terms of MAE and pearson r.

We consider three ways to combine the collection of reviews for a given movie. The first ("-") simply concatenates all of a movie's reviews into a single document before extracting features. The second ("+") conjoins each feature with the source site (e.g., *New York Times*) from whose review it was extracted. A third version (denoted "B") combines both the site-agnostic and site-specific features.

More Ways for Measuring Regression Predictions: Correlation Coefficient

• Pearson correlation coefficient

$$r(x,y) = \frac{\sum_{i=1}^{m} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x})^2 \times \sum_{i=1}^{m} (y_i - \overline{y})^2}}$$

where
$$\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$
 and $\overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$.

$$|r(x,y)| \leq 1$$

• For regression: $r(\vec{y}_{\text{predicted}}, \vec{y}_{\text{known}})$

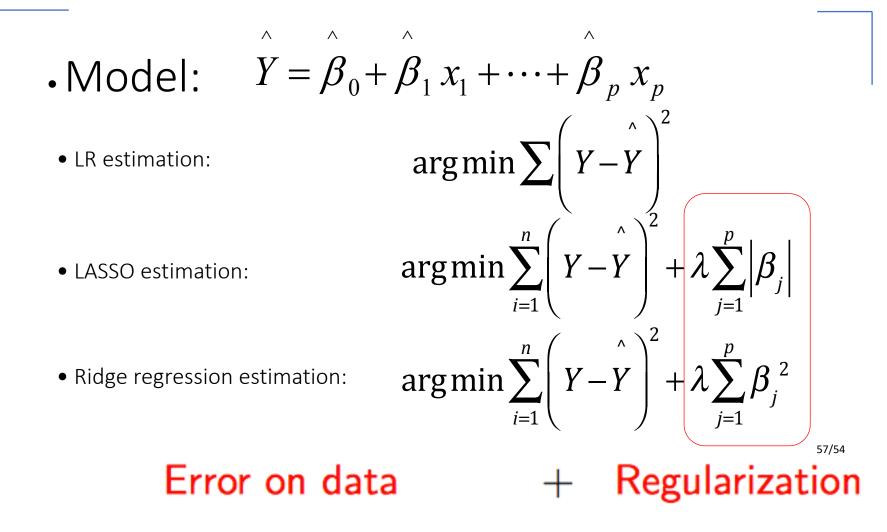
- Measuring the linear correlation between two sequences, x and y,
- giving a value between +1 and -1 inclusive, where 1 is total positive correlation, 0 is no correlation, and -1 is total negative correlation.

Advantage of Elastic net (Extra)

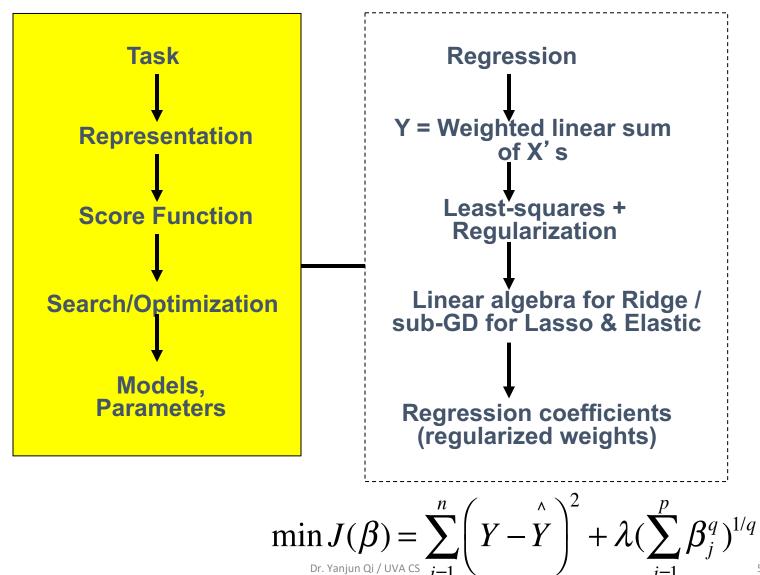
- Native Elastic set can be converted to lasso with augmented data form $\Rightarrow X p x p (when p < p)$
- In the augmented formulation, \rightarrow \times *
 - sample size n+p and X^{*} has rank p
 - → can potentially select all the predictors
- Naïve elastic net can perform automatic variable selection like lasso

 $(h + P) \times P$

Summary: Regularized multivariate linear regression



Regularized multivariate linear regression



58

More: A family of shrinkage estimators

$$\beta = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$

subject to $\sum_{j=1}^{N} |\beta_j|^q \le s$

• for q >=0, contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ are shown for the case of two inputs.

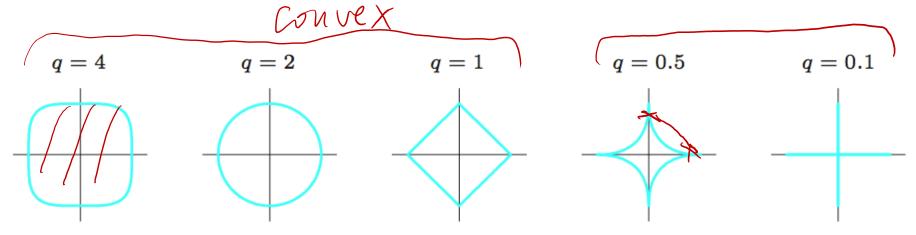
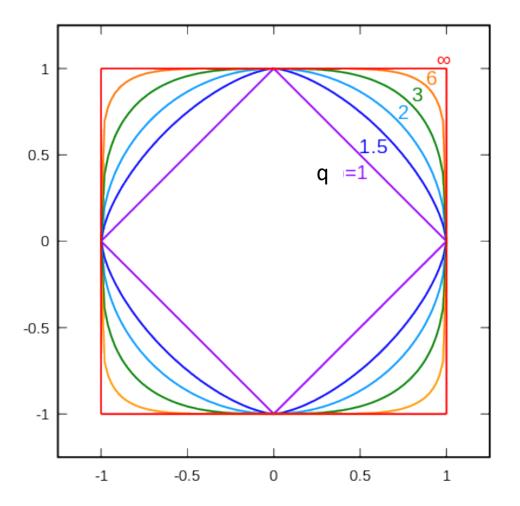


FIGURE 3.12. Contours of constant value of $\sum_j |\beta_j|^q$ for given values of q.

norms visualized

Zhx



all p-norms penalize larger weights

<(h+p

(2) Jinn Norm

q < 2 tends to create sparse
(i.e. lots of 0 weights)</pre>

q > 2 tends to push for similar weights

We aim to make the learned model

•1. Generalize Well

veduce model variance

p-> p'

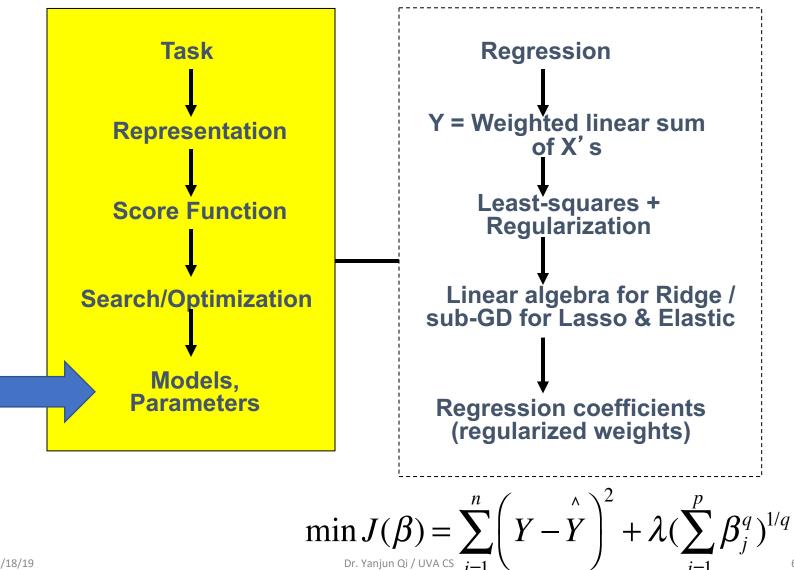
- 2. Computationally Scalable and Efficient
- 3. Robust / Trustworthy / Interpretable
 Especially for some domains, this is about trust!

Today

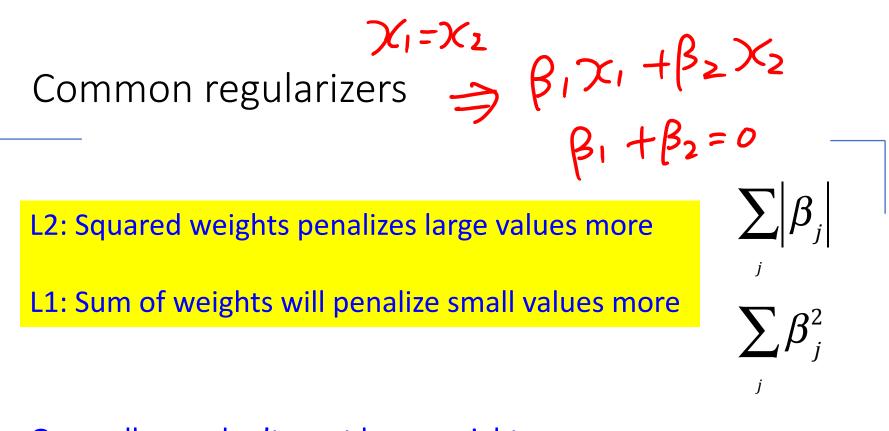
Linear Regression Model with Regularizations

Review: (Ordinary) Least squares: squared loss (Normal Equation)
 Ridge regression: squared loss with L2 regularization
 Lasso regression: squared loss with L1 regularization
 Elastic regression: squared loss with L1 AND L2 regularization
 How to pick Regularization Parameter

Regularized multivariate linear regression



63



Generally, we don't want huge weights

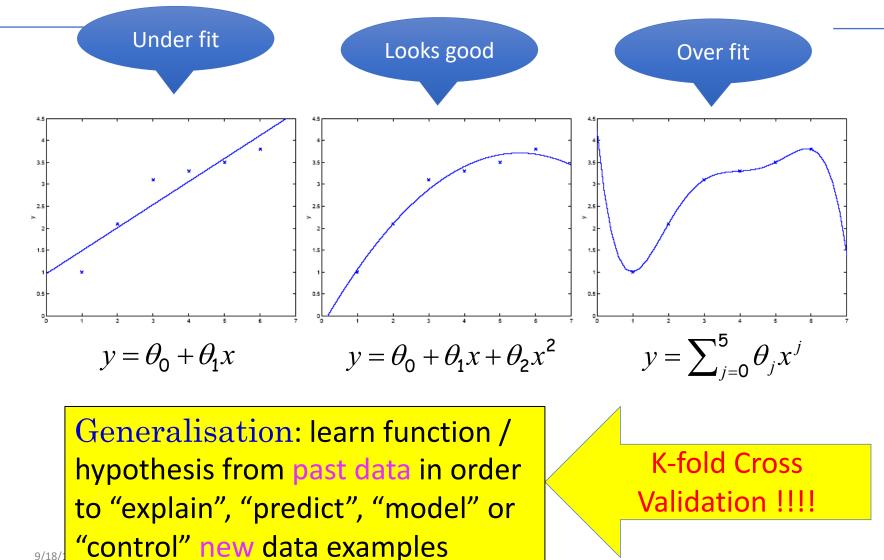
If weights are large, a small change in a feature can result in a large change in the prediction

Might also prefer weights of 0 for features that aren't useful

Model Selection & Generalization

- Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples
- Underfitting: when model is too simple, both training and test errors are large
- Overfitting: when model is too complex and test errors are large although training errors are small.
 - After learning knowledge, model tends to learn "noise"

Issue: Overfitting and underfitting



9/18/

Overfitting: Handled by Regularization

A regularizer is an additional criteria to the loss function to make sure that we don't overfit

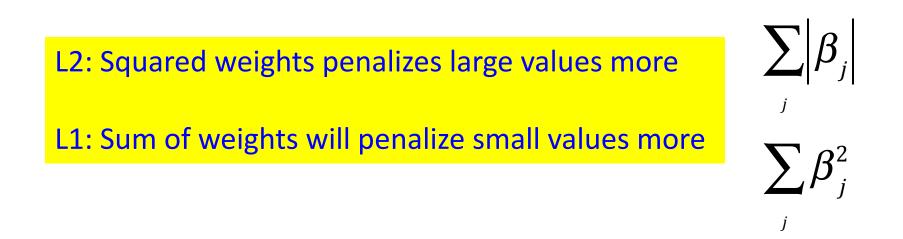
It's called a regularizer since it tries to keep the parameters more normal/regular

It is a bias on the model forces the learning to prefer certain types of weights over others, e.g.,

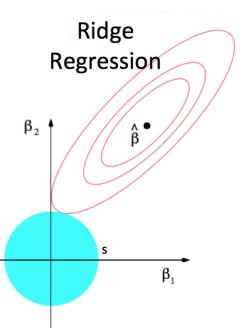
$$\hat{\beta}^{ridge} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \beta^T \beta$$

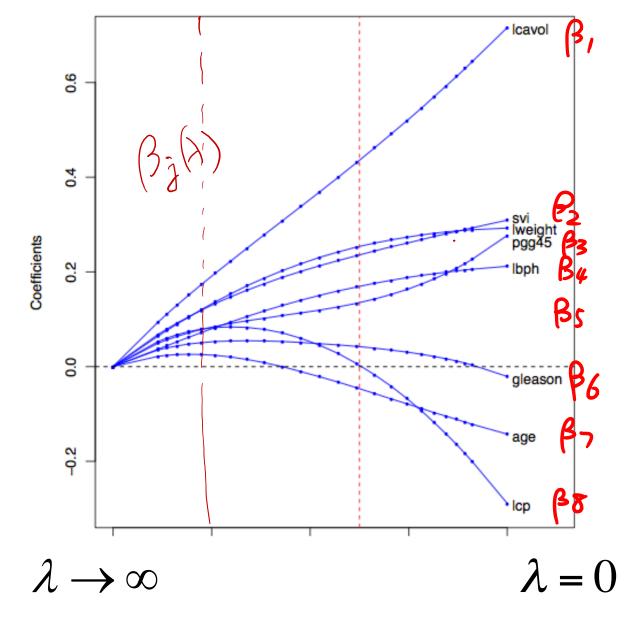
WHY and How to Select λ ?

- 1. Generalization ability
 - \rightarrow k-folds CV to decide
- 2. Control the bias and Variance of the model (details in future lectures)

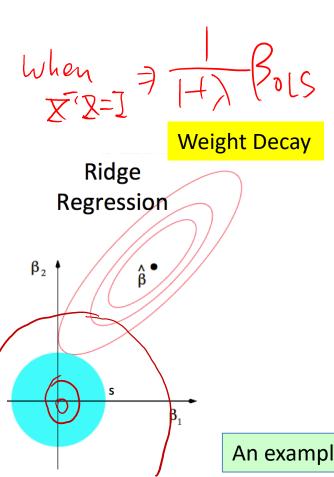


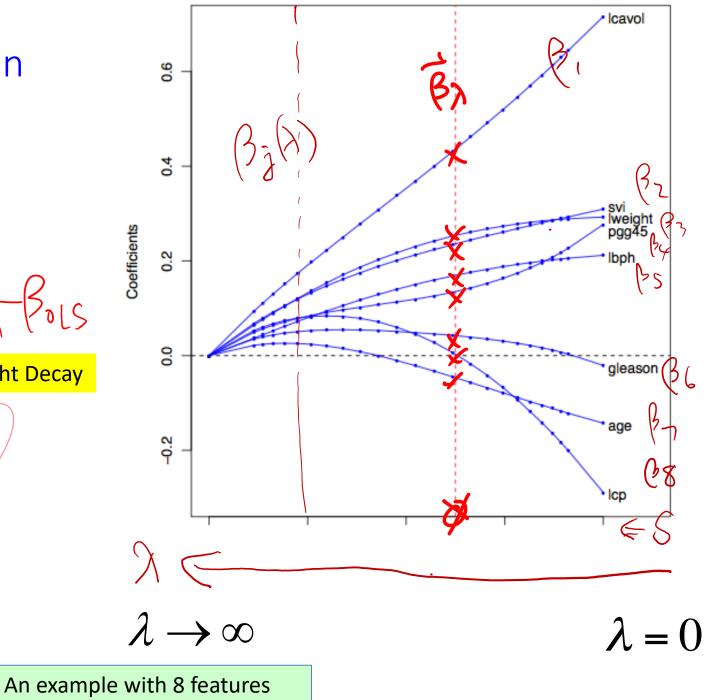
Regularization path of a Ridge Regression

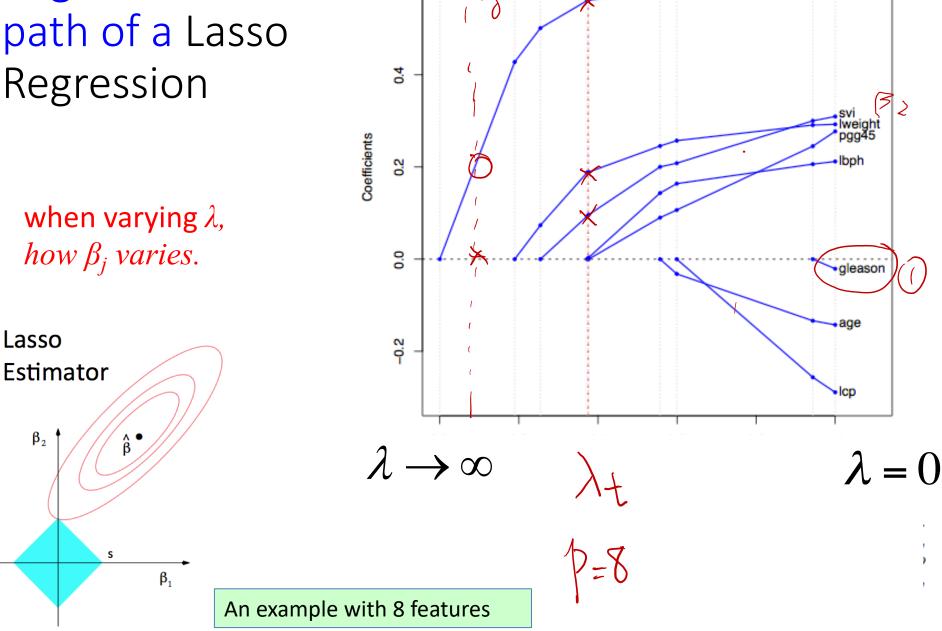




Regularization path of a Ridge Regression



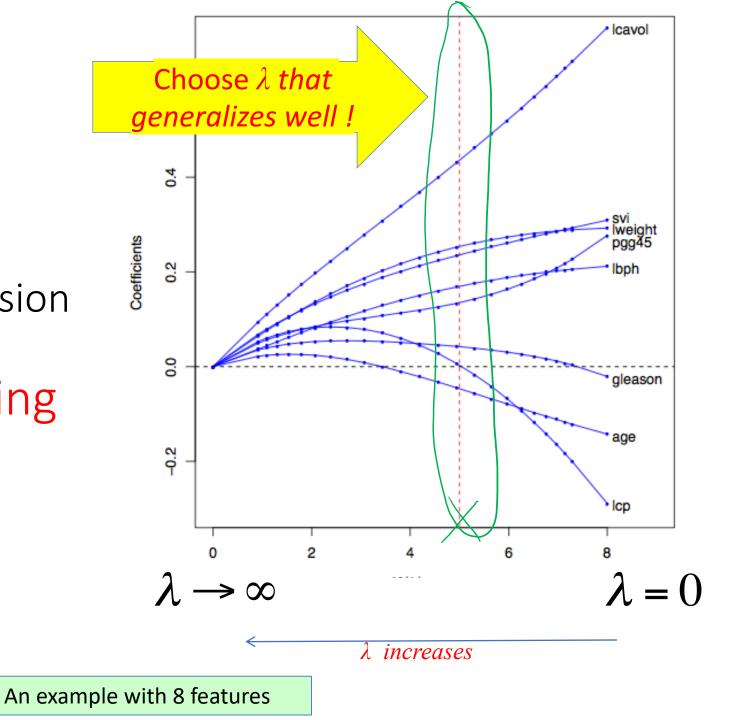


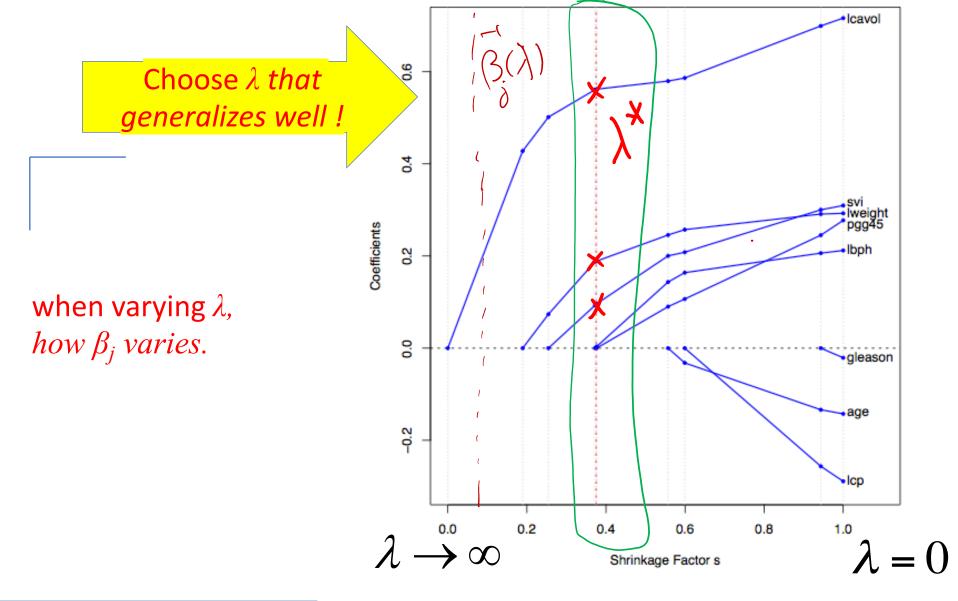


0.6

An example of Ridge Regression

when varying λ , how β_j varies.





An example with 8 features

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus $s = t/\sum_{1}^{p} |\hat{\beta}_{j}|$. A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.

Today Recap

Linear Regression Model with Regularizations

Review: (Ordinary) Least squares: squared loss (Normal Equation)
 Ridge regression: squared loss with L2 regularization
 Lasso regression: squared loss with L1 regularization
 Elastic regression: squared loss with L1 AND L2 regularization
 Influence of Regularization Parameter

Regression (supervised)

Variations of organin L(0) Four ways to train / perform optimization for linear regression models

- Normal Equation
- Gradient Descent (GD)
- □ Stochastic GD
- Newton's method

Supervised regression models

- Linear regression (LR) LR with non-linear basis functions
- □Locally weighted LR
- **L**R with Regularizations

5 Variations of f(x) -> variations of L(0)

Extra More

- Optimization of regularized regressions:
 - See L6-extra slide
- Relation between λ and s
 - See L6-extra slide
- Why Elastic Net has a few nice properties
 - See L6-extra slide

References

Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides

Prof. Nando de Freitas's tutorial slide

□ Regularization and variable selection via the elastic net, Hui Zou and Trevor Hastie, Stanford University, USA

DESL book: Elements of Statistical Learning