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Last: Multivariate Linear Regression with basis Expansion

Task: vy

1

mmmm) Representation: X, f()

1

Score Function: L()

1

Search/Optimization
: argmin()

1

Models, Parameters :

9/18/19

. Regression: y continuous |

Y = Weighted linear sum
of (X basis expansion)

Sum of Squared Error
(Least Squared)

ENormaI Equation / GD / SGDE

1

Regression
coefficients

y=6,+2, " 00,(x)=0(x)'6
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Today: Regularized multivariate linear regression

Task Regression
| of X's
v s
mmmg) Score Function = Least-squares +
| Regularization
v |
Search/Optimization . Linear algebra for Ridge /
sub-GD for Lasso & Elastic
v | l
Models,
Parameters . Regression coefficients
| (regularized weights)

minJ(f3) = Z(Y Y) +/1(2[3q v
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We aim to make the |learned model

1. Generalize Well

e 2. Computational Scalable and Efficient

* 3. Robust / Trustworthy / Interpretable
* Especially for some domains, this is about trust!



Today

D Linear Regression Model with Regularizations

ﬂReview: (Ordinary) Least squares: squared loss (Normal Equation)
v'Ridge regression: squared loss with L2 regularization
v'Lasso regression: squared loss with L1 regularization
v'Elastic regression: squared loss with L1 AND L2 regularization
v'"How to Choose Regularization Parameter



SUPERVISED Regression

target/class
A
B
" model
training
A arn
dataset . le f
B
test
dataset

apply
model

[ B IR T (P L R
b I = I

f(xy)
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Training dataset
consists of input-

output pairs

* When, target Y is a
continuous target
variable




Review: Normal equation for LR

e Write the cost function in matrix form:

JB)=> X (x 7B )

-5(xB-5) (xB-5)

To minimize J(6), take derivative and set to zero:

= | X'XB=X"y

= (B'X"XB-p'X"y-y"XB+'y)

The normal equations

U -1
B = (XTX) X

9/18/19 Dr.Y
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X, —- Vi
Xg - Y= y.2
- y
Assume
that X’ X is
invertible




Comments on the normal equation

Tonk m(ﬂ ﬂ
What if X has less than full column rank? (ZT\ P} =m

>Not Invertible % e P > N
Yok () <P
‘my\\c X X < an&( X”> )Yéi >>

w\’ <¥




For any matrix A € R™*", it turns out that the column rank of A is equal to the row
rank of A (though we will not prove this), and so both quantities are referred to collectively
as the rank of A, denoted as rank(A). The following are some basic properties of the rank:

e For A € Rmxn,(lft\rlk(A) < min(m,% If rank(A) = min(m,n), then A is said to be
full rank. 2

e For A € R™*™, rank(A) = rank(A7T).
Pagell Of

e For Ac R™" B¢ Rnxp,Enk(AB) < min(rank(A),rank(B))j@ Handout L2
e For A, B € R™" rank(A + B) < rank(A) + rank(B).

—_

XKk (@RS ek (R) (L p)

N
o o (1<)
can S (YE}) <
Y s‘w@v\w ot it g
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Today

D Linear Regression Model with Regularizations

v'Review: (Ordinary) Least squares: squared loss (Normal Equation)
#Ridge regression: squared loss with L2 regularization

v'Lasso regression: squared loss with L1 regularization

v'Elastic regression: squared loss with L1 AND L2 regularization

v'"How to Choose Regularization Parameter



Review: Vector norms

A norm of a vector ||x|]| is informally a measure of

I—the “length” of the vector. T

y
”'I’H?/: <Zue> ¢ Q=1 2, .

— Common norms: L, L, (Euclidean)

n

Il =) ] el =[S
1=1 \i:l

n

~.

- I—infinity

|70 = max; |2
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Review:

= Z
Vector Norm (L2, when p=2)x X = “74”2

9999999

: : I : : . \ J:Ix;—'\J
+ 75&9& 7\\31 \z







Ridge Regression / L2 Regularization

A
(30&:

-

* If not invertible, a classical solution is to add a small positive element to

diagonal
120

B = (XTX+/II)_1 X"y

{ By convention, the bias/intercept term is typically not regularized. J 14
Here we assume data has been centered ... therefore no bias term



Extra: Positive Definite Matrix

e A symmetric matrix A € S" is positive definite (PD) if for all non-zero vectors
r € R, 7 Az > 0. This is usually denoted A > 0 (or just A > 0), and often times the
set of all positive definite matrices is denoted S” . .

e A symmetric matrix A € S" is positive semidefinite (PSD) if for all vectors z¥ Az >
0. This is written A > 0 (or just A > 0), and the set of all positive semidefinite matrices
is often denoted S7}.

One important property of positive definite matrices is that
9 They are always full rank, and hence, invertible.
9 Extra: See Proof at Page 17-18 of Linear-Algebra Handout



wocitive. Aeficite (TD)
Yaso aX'ZHX1)a >0

_

— 0X Ra+ M a
= [RalZ + Ald} >0



* -1 L
B =(X"X+21) X"y
Extra: Positive Definite Matrix

Vo0, adAazd > A =0

T T _ T e V5
0 l% Vz<v\ Y\>‘/<() ?&\\ <‘a§y§*\? (X4) P\\Xﬁ”?@

(G X psP

A QTXJr)DJﬁ = QTXTXO\ +>g‘m
50 it = [|%all + el > 0
| )\70) 0’\’?017

N
(on B0 ke O\Q\l,j | ><7

9999999



Ridge Regression/ Squared Loss+L2

B = (XTX+2.I)_1 X"y T

* As the solution from
HW2

~ridge

B =argmin(y-XB) (y—-XB)+AB'B

to minimize, take derivative and set to zero

" By convention, the bias/intercept term is typically not regularized. } 18
_ Here we assume data has been centered ... therefore no bias term



Xp >
Ridge Regression/ Squared Loss+L2

B =(x"x+ M)_1 X"y T

<
* As the solution from Z("jy\”‘g W2
~ridge H‘

B =argmin(y-Xp) (y- Xﬂ)Mﬁﬁ

to minimize, take derivative and set to zero

" By convention, the bias/intercept term is typically not regularized. }
_ Here we assume data has been centered ... therefore no bias term



Xp >
Ridge Regression/ Squared Loss+L2

B = (XTX+AI)_1 X"y T

>

* As the solution from '\z‘fk"iif\”‘) HW2
~ridge . H‘ T — N\ T
p =argmin(y—-Xp) (y—-XB)+AL [

to minimize, take derivative and set to zero
~ridge . ‘ . R
o Equiva|ent|y ﬁ :argmln(y—X,B) (.y_Xﬁ)

subject to ) B <s’ cire

J=1-p) Wit radik

" By convention, the bias/intercept term is typically not regularized. } s
_ Here we assume data has been centered ... therefore no bias term



Review

Surface Contour
3 §) map map
/\ ' (%/Q)

: Q‘
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~ridge

B =argmin(y-XB) (y-XB) __
subject to ) Br<s’

j={1.p}

9999999



Objective Function’s Contour lines
from Ridge Regression

A~ ridge ’
B =argmin(y-XB) (y-Xp) =)
subject to 2 ,Bj <s S

j=t1.p} ny

OLS: Least

Square

C(‘V 0/ e "“j solution

l/l/('(‘h Mdgd ;; s _
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Objective Function’s Contour lines
from Ridge Regression

Ridge
Regression OLS: Least

solution \ Square
solution
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Least Square+L2:
Ridge solution

B2

Least
Square
solution

Ridge
Regression

solution
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Parameter Shrinkage

N> 0
e XY= ] T

IBOLS - (XTX)_l XT);/ = @OLS - XTK/ >\> O
é‘l')\I )_; \A—/Ee‘, X' X=1
B, =(X"X+AI) X"y = @: Ly A

ol$

When X K=5 2 ﬁRj - T{ngozégm”‘k%:{
When X' X 32“””( Co52 , SR adydmeqh Qf\‘\lyé‘/)@

Page65 of ESL book @
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings
JESLII_print10.pdf
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Extra: two forms of Ridge Regression

* Totally equivalent ‘ T(ew'* >‘€(-(%
e XD g rin3®) ST (3@<57
OVHW\J\S tion G% Y\c&d\é ( neesiy cst«L/om)

)>
C/\(Z<&9> Ag 0]‘352(5@
2 s (B,
When (=T, éj %’(&%mj - &i&a
_ %(@Lag} -~ | = S (><Ck>\)
o A T9

http://stats.stackexchange.com/questions/190
993 /how-to-find-regression-coefficients-beta-
in-ridge-regression



Ridge Regression: Squared Loss+L2

» 1> 0 penalizes each B; T

o
|+ ) EDLS
when X' 221

« if A=0we get the least squares estimator;

*if 7 _y o, then [, tozero
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v'Influence of Regularization Parameter

Least
Square
solution

Ridge
Regression
solution

9/18/19 Dr. Yanjun Qi / UVA CS
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v'Influence of Regularization Parameter

9/18/19 Dr. Yanjun Qi / UVA CS



v'Influence of
Regularization
Parameter

9/18/19 32



Today

D Linear Regression Model with Regularizations

v'Review: (Ordinary) Least squares: squared loss (Normal Equation)
v'Ridge regression: squared loss with L2 regularization

‘Lasso regression: squared loss with L1 regularization
v'Elastic regression: squared loss with L1 AND L2 regularization
v'How to Pick Regularization Parameter



(2) Lasso (least absolute shrinkage and
selection operator) / Squared Loss+L1

-

* The lasso is a shrinkage method like ridge, but acts in a nonlinear
manner on the outcome y.

* The lasso is defined by

> (yv,—xBY
S

/§"’“a=argmin(y—X ﬁ)T(y—X B)

SL \(\M/\

" By convention, the bias/intercept term is typically not regularized. }
_ Here we assume data has been centered ... therefore no bias term



Lasso (least absolute shrinkage \"»SL B * 0
and selection operator) Z

N P
Hlasso . 1 Y
3lasso — a,rg;mn{g E 1(yi — o — E _ v.uijﬁj)z + A E 1 |JJ|}
' 1= = J]=

{osso

- 0.5.,0]
 Suppose in 2 dimension
*B= (B, By)
| By |+| B, |=const a0 /1 Least
| By |+]- B, |=const (= >quare
| -B; |+] B, | =const
| -B; [+] -B, | =const

solution

9/18/19 Dr. Yanjun Qi / UVA CS 35



* In the Figure, the solution has
eliminated the role of x2,
leading to sparsity

Lasso |/ Least

luti
Solution Square

solution

9/18/19 Dr. Yanjun Qi / UVA CS 36



Lasso Ridge
Estimator Regression”

/
/'/

/
/S / / V4 ,"" /S /S /
2 / }"",ﬂ' "’A,"' rd /’ g /.,'/ 2 v,.-‘ V4 ' ‘,."’A’ 6 /// 4 g .-'/

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |Bi| + |B2| < t and B? + B35 < t2, respectively,
while the red ellipses are the contours of the least squares error function.



Lasso (least absolute shrinkage and
selection operator)

 Notice that ridge penalty Is replaced

by ,sz
A Z

* Due to the nature of the constraint, if tuning parameter is chosen small
enough, then the lasso will set some coefficients exactly to zero.

9/18/19 Dr. Yanjun Qi/ UVA CS 38



Lasso: Implicit Feature Selection
Q0§7 —(;)w\a’er ”fﬂmd

£ ¢

CDN V u’t(ﬁ? GMA
” (J;(‘e ( ( &/\t

n X
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e.g., Lleukemia Diagnosis

9/18/19

+1

p’ > %@ﬂb@)@

A

~

Golub

et al, Science Vol 286:15 Oct. 1999 {vi},

Dr. Yanjun Qi / UVA CS
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Today

D Linear Regression Model with Regularizations

v'Review: (Ordinary) Least squares: squared loss (Normal Equation)
v'Ridge regression: squared loss with L2 regularization
v'Lasso regression: squared loss with L1 regularization

#Elastic regression: squared loss with L1 AND L2 regularization
v'How to Pick Regularization Parameter



Lasso for when p>n

e Prediction accuracy and model interpretation are two important
aspects of regression models.

e LASSO does shrinkage and variable selection simultaneously for
better prediction and model interpretation.

Disadvantage:
-In p>n case, lasso selects at most n variable before it saturates

-If there is a group of variables among which the pairwise
correlations are very high, then lasso select one from the group

9/18/19 Dr. Yanjun Qi / UVA CS 43



(3) Hybrid of Ridge and Lasso :
Elastic Net regularization

L1 part of the penalty generates a sparse model

L2 part of the penalty (extra):
* Remove the limitation of the number of selected variables
* Encouraging group effect
* Stabilize the L1 regularization path



Naive elastic net

+ For any non negative fixed A; and A, naive elastic net criterion:

LA\ A2.8) =1y —XB* + M8 + A1 1811

p
B> = Z 3. Bl =3 15jl.

j=1

e The naive elastic net estimator is the minimizer of above equation

B=argmin{L(\;. \2.3)}.
3



Naive elastic net

* For any non negative fixed A; and A, naive elastic net criterion:
LA A2 B) =]y = XBI7 + \2IB17 + 11811

P

l)
BIF=3" 5. 1Bl =3 15,1

J=1 j=1

e The naive elastic net estimator is the minimizer of above

B= argmin{L(\1. \2.3)}.
3

e Equivalently: a=X/(A\1+A2)

B= argmin |y — X3 subject to (1 —a) |3]; +a|B]> <t for some .
3

9/18/19



Geometry of elastic net

2-dimensional illustration o« = 0.5
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e.g. A Practical Application of
Regression Model

Movie Reviews and Revenues: An Experiment in Text Regression*

Mahesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
{maheshj,dipanjan,kgimpel,nasmith}@cs.cmu.edu

Abstract
We consider the problem of predicting a
movie’s opening weekend revenue. Previous Proceedings of
work on this problem has used metadata about HLT ’2010
a movie—e.g., its genre, MPAA rating, and
cast—with very limited work making use of Human

text abour the movie. In this paper, we use Language
the text of film critics’ reviews from several
sources to predict opening weekend revenue. Technologies:
We describe a new dataset pairing movie re-
views with metadata and revenue data, and
show that review text can substitute for meta-

- . < e 48
data, and even improve over it, for prediction.

9/18/19



1. The Story in Short

\/

¢ Use metadata and critics' reviews to predict
opening weekend revenues of movies

» Feature analysis shows what aspects of = 171 %
reviews predict box office success ’

*

L)

L)

A

ll. Data

4

L)

* 1718 Movies, released 2005-2009

» Metadata (genre, rating, running time,
actors, director, etc.): www.metacritic.com

L)

4

L)

L)

4

L)

s Critics’ reviews (~7K): Austin Chronicle,
Boston Globe, Entertainment Weekly, LA
Times, NY Times, Variety, Village Voice

L)

4

* Opening weekend revenues and number of
opening screens: www.the-numbers.com




e.g., Movie Reviews and Revenues: An Experiment in Text
Regression, Proceedings of HLT '10 (1.7k n / >3k features)

e.g.counts

IV. Features of a ngram in

the text

Lexical n-grams (1,2,3)

Part-of-speech n-grams (1,2,3)

Dependency relations (nsubj,advmod,...)

Meta

U.S. origin, running time, budget (log),

# of opening screens, genre, MPAA
rating, holiday release (summer,
Christmas, Memorial day,... ), star power
(Oscar winners, high-grossing actors)

9/18/19
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A REAL APPLICATION: Movie
Reviews and meta to Revenues

www.ark.cs.cmu.edu/movies-data

to movies

blooper

poop
Will Smith

torso

The feature weights can be
documentary directly interpreted as U.S.

dollars contributed to the
predicted value y” by each

running time N

philosophical
occurrence of the feature.

i

bogeyman

N

this series
straightforward midlife crisis
arthouse

is rated R anticipation

| 1 1 1
—-10% —10° 0 10* 10°

feature weight in dollars



Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

11l. Model

\/

% Linear regression with the elastic net (Zou
and Hastie, 2005)

A 1
0 = argmin —

0=(50,) 2n 5

\ P(B) =0, (3(1- )} + aﬂ) |

Use linear regression to directly predict the opening weekend gross

earnings, denoted as y, based on features x extracted from the

movie metadata and/or the text of the reviews.



Feature | Weight ($M)

o0 pg +0.085
g= New York Times: adult -0.236
= New York Times: rate_r -0.364
= this_series +13.925
= LA Times: the_franchise +5.112
Z Variety: the _sequel +4.224
% Boston Globe: will smith +2.560
S Variety: brittany +1.128
S *_producer_brian +0.486
Variety: testosterone +1.945

g Ent. Weekly: comedy_for +1.143
&0 Variety: a_horror +0.595
documentary -0.037

independent -0.127

. | Boston Globe: best_parts_of +1.462

& | Boston Globe: smart_enough +1.449

*§ LA Times: a_good_thing +1.117
O shame_$ -0.098

bogeyman -0.689

- Variety: torso +9.054
= vehicle_in +5.827
superhero_$ +2.020

An example of how real
applications use the elastic net
and its weights!

Here, the features are from the text-only
model annotated in Table 2.

The feature weights can be directly
interpreted as U.S. dollars contributed to
the predicted value by each occurrence
of the feature.

Sentiment-related text features are not
as prominent as might be expected, and
their overall proportion in the set of
features with non-zero weights is quite
small (estimated in preliminary trials at
less than 15%). Phrases that refer to
metadata are the more highly weighted
and frequent ones.

Table 3: Highly weighted features categorized manu-
~ and $ denote sentence boundaries.

ally.



Total Per Screen
Features Site | MAE MAE
(M) r ($K) T
Predict mean 11.672 — 6.862 —
Predict median 10.521 -~ 6.642 -
av]
‘g Best 5983 | 0.722 | 6.540 | 0.272
— | 8013 [ 0.743 | 6.509 | 0.222
I + | 7722 | 0781 | 6.071 | 0.466
see Tab. 3 B | 7.627 | 0.793 | 6.060 | 0.411
. — | 8.060 | 0.743 | 6.542 | 0.233
$|1ul + | 7.420 | 0.761 | 6.240 | 0.398
B | 7447 | 0778 | 6.299 | 0.363
— | 8.005 | 0.744 | 6.505 | 0.223
[ U III + | 7721 | 0.785 | 6.013 | 0.473
B | 7.595 | 0.796 | 76.010 | 0.421
— | 5921 [ 0.819 | 6.509 | 0.222
I + | 5757 | 0.810 | 6.063 | 0.470
. B | 5750 | 0.819 | 6.052 | 0.414
I3} — | 5952 | 0.818 | 6.542 | 0.233
2 | Ul + | 5752 | 0.800 | 6.230 | 0.400
‘a"é B | 5740 | 0.819 | 6.276 | 0.358
— | 5921 | 0.819 | 6.505 | 0.223
[ U III + | 5.738 | 0.812 | 6.003 | 0.477
B | 5750 | 0.819 | 75.998 | 0.423

Table 2: Test-set performance for various models, mea-

correlation (7), for two prediction tasks.

L.

II.

III.

n-grams. We considered unigrams, bigrams, and
trigrams. A 25-word stoplist was used; bigrams
and trigrams were only filtered if all words were
stopwords.

Part-of-speech n-grams. As with words, we
added unigrams, bigrams, and trigrams. Tags
were obtained from the Stanford part-of-speech
tagger (Toutanova and Manning, 2000).
Dependency relations. We used the Stanford
parser (Klein and Manning, 2003) to parse the
critic reviews and extract syntactic dependen-
cies. The dependency relation features consist
of just the relation part of a dependency triple
(relation, head word, modifier word).

A combination of the meta and text
features achieves the best
performance both in terms of MAE
and pearsonr.

We consider three ways to combine the collec-

tion of reviews for a given movie. The first (“—")
simply concatenates all of a movie’s reviews into
a single document before extracting features. The
second (“+”) conjoins each feature with the source
site (e.g., New York Times) from whose review it was
extracted. A third version (denoted “B”’) combines
both the site-agnostic and site-specific features.

sured using mean_absolute_error (MAE) and Pearson’s
__—\

54



More Ways for Measuring Regression Predictions:

Correlation Coefficient

* Pearson correlation coefficient

3 (x -7, — )

i=1

r(x,y)= = — =
\/Z‘(Xf —x)’ XZ(y,. —y)

where ;:iixi and ;:#iyi.
i=1 i=1
‘r(x, y)‘ <1

* For regression: r(ypredicted,yknown)

-

Measuring the linear correlation
between two sequences, x and vy,

giving a value between +1 and -1
inclusive, where 1 is total positive
correlation, O is no correlation, and
-1 is total negative correlation.



Advantage of Elastic net (Extra)
f>> n

e Native Elastic set can be converted to lasso )
with augmented data form
8 = >< nXp (l/u&ém

* In the augmented formulation, = ><
e sample size n+p and X" has rank p Qﬁp)z«f
e =>» can potentially select all the predictors

e Naive elastic net can perform automatic
variable selection like lasso

9/18/19 Dr. Yanjun Qi / UVA CS



Summary:
Regularized multivariate linear regression

.Model: Y=p6+p0,x++0,x, T
A\ 2
* LR estimation: argminZ(Y_ Y)
O
n A \2 p
e LASSO estimation: argminz Y-Y "')“Z ,Bj
i=1 \ Y, j=1
n ( % p
* Ridge regression estimation: arg minz Y-Y | + AZ[)’Z
i=1 \_ Y, j=1 !

57/54

Error on data + Regularization
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Regularized multivariate linear regression

Task Regression
| of X's
v |
Score Function 5 Least-squares +
| Regularization
v |
Search/Optimization . Linear algebra for Ridge /
sub-GD for Lasso & Elastic
v | l
Models,
Parameters . Regression coefficients
| (regularized weights)

minJ(f3) = Z(Y Y) +/1(2[3q v

9/18/19 Dr. Yanjun Qi / UVA CS i= 1



More: A family of shrinkage estimators

_ N
B=argmin, >" (y,~xB)’ N
subject to 2‘ ,Bj

- for q >=0, contours of constant value of Z ‘Ig‘q are shown for
the case of two inputs. VA

Covn e X

q=2

q
<S

N ' ' '
L/

FIGURE 3.12. Contours of constant value of Zj 1B for given values of q.



hy /
L \\KL:T lP’r‘P })GP (Dfrup £
. (N‘ )XP Mloym
norms visualized

all p-norms penalize larger
weights

g < 2 tends to create sparse
(i.e. lots of O weights)

g > 2 tends to push for
- similar weights




We aim to make the |learned model

/
1. Generalize Well 1)—% T T
veduie modd Varishce

e 2. Computationally Scalable and Efficient
V)XP
3. Robust / Trustworthy / Interpretable
* Especially for some domains, this is about trust!

9/18/19 Dr. Yanjun Qi / UVA CS



Today

D Linear Regression Model with Regularizations

v'Review: (Ordinary) Least squares: squared loss (Normal Equation)

v'Ridge regression: squared loss with L2 regularization

v'Lasso regression: squared loss with L1 regularization

v'Elastic regression: squared loss with L1 AND L2 regularization
dHow to pick Regularization Parameter



Regularized multivariate linear regression

=

Task

v
Representation

\ 4
Score Function

v

Search/Optimization

v

Models,
Parameters

9/18/19

____________________________________________________

Regression

Y= Welghted linear sum
of X's

Least-squares +
Regularization

Linear algebra for Ridge /
sub-GD for Lasso & Elastic

|

Regression coefficients
(regularized weights)

minJ(f) = Z(Y Y) +/1(2[3q v

Dr. Yanjun Qi / UVA CS = 1



12’7(2.
. X /X +(32_)(2
Common regularizers
@ +B,=0
L2: Squared weights penalizes large values more Z

L1: Sum of weights will penalize small values more 5
2.5
Generally, we don’t want huge weights

If weights are large, a small change in a feature can result in
a large change in the prediction

Might also prefer weights of O for features that aren’t useful



Model Selection & Generalization

» Generalisation: learn function / hypothesis from past data in order

to “explain”, “predict”, “model” or “control” new data examples

* Underfitting: when model is too simple, both
training and test errors are large

* Overfitting: when model is too complex and test
errors are large although training errors are small.
* After learning knowledge, model tends to learn “noise”



Issue: Overfitting and underfitting

l—w Looks good ¢

y =6 +0x =6, +6x+6,x° y= Z]o j
Generalisation: learn function /
hypothesis from past data in order K-fold Cross
to “explain”, “predict”, “model” or Validation !!!!

.| “control” new data examples
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Overfitting: Handled by Regularization

A regularizer is an additional criteria to the loss function to make sure
that we don’t overfit

It’s called a regularizer since it tries to keep the parameters more
normal/regular

It is a bias on the model forces the learning to prefer certain types of
weights over others, e.g.,

A~ ridge

B = argmin Z;(yi -x. BY+AB'p



WHY and How to Select A”

* 1. Generalization ability
=>» k-folds CV to decide

2. Control the bias and Variance of the model (details in future lectures)

L2: Squared weights penalizes large values more Z‘ﬁ]
j

L1: Sum of weights will penalize small values more Z

5

J
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An example with 8 features




Choose 4 that
- generalizes well !

when varying 4,
how p; varies.

An example with 8 features
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ )7 |8;|. A vertical line is draun at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.




Today Recap

D Linear Regression Model with Regularizations

v'Review: (Ordinary) Least squares: squared loss (Normal Equation)
v'Ridge regression: squared loss with L2 regularization

v'Lasso regression: squared loss with L1 regularization

v'Elastic regression: squared loss with L1 AND L2 regularization
v'Influence of Regularization Parameter



Regression (supervised)

O Four ways to train / perform optimization for linear regressmn model3

O Normal Equation Wi L(@
[ Gradient Descent (GD) &f‘“ xﬂ\g m
O Stochastic GD

J Newton’s method

Supervised regression models

ULinear regression (LR) ‘
LR with non-linear basis functions \]GN(M NS 'q(x)

ULocally weighted LR

LR with Regularizations \9 \) M :‘(«d\g JY \,(@\
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Extra More

* Optimization of regularized regressions:
* See L6-extra slide

* Relation between /1 and s
e See L6-extra slide

* Why Elastic Net has a few nice properties
* See L6-extra slide
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