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Extra Recap

q More about LR Model with Regularizations
q Ridge Regression 
q Lasso Regression 

q Extra: how to perform training
q Elastic net

q Extra: how to perform training
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Why Invertible In Ridge Regression? 

• NOT AN EASY PROOF If through SVD 
• https://www.quora.com/When-is-the-matrix-frac-1-n-X-T-X-+-lambda-I_-d-times-

d-invertible
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β* = XTX +λI( )
−1
XT !y

(NOT AN EASY PROOF from SVD 
angle), many concepts, SVD, 
PCA, Eigenvalues, relation to 
singular

https://www.quora.com/When-is-the-matrix-frac-1-n-X-T-X-+-lambda-I_-d-times-d-invertible


Why Invertible In Ridge Regression? 
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Extra: Intercept Term is usually 
not shrinked

• If the data is not centered, there exists bias term
• http://stats.stackexchange.com/questions/86991/reason-for-not-shrinking-the-bias-

intercept-term-in-regression

• We normally assume we centered x and y. If this is true, no need to have bias 
term, e.g., for lasso, 
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due to the nature of L_1 norm, the viable solutions are 
limited to corners, which are on a few axis only 
- in the above case x1. Value of x2 = 0. This means that the 
solution has eliminated the role of x2, leading to sparsity
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http://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization

In mathematics, particularly in 
calculus, a stationary point or 
critical point of a 
differentiable function of one 
variable is a point of the 
domain of the function where 
the derivative is zero 
(equivalently, the slope of the 
graph at that point is zero).



How to train Parameter for  Lasso 
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β̂ lasso = argmin(y− Xβ)T (y− Xβ)

subject  to  β j ≤ s∑

Here assume x and y have been centered (normally), therefore no bias term needed in above ! 
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We just need 0 
in the region 
[-cj-λ, -cj+λ]
(subgradient

calculus )
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Coordinate 
descent based 
Learning of 
Lasso

soft-thresholding

Coordinate descent 
(WIKI)è one does 

line search along one 
coordinate direction 

at the current point in 
each iteration. 

One uses different 
coordinate directions 
cyclically throughout 

the procedure.



Least Angle Regression (LARS) 
(State-of-the-art LASSO solver)
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http://statweb.stanford.edu/~tibs/ftp/lars.pdf



LARS: Least Angle Regression

• Starts like classic Forward Selection

• Find predictor xj1 most correlated with the current residual

•Make a step (epsilon) large enough until another predictor xj2

has as much correlation with the current residual

• LARS – now step in the direction equiangular between two 

predictors until xj3 earns its way into the “correlated set”
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Correlation: 
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Connecting LASSO and Naïve Elastic net
• Lemma: Given (λ1,λ2), define an artificial data set (y*,X*)

• Let, 

• Then 

naive
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Connecting LASSO and Naïve Elastic net
• Lemma: Given (λ1,λ2), define an artificial data set (y*,X*)

• Let, 

• Then 

naive
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Advantage of Elastic net
• Native Elastic set can be converted to lasso 

with augmented data

• In the augmented formulation, 
• sample size n+p and X* has rank p 
• è can potentially select all the predictors

• Naïve elastic net can perform automatic 
variable selection like lasso
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Grouping Effect 
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http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf

If there is a group of variables among which the pairwise correlations are very high, then the 
lasso tends to select only one variable from the group and does not care which one is selected. 

http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf


Grouping Effect of Naïve Elastic net

• Consider the following penalized regression model: Where J(.) positive 
for β ≠ 0.

• Clear Distinction between strictly convex penalty function and lasso
• Lasso doesn't even have a unique solution
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http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf

Lasso does not provide a unique solution

http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf


Grouping Effect of Naïve Elastic net

• D is the difference between the coefficient paths of predictors i and j.
• If xi and xj are high correlated ρ=1, this theorem provides a quantitative 

description for the grouping effect of Naive Elastic Net.
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http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf

http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf


Elastic Net 

• Deficiency of the Naive Elastic Net: Empirical evidence shows the Naive 
Elastic Net does not perform satisfactorily. The reason is that there are 
two shrinkage procedures (Ridge and LASSO) in it. Double shrinkage 
introduces unnecessary bias.

• Re-scaling of Naive Elastic Net gives better performance, yielding the 
Elastic Net solution:

• Reason: Undo shrinkage.
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http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf


Elastic Net
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Computation of elastic net

• First solve the Naive Elastic Net problem, then rescale it.
• For fixed λ2, the Naive Elastic Net problem is equivalent to a LASSO 

problem, with a huge data matrix if p >> n
• LASSO already has an efficient solver called LARS (Least Angle 

Regression).
• è LARS-EN algorithm.
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Elastic Net interpreted as a stabilized Lasso 
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