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Why Invertible In Ridge Regression?

N -1 (NOT AN EASY PROOF from SVD
/3 = (XTX + AI) XTy angle), many concepts, SVD,
PCA, Eigenvalues, relation to
singular
* NOT AN EASY PROOF If through SVD

* https://www.quora.com/When-is-the-matrix-frac-1-n-X-T-X-+-lambda-l -d-times-
d-invertible

e The determinant of A is equal to the product of its eigenvalues,
|A| = H Ai.
i=1

e The rank of A is equal to the number of non-zero eigenvalues of A.
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Why Invertible In Ridge Regression?

| —
symmetric, positive semi-definite square Gram matrix K = A7 A — which can be naturally

formed even when A is not square. Perhaps the eigenvalues of K might play a comparably
important role for general matrices. Since they are not easily related to the eigenvalues of
A — which, in the non-square case, don’t even exist — we shall endow them with a new
name.

Definition 6.27. The singular values o, ..., 0, of an mXxn matrix A are the positive
square roots, o; = y/A; > 0, of the nonzero eigenvalues of the associated Gram matrix
K = AT A. The corresponding eigenvectors of K are known as the singular vectors of A.

Since K is necessarily positive semi-definite, its eigenvalues are always non-negative,
A; > 0, which justifies the positivity of the singular values of A — independently of whether
A itself has positive, negative, or even complex eigenvalues — or is rectangular and has
no eigenvalues at all. The standard convention is to label the singular values in decreasing
order, so that o, > 0, > .-+ > o, > 0. Thus, o, will always denote the largest or
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Extra: Intercept Term is usually
not shrinked

* |If the data is not centered, there exists bias term
bias-

* http://stats.stackexchange.com/questions/86991/reason-for-not-shrinking-the-bi
intercept-term-in-regression

* We normally assume we centered x and y. If this is true, no need to have bias

term, e.g., for lasso, For (/(a% in | ’“/m%«
) ust Set 24 by
A | N p ( mu/m/% ety
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http://stats.stackexchange.com/questions/86991/reason-for-not-shrinking-the-bias-intercept-term-in-regression
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A L1 regularization B L2 regularization

AT \4 o

Ho

due to the nature of L_1 norm, the viable solutions are
limited to corners, which are on a few axis only

- in the above case x1. Value of x2 = 0. This means that the
solution has eliminated the role of x2, leading to sparsity
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Lo-regularized loss function F° ( :L‘) =f ( :L‘) + ,\|| T ||g is smooth. This
means that the optimum is the stationary point (0-derivative point). The
stationary point of F can get very small when you increase ), but still won't

be 0 unless f’(O) — ).

L -regularized loss function F’ ( 1:) =f ( ;1;) + /\||:I: || , is non-smooth. It's
not differentiable at 0. Optimization theory says that the optimum of a
function is either the point with o-derivative or one of the irregularities
(corners, kinks, etc.). So, it's possible that the optimal point of Fis 0 even if

0 isn't the stationary point of f. In fact, it would be o0 if ), is large enough
(stronger regularization effect). Below is a graphical illustration.

In multi-dimensional settings: if a feature is not important, the loss
contributed by it is small and hence the (non-differentiable) regularization
effect would turn it off.
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L -regularized loss function F’ (x) =f (;1:) + ,\|| T || 1 is non-smooth. It's
not differentiable at 0. Optimization theory says that the optimum of a
function is either the point with o-derivative or one of the irregularities
(corners, kinks, etc.). So, it's possible that the optimal point of Fis 0 even if
0 isn't the stationary point of f. In fact, it would be o if ), is large enough

(stronger regularization effect). Below is a graphical illustration.

http://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization
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In mathematics, particularly in
calculus, a stationary point or
critical point of a
differentiable function of one
variable is a point of the
domain of the function where
the derivative is zero
(equivalently, the slope of the
graph at that point is zero).



How to train Parameter for Lasso

-

B = argmin(y - XB) (y- X )
subject to E‘ﬁj‘ss

e /1-norm is non differentiable!
— cannot compute the gradient of the absolute value

= Directional derivatives (or subgradient)

[ Here assume x and y have been centered (normally), therefore no bias term needed in above !
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We just need 0
in the region
[-Cj-A, -Cj+A]
(subgradient

calculus)
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Coordinate

descent based =
8- :FOf'

Learning of
Lasso

/Coordinate descenm

(WIKI)=>» one does
line search along one
coordinate direction
at the current point in

each iteration.

One uses different
coordinate directions
cyclically throughout

the procedure.
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Least Angle Regression (LARS)

9/18

/19

(State-of-the-art LASSO solver)

X2

=
ya A
//

/
/
/

p ,." ’
g ’
V4 ”,
rd ’
rd 4 .
/ ’
rd /
/
rd ”
rd 4 -
/ ’
-’.‘ » -
/ d
g ’
/
7 ’
4 4
7 <
7 /
/
4 4
4 ’
rd ’
/s ’
-~ - -
o 1

Lt X

http://statweb.stanford.edu/~tibs/ftp/lars.pdf

Dr. Yanjun Qi / UVA CS



LARS: Least Angle Regression

* Starts like classic Forward Selection T
* Find predictor x;; most correlated with the current residual
* Make a step (epsilon) large enough until another predictor x;,
has as much correlation with the current residual

* LARS — now step in the direction equiangular between two

predictors until x;; earns its way into the “correlated set”

Correlation: C(,U) = X'(y - ,U)



Extra Recap

J More about LR Model with Regularizations
(] Ridge Regression

[ Lasso Regression
QO Extra: how to perform training
U Elastic net

‘ QO Extra: how to perform training

9/18/19 Dr. Yanjun Qi / UVA CS

19



Connecting LASSO and Naive Elastic net

e Lemma: Given (Ay,A,), define an artificial data set (y*,X")

* . —1/2 X % _ (Y
X(n+p)><p ={1+22) <\/)\21 ) Ynt+p) = <O)

Let v=\1//(1+\2) and B8* = /(1 + \»)B. Then the naive elastic net criterion can be written

das
L(v.B)=L(y.B% = |y* = X*B*[ ++|8%],.
o |Let,
naive [_:}* =argmin L{(y.3™)}:
B
e Then
. | ~
3= -3 .
£ J(H—Az)f
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Connecting LASSO and Naive Elastic net

e Lemma: Given (Ay,A,), define an artificial data set (y*,X")

‘/\V(P r v‘lvl

(1 + M) 12 )’zz+p)= (2))
() v () x|

Let y=\;//(14+)\) and 8% = /(1 + \»)3. Then the naive elastic net criterion can be written
as

X
L(w-5)=L(7«ﬂ*)=@*—X*B*lzﬂIB*\J =) P
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B
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Advantage of Elastic net P> h

e Native Elastic set can be converted to lasso W
with augmented data
= Wb o0
= X nyp ( W<‘(’>
e In the augmented formulation, = >< X
e sample size n+p and X" has rank p Q/WP)"E
e =» can potentially select all the predictors

e Naive elastic net can perform automatic
variable selection like lasso



http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Z0u%20&%20Hastie.pdf

Grouping Effect

\ |

Qualitatively speaking, a regression method exhibits the grouping effect if the regression
coefficients of a group of highly correlated variables tend to be equal (up to a change of sign if
negatively correlated). In particular, in the extreme situation where some variables are exactly
identical, the regression method should assign identical coefficients to the identical variables.

If there is a group of variables among which the pairwise correlations are very high, then the
lasso tends to select only one variable from the group and does not care which one is selected.

uations. We illustrate our points by considering the gene selection problem in microarray data
analysis. A typical microarray data set has many thousands of predictors (genes) and often
fewer than 100 samples. For those genes sharing the same biological ‘pathway’, the correlations
between them can be high (Segal and Conklin, 2003). We think of those genes as forming a
group. The ideal gene selection method should be able to do two things: eliminate the trivial
genes and automatically include whole groups into the model once one gene among them is
selected (‘grouped selection’). For this kind of p > n and grouped variables situation, the lasso
is not the ideal method, because it can only select at most n variables out of p candidates (Efron
et al., 2004), and it lacks the ability to reveal the grouping information. As for prediction per-


http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf

http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Z0u%20&%20Hastie.pdf

Grouping Effect of Naive Elastic net
B_cuomjmlw—XBl“ + A J(B) “\

e Consider the following penalized regression model: Where J(.) positive
for 3 #0.
Lemma 2. Assume that x; =X, i, je{l,.... p}.

(a) If J(-) 1s strictly convex, then 3 _,5’ VA>0.
(b) If J(B) =3I, then [3; 3} >0 dnd 5 15 another minimizer of equation (7), where

By if ki and k # J.
_'}Zk = (‘,.‘31- + 3—’) . (S) lf k = i.
('3, + 31) . (l — S) if k= j.

for any s € [0, I].

Lemma 2 shows a clear distinction between strictly convex penalty functions and the lasso
penalty. Strict convexity guarantees the grouping effect in the extreme situation with identical
predictors. In contrast the lasso does not even have a unique solution. The elastic net penalty
with A > 0 is strictly convex, thus enjoying the property in assertion (1).
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Grouping Effect of Naive Elastic net
B-cllUIlljlll ly — X[Bl‘ A J(3)

e Consider the following penalized regression model: Where J(.) positive
for 3 #0.

Lemma 2. Assume that x; =X, i, je{l,.... ph.

(a) If J(-) 1s strictly convex, then 3 _,5’ VA>0.
(b) If J(B) =3I, then [3; 3} >0 dnd 5 15 another minimizer of equation (7), where

By if ki and k # J.
_'}Zk = (‘,.‘31- + 3—’) . (S) lf k = i.
('3, + 31) . (l — S) if k= j.

for any s [0, 1]. . : :
g (0.1} Lasso does not provide a unique solution

Lemma 2 shows a clear distinction between strictly convex penalty functions and the lasso
penalty. Strict convexity guarantees the grouping effect in the extreme situati ith identical
predictors. In contrast the lasso does not even have a unique solution. Thelelastic net penalty

with A > 0 is strictly convex, thus enjoying the property in assertion (). o
-

-
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Grouping Effect of Naive Elastic net

r Theorem 1. Given data (y,X) and parameters (A1. ;). the response y is centred and the “‘

predictors X are standardized. Let 8(A1, A2) be the naive elastic net estimate. Suppose that
3(/\1 \2) 3 j(A1,A2) > 0. Define

AR B P
D,\l_/\z(l._/):Wlfgi(/\]./\z)—.‘_'3]-(/\]./\2)|Z
I
then

[
Dy, 5. )< \—7\/{2(1 N}

where p=x]x;, the sample correlation.

e Dis the difference between the coefficient paths of predictorsi and j.

* If x;and x; are high correlated p=1, this theorem provides a quantitative
description for the grouping effect of Naive Elastic Net.
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Grouping Effect of Naive Elastic net

r Theorem 1. Given data (y,X) and parameters (A1. ;). the response y is centred and the “‘

predictors X are standardized. Let (A1, \2) be elastic net estimate. Suppose that
3(/\1 \2) 3 j(A1,A2) > 0. Define

AR B p
Dy, (s )= —158;(A1. \2) = (A1, A2

T vh
then \__\J
1 _ I Y
D/\l./\g(i~.j)<\—\/{2(l_/))}~ ,
o ﬁ/ﬂ\zu’m
)y g

where p=x]x;, the sample correlation.

Xy Ky

—_—

TS —

e Dis the difference between the coefficient paths of predictorsi and j.

* Ifx;and x; are high correlated p=1, this theorem provides a quantitative
description for the grouping effect of Naive Elastic Net.
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Elastic Net

In the regression prediction setting, an accurate penalization method achieves good pre-
diction performance through the bias-variance trade-off. The naive elastic net estimator is a
two-stage procedure: for each fixed A, we first find the ridge regression coefficients, and then
we do the lasso-type shrinkage along the lasso coefficient solution paths. It appears to incur
a double amount of shrinkage. Double shrinkage does not help to reduce the variances much
and introduces unnecessary extra bias, compared with pure lasso or ridge shrinkage. In the next
section we improve the prediction performance of the naive elastic net by correcting this double
shrinkage.

e Deficiency of the Naive Elastic Net: Empirical evidence shows the Naive
Elastic Net does not perform satisfactorily. The reason is that there are
two shrinkage procedures (Ridge and LASSO) in it. Double shrinkage
introduces unnecessary bias.

e Re-scaling of Naive Elastic Net gives better performance, yielding the
Elastic Net solution:

e Reason: Undo shrinkage. %

B(ENet) = (1 4 A2) - B(Naive ENet)
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Elastic Net

3.2. The elastic net estimate
We follow the notation in Section 2.2. Given data (y, X), penalty parameter (A, A,) and aug-
mented data (y*,X*), the naive elastic net solves a lasso-type problem

5% . = * % 2 Al =
=arg min - X — ) 10
g g e ly B J(1+A2)|ﬁ § (10)

The elastic net (corrected) estimates 3 are|defined

—————

ﬁ(elastic ne) = ﬁ* . (11)
Recall that B(naive elastic net) = {1//(1+ /\2)}[;*; thus
B(elastic net) b (naive elastic net). : (12)

Hence the elastic net coefficient is a rescaled naive elastic net coefficient.
Such a scaling transformation preserves the variable selection property of the naive elastic
net and is the simplest way to undo shrinkage. Hence all the good properties of the naive elastic
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Computation of elastic net

e First solve the Naive Elastic Net problem, then rescale it.

e For fixed A,, the Naive Elastic Net problem is equivalent to a LASSO
problem, with a huge data matrix if p >>n

e LASSO already has an efficient solver called LARS (Least Angle
Regression).

e =>» LARS-EN algorithm.
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Elastic Net interpreted as a stabilized Lasso

Theorem 2. Given data (y, X) and (\{, \y), then the elastic net estimates 3 are given by

A . XTX + M1
ﬂ=argmmﬂT( 2 )ﬂ—2yTXﬁ+A1 8l (14)
8 1+ A
It is easy to see that
ﬁﬂasso) =argminﬁT(XTX),B—2yTXﬂ+)\1 18- (15)
B

Hence theorem 2 interprets the elastic net as a stabilized version of the lasso. Note that £ =XTX
is a sample version of the correlation matrix ¥ and

XTX + X1

=1 =S +A1
TN (I-—yX+y

with v = A2/(1 + \;) shrinks 3 towards the identity matrix. Together equations (14) and (15)
say that rescaling after the elastic net penalization is mathematically equivalent to replacing 3
with its shrunken version in the lasso. In linear discriminant analysis, the prediction accuracy
can often be improved by replacing 3. by a shrunken estimate (Friedman, 1989; Hastie et al,
2001). Likewise we improve the lasso by regularizing ¥ in equation (15).
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