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What Left in SVM?

J Support Vector Machine (SVM)
v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
v’ Linearly Non-separable case (soft SVM)
v Optimization with dual form
v Nonlinear decision boundary
v’ Practical Guide
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Today

J Support Vector Machine (SVM)
v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case
v Optimization with dual form

‘ v Nonlinear decision boundary

v" Practical Guide
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Support Vector Machine

Task classification
v _ | 1 |
‘ Representation . Kernel Trick Func K(x, z) '
s | Kx2=0m o)
v : :
' - | .
Search/Optimization g QP with Dual form
v 1 w= zai'xiyi
Models, i . ’ e
Parameters Dual Weights
N max S -~ aayyx'x
argminzilwinrCEgi o et Ti g L i % X
w,b i=1 ’

subject to Vx, € Dtrain: yi(xi 'W+b) =1-¢ zai}’i =0, a=20
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Classifying in 1-d

Can an SVM correctly What about this?

ify this data?
classify this data VM\X M“,
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Classifying in 1-d
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RECAP: Polynomial regression

For example, ¢(z) = [1, z, 2°]

7 A
10+ t‘L"y: ¢(7‘3 ©

T Q,t X0, +X101

-10—
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

(P'(X) :(Xlza X229 2 X1Xy)
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Thllos/lé/lgl%e is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm _tutorial.ppt



0 Kernel — Given a feature mapping ¢, we define the kernel K to be defined as:
K(z,2) = 9(z)" o(2)

2
In practice, the kernel K defined by K(z,z) = exp —%) is called the Gaussian kernel

and is commonly used. ngT_ T CPZ( X Yce[ a)
° o
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\L\l)ﬁn-linear separability === Use of a kernel mapping ¢ === Decision boundary in the original space

()
Resgriy we say that we use the "kernel trick” to compute the cost function using the kernel
Maga® we actually don’t need to know the explicit mapping ¢, which is often very complicated.
Instead, only the values K(z,2) are needed.
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A little bit theory: X —‘;,’;’_‘:’

Vapnik-Chervonenkis (VC) dimension

If data 1s mapped into sufficiently high dimension, then samples

will in general be linearly separable;
N data points are in general separable 1in a space of N-1

dimensions or more!!!

* VC dimension of the set of oriented lines in R% is 3
* |t can be shown that the VC dimension of the family of oriented separating hyperplanes
in RN is at least N+1

N
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[f data 1s mapped into sufficiently high dimension, then
samples will in general be linearly separable;

N data points are in general separable in a space of N-1
dimensions or more!!!

X — DO

Qinewb Q’P/‘”‘fé"{ intv
€0 (4555 {—H ,‘l}



Next Lesson for: Support Vector Machine

Task classification
‘ Representation . Kernel Trick Func K(x, z) |
s | Kx2=0m o)
v : :
' - | .
Search/Optimization g QP with Dual form
v 1 w= zai'xiyi
Models, g . ’ e
‘ Parameters g Dual Weights
N max S -~ aayyx'x
argminzilwinrCEgi o et Ti g L i % X
w,b i=1 ’

subject to Vx. € Dtrain: y, (xl. W+ b) =l-¢ Zaiyi =0, a =20 |
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Optimization Reformulation
(for linearly separable case)

f(x,w,b) = sign(w’x + b)

X; = dlx;)

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)
\ y,

/51,6 ‘H ’,}

Quadratic Objectlve

Min (w'w)/2
subject to the following constraints: argmian-;W,- =3 w W

»

For all xin class + 1 subjectto Vx. € Dirain: y, (W X +£l 1

T - A total of n PW
wix+b >= 1 constraints if 'X‘ ’ ,)(,
we have n l )‘ '
For all xin class - 1 IS e Quadratic programming
l.e.,

wTx+b <= -1 .
- Quadratic objective

10/14/19 - Linear constraints



An alternative representation of the SVM QP

4 Min (w'w)/2 N

s.t.

Instead of encoding the correct classification rule
and constraint we will use Lagrange multiplies to
encode it as part of the our minimization problem
(WTx+b)y; >= 1

N /
Recall that Lagrange multipliers can be
applied to turn the following problem: \., i) o2 0 e\lely

*('[Alhl%
l(yl(wai+b)—1)
ST

1
(w,b,0) = EwTw

iMZ

L
primal
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The Dual Problem (Extra)

max .o minw,b L(w,b,) DU&@( Mubﬁm
i~ = ——

* We minimize .£ with respect to w and b first:

train

VWL(W,b,oc) =—W-— zaiyixi =0, ( %)
i=1

train

V. Lwba)=> oy =0, (s %)

i=1

$0° S (W%t

=D 0yx, (% % %)

i=1
e Plus (***) back to .£ , and using (**), we have:

10/14/19 (/(Wba) ZOC __2 i ].yy( X)
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Note that (*) implies:

o
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Summary: Dual SVM for linearly
separable case

Dual formulation

Min (w'w)/2
max EO{ ——Ealajylijl X, subject to the following inequality

constraints:

Forall xin class + 1
Ea

wix+b >=1 A total of n

_ constraints if

a. =0 Vi Forall xin class - 1 we have n

WIx+b <= -1 input samples
a

Easier than original QP, more efficient algorithms exist to find o, e.g. SMO (see extra slides)
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Dual SVM for linearly separable case —
Training / Testing

. {Q{,,O‘z /O(,\/g
Our dual target function:
max, > o ——EZ oYY X'x,
i=1 j=1 /
Eocl.yi =0 Dot product for all

training samples

o, >0 Vi

Most Ok =
% 0‘\\0 Q\‘W K Je(('GVC. 0{»70



Dual SVM for linearly separable case —
Training / Testing

Our dual target function Z 22
o —— oYY X x
J /

11]1

Eocl.yi =0 Dot product for all
- training samples

=0 Vi
% Dot product with (“all” ??)

training samples
To evaluate a new sample x; /
we need to compute: Z
w' X +b=) ayx X +b (7( \
§
¥ fW &b@c

N B . T
» yts _Slgn Z ai-yi(xi th)+b .
ieSupportVectors
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T _ T
WX, +b= z:()ciyixi X, +b
i

)//; = sign( D aiyi(xfxts)+b]

ieSupportVectors
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Input space Feature space

SVM solves these two issues simultaneously
« “Kernel tricks” for efficient computation

« Dual formulation only assigns parameters to samples,
not to features

21



« SVM solves these two issues simultaneously
» “Kernel tricks” for efficient computation
» Dual formulation only assigns parameters to samples, not features

(1). “Kernel tricks” for efficient computation

( Never represent features(gplicitly _]

[0 Compute dot products in closed form
Very interesting theory — Reproducing Kernel Hilbert Spaces

[0 Not covered in detail here
k(x, &)

10/14/19 22



K(x;,%x;) = ¢(x;)T¢(x;) is called the kernel function

x ¢ R
K(x,2)=x"z 5 € ”ﬁf’

* Linear kernel (we've seen it)

* Polynomial kernel (we will see an example)

Kol = 900 G6)

where d =2, 3, ... To get the feature vectors we concatenate all dth order polynorvpal 20 (T;
terms of the components of x (weighted appropriately) )

T
 Radial basis kernel K(x,z)= exp( Hx Z‘ ‘2) — g@r(%) ?Ké)
O((T) \/—J/IDQ:DO

In this case., r is hyperpara. The feature space of the RBF kernel has an infinite
number of dimensions

Never represent features explicitly

[0 Compute dot products with a closed form

Very interesting theory — Reproducing Kernel Hilbert Spaces
[0 Not covered in detail here

10/14/19
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Example: Quadratic kernels

K(X,Z)=(1+xTz)d » Q‘{‘XT})Z

I 1
K(x,2) = (%) ©(2) V2,
V2x,
» Consider all quadratic terms for x4, X; ... X, 22
d(x) = !
> T ;
max, » a,— » a,a,y,yP(x,) P(x,)
: IE_] JZ 1 J \/E?flxz
zaiYi =0 _\/pr—lxp_

o =0 Vi
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d(x) " D(2)

. O(p"*d*n”2) operations if using
The kernel trick the basis functior
representations in building a
poly-kernel matrix

So, if we define the kernel function as follows, there is no
need to carry out basis function explicitly

T _N\d
K(x,z)=(1+x z)
O(p*n”"2) operations if building a poly-
kernel matrix directly through the
K(x,z) function among n training

samples =
max 206 ——20605 Y., K(X X, ) This is because XTZ gives a
scalar, then its power of d only costs
Z(x y. = =0 constant FLOPS.

C>o0. 2 0,Vietrain
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Kernel Matrix

* Kernel function creates the kernel matrix, which summarize all the
(train) data

X, X oG X,
[ ‘,
X7 ,'
. L KEim) - }<
] ~> 1 %)
\<@vV\e(J
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summary:
Modification Due to Kernel Trick

* Change all inner products to kernel functions

* For training, 1
T

o max oO—— ) 0O Vy. VX X,

Original “Z,.“ ! zz]“ YR

Linear Yoy =0

C>o. 2 0,Vietrain

: 1
With kernel mavaai —Elzlociajyiyjl{(xi,xj)

function - — .
nonlinear Y ay =0 V‘é:%:g(-@-

C>o. 2 0,Vietrain



summary:
Modification Due to Kernel Trick

* For testing, the new data x_ts

Original -~ r
: =sign ayX X +b
LI near ytS g iesuppglectorn IYI P

With kernel

func!:ion ) Y, =sign 2 oy KX, x _)+b
non I INnear iesupportVectors



Kernel Trick: Implicit Basis Representation

* For some kernels (e.g. RBF ) the implicit transform basis form \phi( x ) is
infinite-dimensional!
 But calculations with kernel are done in original space, so
computational burden and curse of dimensionality aren’t a

problem.

=>» Gaussian RBF Kernel corresponds to an
2 infinite-dimensional vector space.
Kx,2)=exp —rlx—[ |
YouTube video of Caltech: Abu-Mostafa
explaining this in more
O(p*n”2) operations in building detailhttps://www.youtube.com/watch?v=XU
a RBF-kernel matrix for training  [5JbQihlU&t=25m53s



https://www.youtube.com/watch?v=XUj5JbQihlU&t=25m53s

Kernel Functions (Extra)

* In practical use of SVM, only the kernel function (and not basis
function ) is specified

* Kernel function can be thought of as a similarity measure
between the input objects

* Not all similarity measure can be used as kernel function,
however Mercer's condition states that any positive semi-

definite kernel K(x, y), i.e.
le (zi,zj)cic; > 0

can be expressed as a dot product in a high dimensional space.



Choosing the Kernel Function

* Probably the most tricky part of using SVM.

* The kernel function is important because it creates the kernel
matrix, which summarize all the data

* Many principles have been proposed (diffusion kernel, Fisher
kernel, string kernel, tree kernel, graph kernel, ...)

* Kernel trick has helped Non-traditional data like strings and trees able to
be used as input to SVM, instead of feature vectors

* In practice, a low degree polynomial kernel or RBF kernel with a
reasonable width is a good initial try for most applications.

10/14/19 32



Kernel trick has helped Non- Nk i/(. 3( V\O‘f
traditional data like strings and trees

able to be used as input to SVM, ( 3/ ANa /ljéz
instead of feature vectors ( >< /
Vector vs. Relational data Ohlﬂ

°
=
4
y

e.g. Graphs,
Sequences,
3D structures,

Original Space Feature Space
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Mercer Kernel vs. Smoothing Kernel (Extra)

* The Kernels used in Support Vector Machines are different from the
Kernels used in LocalWeighted /Kernel Regression.

e We can think
* Support Vector Machines’ kernels as Mercer Kernels
* Local Weighted / Kernel Regression’s kernels as Smoothing Kernels



Why do SVMs work?

4 If we are using huge features spaces (e.g., with
kernels), how come we are not overfitting the data”

v" Number of parameters remains the same (and most
are set to 0)

v While we have a lot of inputs, at the end we only
care about the support vectors and these are usually a
small group of samples

v" The maximizing of the margin acts as a sort of
regularization term leading to reduced overfitting

10/14/19 35
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Time Cost Comparisons
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Today

J Support Vector Machine (SVM)
v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)
v Non linearly separable case
v Optimization with dual form
v Nonlinear decision boundary

‘ v" Practical Guide

10/14/19
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Software

* A list of SVM implementation can be found at
* http://www.kernel-machines.org/software.html

« Some implementation (such as LIBSVM) can handle
multi-class classification

« SVMLight is among one of the earliest implementation
of SVM

« Several Matlab toolboxes for SVM are also available



Summary: Steps for Using SVM in HW

* Prepare the feature-data matrix
*Select the kernel function to use

*Select the parameter of the kernel function and the value
of C (see next 11c slides for details)

* Execute the training algorithm and obtain the .. q;

* Unseen data can be classified using the a; and the support
vectors



Practical Guide to SVM

* From authors of as LIBSVM:

* A Practical Guide to Support Vector Classification Chih-Wei Hsu, Chih-Chung
Chang, and Chih-Jen Lin, 2003-2010

e http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

10/14/19
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http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

LIBSVM

 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
v'Developed by Chih-Jen Lin etc.
v'Tools for Support Vector classification
v'Also support multi-class classification
v'C++/Java/Python/Matlab/Perl wrappers
v'Linux/UNIX/Windows
v'SMO implementation, fast!!!

A Practical Guide to Support Vector
Classification

10/14/19
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/

(a) Data file formats for LIBSVM

* Training.dat

+1 1:0.708333 2:1 3:1 4:-0.320755

-1 1:0.583333 2:-1 4:-0.603774 5:1

+1 1:0.166667 2:1 3:-0.333333 4:-0.433962
-1 1:0.458333 2:1 3:1 4:-0.358491 5:0.374429

* Testing.dat



(b) Feature Preprocessing

* (1) Categorical Feature
 Recommend using m numbers to represent an m-category attribute.
* Only one of the m numbers is one, and others are zero.

* For example, a three-category attribute such as {red, green, blue} can be represented as
(0,0,1), (0,1,0), and (1,0,0)

A Practical Guide to Support Vector
Classification v

10/14/19



A Practical Guide to Support Vector
Classification

Feature Preprocessing

e (2) Scaling before applying SVM is very important

* to avoid attributes in greater numeric ranges dominating those in smaller numeric
ranges.

* to avoid numerical difficulties during the calculation
* Recommend linearly scaling each attribute to the range [1, +1] or [0, 1].

wmewn O

D st\f W[Z(YMIM =9 e |

X = Xudn ™ S[/L /% 59 Tt
| e X & :
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Of course we have to use the same method to scale both training and testing
data. For example, suppose that we scaled the first attribute of training data from
[—10,+10] to [—1, +1]. If the first attribute of testing data lies in the range [—11, +8],
we must scale the testing data to [—1.1,+0.8]. See Appendix B for some real examples.

If training and testing sets are separately scaled to [0, 1], the resulting accuracy is
lower than 70%.

$ ../svm-scale -1 0 svmguide4 > svmguide4.scale

$ ../svm-scale -1 0 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 69.2308% (216/312) (classification)

Using the same scaling factors for training and testing sets, we obtain much better

accuracy.

$ ../svm-scale -1 0 -s range4 svmguide4 > svmguide4.scale
$ ../svm-scale -r range4 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 89.4231% (279/312) (classification)



Feature Preprocessing

* (3) missing value

* Very very tricky !
* Easy way: to substitute the missing values by the mean value of the variable

* A little bit harder way: imputation using nearest neighbors
* Even more complex: e.g. EM based (beyond the scope)

A Practical Guide to Support Vector
Classification "

10/14/19



Feature Preprocessing

* (4) out of dictionary token issue
* For discrete feature variable, very trick to handle

* Easy way: to substitute the values by the most likely value (in train) of the
variable

* Easy way: to substitute the values by a random value (in train) of the variable
* More solutions later in the NaiveBayes slides!

10/14/19
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Today: Nonlinear SVM & Practical Guide

J Support Vector Machine (SVM)
v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v" Non linearly separable case
v’ Optimization with dual form
v Nonlinear decision boundary

v’ Practical Guide
v" File format / LIBSVM
v’ Feature preprocsssing
v' Model selection
v’ Pipeline procedure

10/14/19
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Next: Support Vector Machine

Task classification
| | :
Representation . Kernel Trick Func K(xi, xj) :
. | Kx2)=0x) )
v : :
‘ Score Function . Margin + Hinge Loss
' - | .
‘ Search/Optimization g QP with Dual form |
v 1 w= zai'xiyi
Models, g . ’ e
‘ Parameters g Dual Weights
N max Yo -~Yoayyx'x
argminzf_lwinrCEei O hamd iy ek WiV % X,
w.b B i=1 I L)

subject to Vxl. & Dtrain : yi(xi -w+b) >1-¢ zai}’i =0, a. 20 . Vi

1



Why SVM Works? (Extra)

* Vapnik argues that the fundamental problem is not the number of
parameters to be estimated. Rather, the problem is about the flexibility of a
classifier

* Vapnik argues that the flexibility of a classifier should not be characterized
by the number of parameters, but by the capacity of a classifier

* This is formalized by the “VC-dimension” of a classifier

* The SVM objective can also be justified by structural risk minimization: the
empirical risk (training error), plus a term related to the generalization ability
of the classifier, is minimized

* Another view: the SVM loss function is analogous to ridge regression. The
term %2 | |w||? “shrinks” the parameters towards zero to avoid overfitting
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