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What Left in SVM?

q Support Vector Machine (SVM)
ü History of SVM 
ü Large Margin Linear Classifier 
ü Define Margin (M) in terms of model parameter
ü Optimization to learn model parameters (w, b) 
ü Linearly Non-separable case (soft SVM)
ü Optimization with dual form 
ü Nonlinear decision boundary 
ü Practical Guide
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Today

q Support Vector Machine (SVM)
ü History of SVM 
ü Large Margin Linear Classifier 
ü Define Margin (M) in terms of model parameter
ü Optimization to learn model parameters (w, b) 
ü Non linearly separable case
ü Optimization with dual form 
ü Nonlinear decision boundary 
ü Practical Guide
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Support Vector Machine

classification

Kernel Trick Func K(x, z)

Margin + Hinge Loss 

QP with Dual form

Dual Weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)

4

		

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑ , α i ≥0 ∀i



Classifying in 1-d
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Can an SVM correctly 
classify this data?

What about this?

X X



Classifying in 1-d
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Can an SVM correctly 
classify this data?

And now? (extend with polynomial basis )

X X

X2



RECAP: Polynomial regression

• Introduce basis functions 
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Dr. Nando de Freitas’s tutorial slide



Non-linear SVMs:  2D

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Φ:  x→ φ(x)

x1
2

x2
2

2 x1x2

x=(x1,x2)

• The original input space (x) can be mapped to some higher-dimensional 
feature space (φ(x) )where the training set is separable:

φ(x) =(x1
2, x2

2, 2 x1x2)
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A little bit theory: 
Vapnik-Chervonenkis (VC) dimension

• VC dimension of the set of oriented lines in R2 is 3
• It can be shown that the VC dimension of the family of oriented separating hyperplanes

in RN is at least N+1
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If data is mapped into sufficiently high dimension, then samples 
will in general  be linearly separable; 
N data points are in general separable in a space of N-1 
dimensions or more!!!



Φ(  )

Φ(  )

Φ(  )
Φ(  )Φ(  )

Φ(  )

Φ(  )Φ(  )

Φ(.) Φ(  )

Φ(  )

Φ(  )
Φ (  )
Φ(  )

Φ(  )

Φ(  )

Φ(  )
Φ(  ) Φ(  )

Feature spaceInput space

• Possible problems
- High computation burden due to high-dimensionality 
- Many more parameters to estimate 
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Is this too much computational work?

If data is mapped into sufficiently high dimension, then 
samples will in general  be linearly separable; 

N data points are in general separable in a space of N-1 
dimensions or more!!!



Next Lesson for: Support Vector Machine

classification

Kernel Trick Func K(x, z)

Margin + Hinge Loss 

QP with Dual form

Dual Weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)
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maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑ , α i ≥0 ∀i



Optimization  Reformulation 
(for linearly separable case) 
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Min (wTw)/2 
subject to the following constraints:

For all  x in class + 1

wTx+b >= 1

For all  x in class - 1

wTx+b <= -1

}A total of n 
constraints if 
we have n 
input samples

   

argmin
w,b

wi
2

i=1
p∑

subject to  ∀x i ∈Dtrain : yi wT x i + b( ) ≥1

Quadratic Objective

Quadratic programming 
i.e., 
- Quadratic objective 
- Linear constraints  

f(x,w,b) = sign(wTx + b)



An alternative representation of the SVM QP
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•Instead of encoding the correct classification rule 
and constraint we will use Lagrange multiplies to 
encode it as part of the our minimization problem

Min (wTw)/2

s.t.

(wTxi+b)yi >= 1

Recall that Lagrange multipliers can be 
applied to turn the following problem:

			 
Lprimal(w ,b,α )=

1
2w ⋅w− α i yi(w ⋅x i +b)−1( )

i=1

N

∑



The Dual Problem (Extra)

• We minimize L with respect to w and b first:

Note that (*) implies:    

• Plus (***) back to L , and using (**), we have:
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***(          )

		 maxα i≥0minw ,bL(w ,b,α )

!! 
∇wL(w ,b,α )! =w− α i yixi =0

i=1

train

∑ ,

!! 
∇bL(w ,b,α )! = α i yi =0

i=1

train

∑ ,

!!
w = α i yixi

i=1

train

∑

*(   )

!!! 
L(w ,b,α )= α i

i=1
∑ − 12 α iα j yi y j(x iTx j )

i , j=1
∑

**(       )



Summary: Dual SVM for linearly 
separable case 
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Dual formulation

maxα αi −
i
∑ 1

2
αiα jyiyj

i,j
∑ xi

Txj

αiyi = 0
i
∑

αi ≥ 0 ∀i

Easier than original QP, more efficient algorithms exist to find ai; e.g. SMO (see extra slides)  



Dual SVM for linearly separable case –
Training  / Testing
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Our dual target function:

		

maxα α i −
i
∑ 1

2 α iα jyi y jxiTxj
j=1
∑

i=1

n

∑
α iyi =0

i
∑
α i ≥0 ∀i

Dot product for all 
training samples 

To evaluate a new sample xts
we need to compute:

!!
wTxts +b= α iyi

i
∑ xi

Txts +b

			 
yts
! = sign α i yi x i

Txts( )
i∈SupportVectors

∑ +b
⎛

⎝⎜
⎞

⎠⎟



Dual SVM for linearly separable case –
Training  / Testing
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Our dual target function:

		

maxα α i −
i
∑ 1

2 α iα jyi y jxiTxj
j=1
∑

i=1

n

∑
α iyi =0

i
∑
α i ≥0 ∀i

Dot product for all 
training samples 

To evaluate a new sample xts
we need to compute:

!!
wTxts +b= α iyi

i
∑ xi

Txts +b

Dot product with (“all” ??)  
training samples 

			 
yts
! = sign α i yi x i

Txts( )
i∈SupportVectors

∑ +b
⎛

⎝⎜
⎞

⎠⎟
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maxα α i −
i
∑ α iα jyi y j

i,j
∑ Φ(xi )

TΦ(xj)

α iyi =0
i
∑
C >α i ≥0,∀i		

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C >α i ≥0,∀i

Training 
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!!
wTxts +b= α iyi

i
∑ xi

Txts +b

			 
yts
! = sign α i yi x i

Txts( )
i∈SupportVectors

∑ +b
⎛

⎝⎜
⎞

⎠⎟

Testing



Φ(  )

Φ(  )

Φ(  )
Φ(  )Φ(  )

Φ(  )

Φ(  )Φ(  )

Φ(.) Φ(  )

Φ(  )

Φ(  )
Φ (  )
Φ(  )

Φ(  )

Φ(  )

Φ(  )
Φ(  ) Φ(  )

Feature spaceInput space
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SVM solves these two issues simultaneously

• “Kernel tricks” for efficient computation 

• Dual formulation only assigns parameters to samples, 
not to features



(1). “Kernel tricks” for efficient computation 

• SVM solves these two issues simultaneously
• “Kernel tricks” for efficient computation 
• Dual formulation only assigns parameters to samples, not features
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Never represent features explicitly
¨ Compute dot products in closed form
Very interesting theory – Reproducing Kernel Hilbert Spaces 
¨ Not covered in detail here 



• Linear kernel (we've seen it)

• Polynomial kernel (we will see an example)

where d = 2, 3, … To get the feature vectors we concatenate all dth order polynomial 
terms of the components of x (weighted appropriately)

• Radial basis kernel

In this case., r is hyperpara. The feature space of the RBF kernel has an infinite 
number of dimensions

10/14/19
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			K(x ,z)= x
Tz

			K(x ,z)= 1+ xTz( )d

			
K(x ,z)= exp −r x− z

2⎛
⎝

⎞
⎠

Never represent features explicitly
¨ Compute dot products with a closed form
Very interesting theory – Reproducing Kernel Hilbert Spaces 
¨ Not covered in detail here 



Example: Quadratic kernels
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maxα αi −
i
∑ αiα jyiyj

i,j
∑ Φ(xi )

TΦ(x j)

αiyi = 0
i
∑

αi ≥ 0 ∀i

• Consider all quadratic terms for x1, x2 … xp

K(x, z) :=Φ(x)TΦ(z)

			K(x ,z)= 1+ xTz( )d

𝛷(𝑥) =

1
2𝑥(
⋮
2𝑥*

𝑥(+
⋮
𝑥*+

2𝑥(𝑥+
⋮

2𝑥*,(𝑥*
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			K(x ,z)= 1+ xTz( )d



The kernel trick
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So, if we define the kernel function as follows, there is no 
need to carry out basis function explicitly

			K(x ,z)= (1+ x
Tz)d

!!

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ K(xi ,xj)

α iyi =0
i
∑
C >α i ≥0,∀i∈train

O(p*n^2) operations if building a poly-
kernel matrix directly through the 
K(x,z) function among n training 
samples è

This is because             gives a 
scalar, then its power of d only costs 
constant FLOPS.  

O(p^d*n^2) operations if using 
the basis function 
representations in building a 
poly-kernel matrix 

	xTz

		Φ(x)
TΦ(z)



Kernel Matrix

• Kernel function creates the kernel matrix, which summarize all the 
(train) data
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Summary: 
Modification Due to Kernel Trick

• Change all inner products to kernel functions
• For training,
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Original 
Linear

With kernel 
function -
nonlinear

!!

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C >α i ≥0,∀i∈train

!!

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ K(xi ,xj)

α iyi =0
i
∑
C >α i ≥0,∀i∈train



Summary: 
Modification Due to Kernel Trick

• For testing, the new data x_ts
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yts
! = sign α iyi

i∈supportVectors
∑ K (xi ,xts )+b

⎛

⎝⎜
⎞

⎠⎟

Original 
Linear

With kernel 
function -
nonlinear

		 
yts
! = sign α iyi

i∈supportVectorn
∑ xi

Txts +b
⎛

⎝⎜
⎞

⎠⎟



Kernel Trick: Implicit Basis Representation 

• For some kernels (e.g. RBF ) the implicit transform basis form \phi( x ) is 
infinite-dimensional!

• But calculations with kernel are done in original space, so 
computational burden and curse of dimensionality aren’t a 
problem.
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K(x ,z)= exp −r x− z

2⎛
⎝

⎞
⎠

è Gaussian RBF Kernel corresponds to an 
infinite-dimensional vector space. 

YouTube video of Caltech: Abu-Mostafa
explaining this in more 
detailhttps://www.youtube.com/watch?v=XU
j5JbQihlU&t=25m53s

O(p*n^2) operations in building 
a RBF-kernel matrix for training 

https://www.youtube.com/watch?v=XUj5JbQihlU&t=25m53s


Kernel Functions (Extra)

• In practical use of SVM, only the kernel function (and not basis 
function ) is specified

• Kernel function can be thought of as a similarity measure 
between the input objects

• Not all similarity measure can be used as kernel function, 
however Mercer's condition states that any positive semi-
definite kernel K(x, y), i.e.

can be expressed as a dot product in a high dimensional space. 
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Choosing the Kernel Function

• Probably the most tricky part of using SVM.

• The kernel function is important because it creates the kernel 
matrix, which summarize all the data

• Many principles have been proposed (diffusion kernel, Fisher 
kernel, string kernel, tree kernel, graph kernel, …)

• Kernel trick has helped Non-traditional data like strings and trees able to 
be used as input to SVM, instead of feature vectors

• In practice, a low degree polynomial kernel or RBF kernel with a 
reasonable width is a good initial try for most applications.
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Original Space Feature Space

Vector vs. Relational data

e.g. Graphs,
Sequences,
3D structures,
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Kernel trick has helped Non-
traditional data like strings and trees 
able to be used as input to SVM, 
instead of feature vectors



Mercer Kernel vs. Smoothing Kernel (Extra)

• The Kernels used in Support Vector Machines are different from the 
Kernels used in LocalWeighted /Kernel Regression. 

• We can think 
• Support Vector Machines’ kernels as Mercer Kernels 
• Local Weighted / Kernel Regression’s kernels as Smoothing Kernels 

10/14/19 34



Why do SVMs work?
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q If we are using huge features spaces (e.g., with 
kernels), how come we are not overfitting the data?

ü Number of parameters remains the same (and most 
are set to 0)

ü While we have a lot of inputs, at the end we only 
care about the support vectors and these are usually a 
small group of samples

ü The maximizing of the margin acts as a sort of 
regularization term leading to reduced overfitting



10/14/19 36



Time Cost Comparisons
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Today

q Support Vector Machine (SVM)
ü History of SVM 
ü Large Margin Linear Classifier 
ü Define Margin (M) in terms of model parameter
ü Optimization to learn model parameters (w, b) 
ü Non linearly separable case
ü Optimization with dual form 
ü Nonlinear decision boundary 
ü Practical Guide
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Software

• A list of SVM implementation can be found at 
• http://www.kernel-machines.org/software.html

• Some implementation (such as LIBSVM) can handle 
multi-class classification

• SVMLight is among one of the earliest implementation 
of SVM

• Several Matlab toolboxes for SVM are also available
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Summary: Steps for Using SVM in HW 

• Prepare the feature-data matrix 
• Select the kernel function to use
• Select the parameter of the kernel function and the value 

of C (see next 11c slides for details)
• Execute the training algorithm and obtain the \ai

• Unseen data can be classified using the ai and the support 
vectors
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Practical Guide to SVM 

• From authors of as LIBSVM: 
• A Practical Guide to Support Vector Classification Chih-Wei Hsu, Chih-Chung 

Chang, and Chih-Jen Lin, 2003-2010 
• http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
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http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


LIBSVM

• http://www.csie.ntu.edu.tw/~cjlin/libsvm/
üDeveloped by Chih-Jen Lin etc.
üTools for Support Vector classification 
üAlso support multi-class classification  
üC++/Java/Python/Matlab/Perl wrappers
üLinux/UNIX/Windows
üSMO implementation, fast!!!  
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A Practical Guide to Support Vector 
Classification 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


(a) Data file formats for LIBSVM

• Training.dat
+1 1:0.708333 2:1 3:1 4:-0.320755
-1 1:0.583333 2:-1  4:-0.603774 5:1
+1 1:0.166667 2:1 3:-0.333333 4:-0.433962
-1 1:0.458333 2:1 3:1 4:-0.358491 5:0.374429
…
• Testing.dat
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(b) Feature Preprocessing 

• (1) Categorical Feature 
• Recommend using m numbers to represent an m-category attribute. 
• Only one of the m numbers is one, and others are zero.

• For example, a three-category attribute such as {red, green, blue} can be represented as 
(0,0,1), (0,1,0), and (1,0,0) 

10/14/19 44
A Practical Guide to Support Vector 
Classification 



Feature Preprocessing 

• (2) Scaling before applying SVM is very important 
• to avoid attributes in greater numeric ranges dominating those in smaller numeric 

ranges. 
• to avoid numerical difficulties during the calculation 
• Recommend linearly scaling each attribute to the range [1, +1] or [0, 1]. 
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A Practical Guide to Support Vector 
Classification 
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Feature Preprocessing 
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A Practical Guide to Support Vector 
Classification 



Feature Preprocessing 

• (3) missing value
• Very very tricky ! 
• Easy way: to substitute the missing values by the mean value of the variable
• A little bit harder way: imputation using nearest neighbors
• Even more complex: e.g. EM based (beyond the scope) 
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A Practical Guide to Support Vector 
Classification 



Feature Preprocessing 

• (4) out of dictionary token issue 
• For discrete feature variable, very trick to handle 
• Easy way: to substitute the values by the most likely value (in train) of the 

variable
• Easy way: to substitute the values by a random value (in train) of the variable
• More solutions later in the NaiveBayes slides! 
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Today: Nonlinear SVM & Practical Guide 

q Support Vector Machine (SVM)
ü History of SVM 
ü Large Margin Linear Classifier 
ü Define Margin (M) in terms of model parameter
ü Optimization to learn model parameters (w, b) 
ü Non linearly separable case
ü Optimization with dual form 
ü Nonlinear decision boundary 
ü Practical Guide

ü File format / LIBSVM
ü Feature preprocsssing
ü Model selection 
ü Pipeline procedure 
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Next: Support Vector Machine

classification

Kernel Trick Func K(xi, xj)

Margin + Hinge Loss 

QP with Dual form

Dual Weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)

51

		

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑ , α i ≥0 ∀i



Why SVM Works? (Extra)

• Vapnik argues that the fundamental problem is not the number of 
parameters to be estimated. Rather, the problem is about the flexibility of a 
classifier

• Vapnik argues that the flexibility of a classifier should not be characterized 
by the number of parameters, but by the capacity of a classifier

• This is formalized by the “VC-dimension” of a classifier

• The SVM objective can also be justified by structural risk minimization: the 
empirical risk (training error), plus a term related to the generalization ability 
of the classifier, is minimized

• Another view: the SVM loss function is analogous to ridge regression. The 
term ½||w||2“shrinks” the parameters towards zero to avoid overfitting
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