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Course Content Plan è
Six major sections of this course

q Regression (supervised)
q Classification (supervised)
q Unsupervised models 
q Learning theory 

q Graphical models 

qReinforcement Learning 
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Y is a continuous

Y is a discrete

NO Y 

About f()

About interactions among X1,… Xp

Learn program to Interact with its 
environment



Today

q Bayes Classifier
q Logistic Regression 
q Training LG by MLE
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Bayes Classifier

Classification

MLE

？

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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cMAP = argmax
cj∈C

P(cj | x1, x2,…, xp )

Parameters in P(C|X)



Bayes classifiers

•Treat each feature attribute and the class label as 
random variables.

•Given a sample x with attributes ( x1, x2, … , xp ):
• Goal is to predict its class C.
• Specifically, we want to find the value of Ci that maximizes p( 

Ci | x1, x2, … , xp ).

•Can we estimate p(Ci |x) = p( Ci | x1, x2, … , xp ) 
directly from data?

10/23/19 Dr. Yanjun Qi / UVA CS 5



Bayes classifiers
• Treat each feature attribute and the class label as random variables.

• Testing: Given a sample x with attributes ( x1, x2, … , xp ):
• Goal is to predict its class c.
• Specifically, we want to find the class that maximizes p( c | x1, x2, … , xp ).

• Training: can we estimate p(Ci |x) = p( Ci | x1, x2, … , xp ) directly from 
data?
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Bayes Classifiers – MAP Rule

Task: Classify a new instance X based on a tuple of attribute 
values                                  into one of the classes
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X = X1,X2,…,Xp

cMAP = argmax
cj∈C

P(cj | x1, x2,…, xp )

MAP = Maximum Aposteriori Probability 

MAP Rule

Adapt From Carols’ prob tutorial 



Bayes Classifiers – MAP Classification 
Rule

•Establishing a probabilistic model for classification
è MAP classification rule

– MAP: Maximum A Posterior
– Assign x to c* if 
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P(C = c* |X = x)	 > 	P(C = c |X = x)			
for		c ≠ c* , 		c = c1 ,⋅⋅⋅,cL

Adapt from Prof. Ke Chen NB slides
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Output as Discrete 
Class Label 

C1, C2, …, CL

C

Discriminative
			
argmax

c∈C
P(c |X)			C = {c1 ,⋅⋅⋅,cL}

Generative

		
argmax

c∈C
P(c |X )= argmax

c∈C
P(X ,c)= argmax

c∈C
P(X |c)P(c)

Later!

cMAP = argmax
cj∈C

P(cj | x1, x2,…, xp )

Establishing a probabilistic 
model for classification
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Recap: Statistical Decision Theory (Extra)

•Random input vector: X
•Random output variable: Y
•Joint distribution: Pr(X,Y )
•Loss function L(Y, f(X))

•Expected prediction error (EPE):

€ 

EPE( f ) = E(L(Y, f (X))) = L(y, f (x))∫ Pr(dx,dy)

               e.g. = (y − f (x))2∫ Pr(dx,dy)
Consider 

population 
distribution e.g. Squared error loss (also called L2 loss )



SUMMARY: WHEN Expected prediction error (EPE) USES 
DIFFERENT LOSS 

Loss Function Estimator

L2

L1

0-1
(Bayes classifier / MAP)
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Today: 

– Discriminative model

			x = (x1 ,x2 ,⋅⋅⋅,xp)

Discriminative 
Probabilistic Classifier

1x 2x 	
xp

)|( 1 xcP )|( 2 xcP )|( xLcP

•••

•••

Adapt from Prof. Ke Chen NB slides

			
argmax

c∈C
P(c |X),			C = {c1 ,⋅⋅⋅,cL}



Today

q Bayes Classifier
q Logistic Regression 
q Training LG by MLE
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Logistic Regression

Binary Classification

Log-odds = linear 
function of X’s 

MLE

Iterative (Newton) method 

Logistic 
weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

  
P( y = 1 x) = eβ0+β

T x

1+ eβ0+β
T x10/23/19 Dr. Yanjun Qi / UVA CS 15



Multivariate linear regression to Logistic 
Regression
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Logistic regression for 
binary classification

		
ln P( y |x)

1−P( y x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= β0 +β1x1 +β2x2 + ...+βpxp

𝑦 = 𝛽$ + 𝛽&𝑥& + 𝛽(𝑥(+. . . +𝛽*𝑥*



Logistic Regression p(y|x)
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P(y x)= eβ0+β1x1+β2x2+...+βpxp

1+eβ0+β1x1+β2x2+...+βpxp
= 1
1+e−(β0+βT X )

		
ln P( y |x)

1−P( y x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= β0 +β1x1 +β2x2 + ...+βpxp



ln
( )
( )

P y x
P y x

x
1-
é

ë
ê

ù

û
ú = +a b

The logit function View (e.g. when with 1D x) 
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Logit of P(y|x)

{
P y x e

e

x

x( ) =
+

+

+

a b

a b1

Logit function 



Binary Logistic Regression 
(Two Views)
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ln[p/(1-p)]

P (Y=1|x)

x

x P(y=1|x) 1-p(y=1x)



View I: logit of p(y=1|x) is linear funcVon of x  
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0.0

0.2

0.4

0.6

0.8

1.0
e.g. 
Probability of
disease

x

βxα

βxα

e1
e)xP(y +

+

+
=

P (Y=1|X)



View II: "S" shape function compress output to [0,1] 
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0.0

0.2

0.4

0.6

0.8

1.0
e.g. 
Probability of
disease

x

βxα

βxα

e1
e)xP(y +

+

+
=

P (Y=1|X)



10/23/19 Dr. Yanjun Qi / UVA CS 22

View III: Logistic Regression models 
a linear classification boundary! 



Logistic Regression models 
a linear classification boundary! 
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!!y∈{0,1}

		
ln P( y |x)

1−P( y x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= β0 +β1x1 +β2x2 + ...+βpxp

		
ln P( y =1|x)

P( y =0|x)
⎡

⎣
⎢

⎤

⎦
⎥ = ln

P( y =1|x)
1−P( y =1|x)
⎡

⎣
⎢

⎤

⎦
⎥ =α +β1x1 +β2x2 + ...+βpxp

Decision Boundary è equals to zero
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!!y∈{0,1}

(2) p(y|x)

!!
ln P( y |x)

1−P( y x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=α +β1x1 +β2x2 + ...+βpxp

0.5

0.5

LogisVc Regression models 
a linear classificaVon boundary! 
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Logistic Regression—when?

Logistic regression models are appropriate when the 
target variable is coded as 0/1.

We only observe “0” and “1” for the target variable—
but we think of the target variable conceptually as a 
probability that “1” will occur.

This means we use Bernoulli distribution to model the target 
variable with its Bernoulli parameter p=p(y=1|x) predefined.

The main interest è predicting the probability that an event 
occurs (i.e., the probability that p(y=1|x) ).



Logistic Regression Assumptions

• Linearity in the logit – the regression equation should have a 
linear relationship with the logit form of the target variable

• There is no assumption about the feature variables / target 
predictors being linearly related to each other.
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P(y=1|x) 1-p(y=1x)



Today

q Bayes Classifier
q Logistic Regression 
qTraining LG by MLE
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Logistic Regression

Binary Classification

Log-odds = linear 
function of X’s 

MLE

Iterative (Newton) method 

Logistic 
weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

  
P( y = 1 x) = eβ0+β

T x

1+ eβ0+β
T x10/23/19 Dr. Yanjun Qi / UVA CS 28



A general Statement

Consider a sample set T=(Z1...Zn) which is drawn from a probability 
distribution P(Z|\theta) where \theta are parameters. 

If the Zs are independent with probability density function P(Zi|\theta),
the joint probability of the whole set is

this may be maximised with respect to \theta 
to give the maximum likelihood estimates.

10/23/19 Dr. Yanjun Qi / UVA CS

Review: Maximum Likelihood EsVmaVon

𝑃(𝑍&. . . 𝑍.|𝜃) =2
34&

.

𝑃(𝑍3|𝜃)
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It is often convenient to work with the Log of the likelihood function.

log(L(θ )) =
i=1

n

∑log(P( iX |θ ))

The idea is to 

ü assume a particular model with unknown parameters, 
üwe can then define the probability of observing a given event 

conditional on a particular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. In most cases it is both  consistent 
and efficient. It provides a standard to compare other estimation 
techniques.

P( iX |θ )

θ

θ̂ = argmax
θ

P( 1X ... nX |θ )
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It is onen convenient to work with the Log of the likelihood funcoon.

log(L(θ )) =
i=1

n

∑log(P( iX |θ ))

The idea is to 

ü assume a particular model with unknown parameters, 
üwe can then define the probability of observing a given event 

conditional on a particular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. In most cases it is both  consistent 
and efficient. It provides a standard to compare other estimation 
techniques.

θ

θ̂ = argmax
θ

P( 1X ... nX |θ )
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)𝑃(𝑍3|𝜃
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It is often convenient to work with the Log of the likelihood function.

log(L(θ )) =
i=1

n

∑log(P( iX |θ ))

The idea is to 

ü assume a parocular model with unknown parameters, 
üwe can then define the probability of observing a given event 

condioonal on a parocular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. In most cases it is both  consistent 
and efficient. It provides a standard to compare other esomaoon 
techniques.

θ

θ̂ = argmax
θ

P( 1X ... nX |θ )
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)𝑃(𝑍3|𝜃
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It is often convenient to work with the Log of the likelihood function.

log(L(θ )) =
i=1

n

∑log(P( iX |θ ))

The idea is to 

ü assume a particular model with unknown parameters, 
üwe can then define the probability of observing a given event 

conditional on a particular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. In most cases it is both  consistent 
and efficient. It provides a standard to compare other estimation 
techniques.

θ

θ̂ = argmax
θ

P( 1X ... nX |θ )
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)𝑃(𝑍3|𝜃
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It is often convenient to work with the Log of the likelihood function.

The idea is to 

ü assume a particular model with unknown parameters, 
üwe can then define the probability of observing a given event 

conditional on a particular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. In most cases it is both  consistent 
and efficient.

θ
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56𝜃 = argmax
<

𝑃(𝑍&. . . 𝑍.|𝜃

)𝑃(𝑍3|𝜃

𝑙𝑜𝑔(𝐿(𝜃)) =A
34&

.

𝑙𝑜𝑔(𝑃(𝑍3|𝜃)
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It is often convenient to work with the Log of the likelihood function.

The idea is to 

ü assume a particular model with unknown parameters, 
üwe can then define the probability of observing a given event 

conditional on a particular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. In most cases it is both  consistent 
and efficient.

θ
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56𝜃 = argmax
<

𝑃(𝑍&. . . 𝑍.|𝜃

)𝑃(𝑍3|𝜃

𝑙𝑜𝑔(𝐿(𝜃)) =A
34&

.

𝑙𝑜𝑔(𝑃(𝑍3|𝜃) Log-Likelihood

Likelihood
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Review: Defining Likelihood for basic Bernoulli
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Defining Likelihood

Observing binary samples  z_i

PMF:

function of p=Pr(head)

LIKELIHOOD:

𝐿(𝑝) =2
34&

.
𝑝CD 1 − 𝑝 &GCD

Pr(𝑧3|𝑝) = 𝑝CD 1 − 𝑝 &GCD
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LIKELIHOOD:

𝐿(𝑝) =2
34&

.
𝑝CD 1 − 𝑝 &GCD

function of p=Pr(head)

log(𝐿(𝑝) = log 2
34&

.
𝑝CD 1 − 𝑝 &GCD

= ∑34&. (𝑧3log 𝑝 + 1 − 𝑧3 log(1 − 𝑝))
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!!
l(β)= {logPr(Y = yi |X = xi )}

i=1

N

∑

When training set includes (xi, yi), i=1,…,N



MLE for Logistic Regression Training

		

l(β)= {logPr(Y = yi |X = xi )}
i=1

N

∑

= { yi log(Pr(Y =1|X = xi ))+(1− yi )log(Pr(Y =0|X = xi ))
i=1

N

∑ }

= ( yi log
exp(βT xi )

1+exp(βT xi )
)+(1− yi )log

1
1+exp(βT xi )

)
i=1

N

∑

= ( yiβT xi − log(1+exp(βT xi )))
i=1

N

∑
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Training set: (xi, yi), i=1,…,N
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Summary: MLE for Logistic Regression Training

!!

l(β)= {logPr(Y = yi |X = xi )}
i=1

N

∑

= yi log(Pr(Y =1|X = xi ))+(1− yi )log(Pr(Y =0|X = xi ))
i=1

N

∑

= ( yi log
exp(βT xi )

1+exp(βT xi )
)+(1− yi )log

1
1+exp(βT xi )

)
i=1

N

∑

= ( yiβT xi − log(1+exp(βT xi )))
i=1

N

∑

Let’s fit the logisoc regression model for K=2, i.e., number of classes is 2

Training set: (xi, yi), i=1,…,N

(conditional ) 
Log-likelihood:

We want to maximize the log-likelihood in order to estimate \beta

xi are (p+1)-dimensional input vector with leading entry 1
\beta is a (p+1)-dimensional vector

p(y | x)y (1− p)1−y
For Bernoulli distribution 

How?



Logistic Regression

Binary Classification

Log-odds = linear 
function of X’s 

MLE

Iterative (Newton) method 

Logistic 
weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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P( y = 1 x) = eβ0+β

T x

1+ eβ0+β
T x



MLE for Logistic Regression Training

		

l(β)= {logPr(Y = yi |X = xi )}
i=1

N

∑

= { yi log(Pr(Y =1|X = xi ))+(1− yi )log(Pr(Y =0|X = xi ))
i=1

N

∑ }

= ( yi log
exp(βT xi )

1+exp(βT xi )
)+(1− yi )log

1
1+exp(βT xi )

)
i=1

N

∑

= ( yiβT xi − log(1+exp(βT xi )))
i=1

N

∑
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Training set: (xi, yi), i=1,…,N

See Extra Slides How to used Newton-Raphson opomizaoon  



Logistic Regression

Binary Classification

Log-odds = linear 
function of X’s 

MLE

SGD method 

Logistic 
weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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P( y = 1 x) = eβ0+β

T x

1+ eβ0+β
T x



ReWrite Logistic Regression as two stages: 
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𝑧 = 𝛽$ + 𝛽&𝑥& + 𝛽(𝑥(+. . . +𝛽*𝑥*

L𝑦=P(y=1|x) = eNOPNQRQPNSRSP...PNTRT
1UeNOPNQRQPNSRSP...PNTRT =

eV
1UeV

First: 
Summing

Second: 
Sigmoid 
Squashing



One “Neuron”: Block View of Logistic Regression

46

x1

x2

x3

Σ

+1

z

z = wT . x + b

y = sigmoid(z)
= ez

1 + ez

p = 3

w1

w2

w3

b1
Summing
Function

Sigmoid
Function

Multiply by 
weights

ŷ = P(Y=1|x,w)

Input x



e.g., “Block View” of Logistic Regression 

Dot Product SigmoidInput

output
x *

W z

W is a vector z is a vector

parameterized 
block, W needs 
to be learned

No Parameters 
to Learn

E (ŷ,y)ŷ loss

47



• For LR: linear regression, We have the 
following gradient descent rule: 

• è For neural network, we have the delta rule 

Review: Stochastic GD è
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Δw = −η ∂E
∂Wt

tj

t
j

t
j J )(q

q
aqq
¶
¶

-=+1

!!
Wt+1 =Wt −η ∂E

∂Wt =W
t +Δw



Logistic Regression

Binary Classification

Log-odds = linear 
function of X’s 

MLE

Iterative (Newton) 
method / SGD  

Logistic 
weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

  
P( y = 1 x) = eβ0+β

T x

1+ eβ0+β
T x10/23/19 Dr. Yanjun Qi / UVA CS 49



Three major sections for classification

• We can divide the large variety of classification approaches into 
roughly three major types 

1. Discriminative
directly estimate a decision rule/boundary
e.g., support vector machine, decision tree, logistic regression,
e.g. neural networks (NN), deep NN 

2. Generative:
build a generative statistical model
e.g., Bayesian networks, Naïve Bayes classifier

3. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors
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