UVA CS 6316: Machine Learning

Lecture 17: Generative Bayes Classifiers

Dr. Yanjun Qi
University of Virginia
Department of Computer Science

Course Content Plan Six major sections of this course

Y is a continuous -Regression (supervised) Classification (supervised) Y is a discrete Unsupervised models NO Y ☐ Learning theory About f() ☐ Graphical models About interactions among X1,... Xp Learn program to Interact with its ☐ Reinforcement Learning

11/6/19 Dr. Yanjun Qi / UVA CS 2

environment

Three major sections for classification

 We can divide the large variety of classification approaches into roughly three major types

1. Discriminative

directly estimate a decision rule/boundary

e.g., support vector machine, decision tree, logistic regression,

e.g. neural networks (NN), deep NN

2. Generative:

build a generative statistical model e.g., Bayesian networks, Naïve Bayes classifier

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

Today: Generative Bayes Classifiers

- ✓ Bayes Classifier (BC)
 - Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC → LDA, QDA

Review: Bayes classifiers (BC)

- Treat each feature attribute and the class label as random variables.
- Testing: Given a sample **x** with attributes $(x_1, x_2, ..., x_p)$:
 - Goal is to predict its class c.
 - Specifically, we want to find the class that maximizes $p(c \mid x_1, x_2, ..., x_p)$.
- Training: can we estimate $p(C_i | \mathbf{x}) = p(C_i | x_1, x_2, ..., x_p)$ directly from data?

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_p)$$
MAP Rule

Two kinds of Bayes classifiers via MAP classification rule

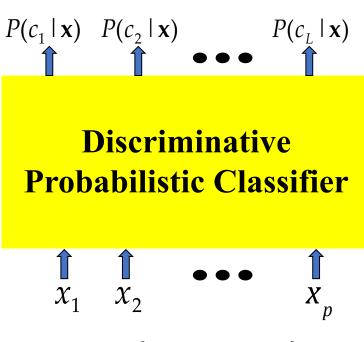
- Establishing a probabilistic model for classification
 - (1) Discriminative
 - (2) Generative

Review: Discriminative BC

Softmax $p(\vec{y}_i|\vec{x}) = \frac{e^{3i}}{5e^{3i}}$

(1) Discriminative model

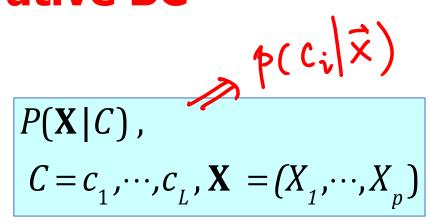
$$\underset{c \in \mathcal{C}}{\operatorname{arg\,max}} P(c \mid \mathbf{X}), \quad C = \{c_1, \dots, c_L\}$$

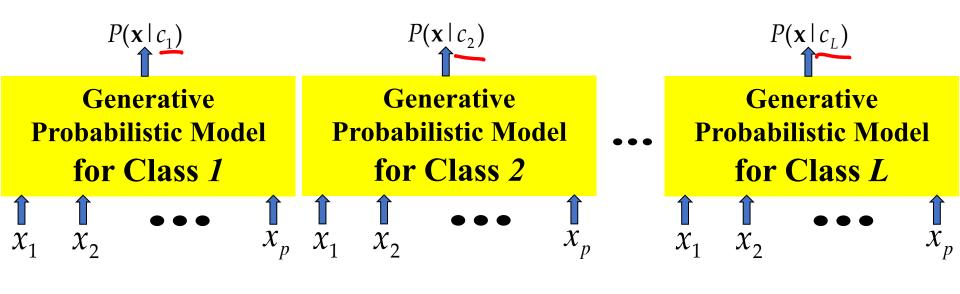


logistic rogression

$$\mathbf{x} = (x_1, x_2, \dots, x_p)$$

(2) Generative BC





$$\mathbf{X} = (x_1, x_2, \dots, x_p)$$

Review Probability: If hard to directly estimate from data, most likely we can estimate

- 1. Joint probability
 - Use Chain Rule
- 2. Marginal probability
 - Use the total law of probability
- 3. Conditional probability
 - Use the Bayes Rule

$$p(ci|\vec{x}) = p(\vec{x}|ci) p(ci)$$

$$p(ci|\vec{x}) = p(\vec{x}|ci) p(ci)$$

$$p(ci|\vec{x}) = p(ci|\vec{x})$$

$$c^* = \alpha r g m \alpha x p(ci|\vec{x})$$

$$c^* = \alpha r g m \alpha x p(ci|\vec{x})$$

$$c^* = \alpha r g m \alpha x p(ci|\vec{x})$$

$$c^* = \alpha r g m \alpha x p(ci|\vec{x})$$

$$c^* = \alpha r g m \alpha x p(ci|\vec{x})$$

Review: Bayes' Rule

for Generative Bayes Classifiers

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

 $P(C_1|x), P(C_2|x), ..., P(C_L|x)$

 $P(C_1), P(C_2), ..., P(C_L)$

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i)P(C_i)}{P(\mathbf{X})}$$

Review: Bayes' Rule

for Generative Bayes Classifiers

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

Prior

$$P(C_1|x), P(C_2|x), ..., P(C_L|x)$$

 $P(C_1), P(C_2), ..., P(C_L)$

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i)P(C_i)}{P(\mathbf{X})}$$

Summary of Generative BC:

Apply Bayes rule to get posterior probabilities

$$P(C = c_i \mid \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} \mid C = c_i)P(C = c_i)}{P(\mathbf{X} = \mathbf{x})}$$

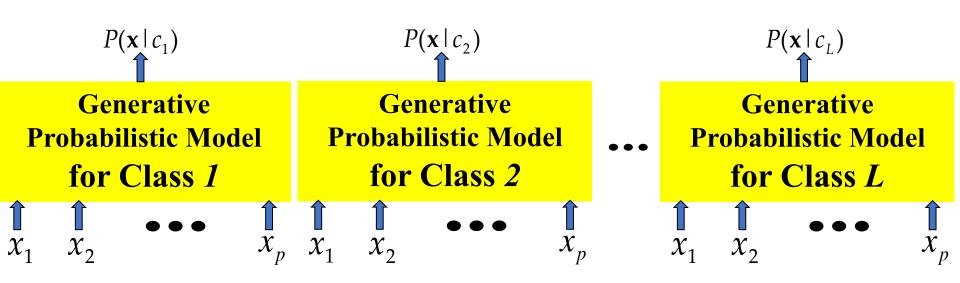
$$\propto P(\mathbf{X} = \mathbf{x} \mid C = c_i)P(C = c_i)$$
for $i = 1, 2, \dots, L$

Then apply the MAP rule
$$(\vec{x} \mid C_i)$$
 $(\vec{x} \mid C_i)$ $(\vec{x} \mid C_i)$ $(\vec{x} \mid C_i)$

Establishing a probabilistic model for classification through generative probabilistic models

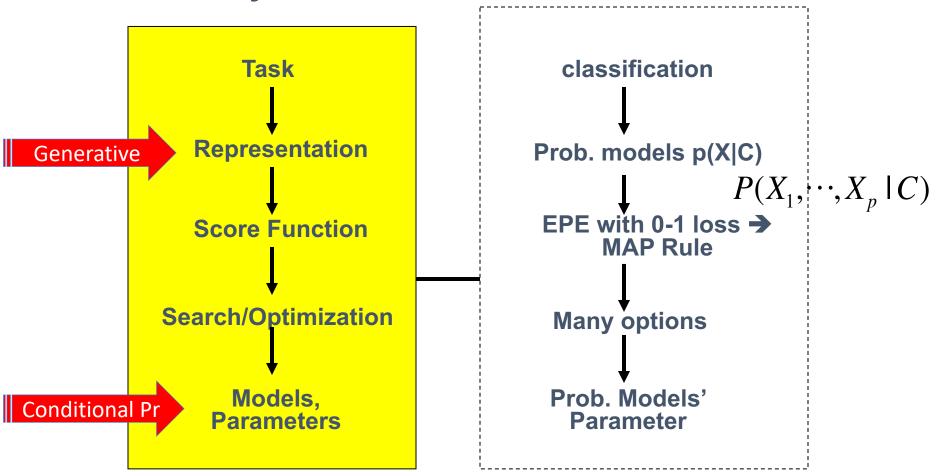
$$\operatorname{argmax} P(C_i | X) = \operatorname{argmax} P(X, C_i) = \operatorname{argmax} P(X | C_i) P(C_i)$$

$$C_i = C_i$$

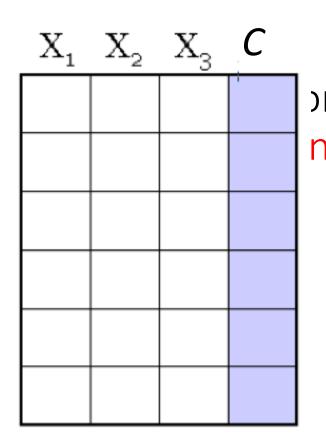


$$\mathbf{X} = (x_1, x_2, \dots, x_p)$$

Generative Bayes Classifier



$$\underset{k}{\operatorname{argmax}} P(C_{k} \mid X) = \underset{k}{\operatorname{argmax}} P(X, C) = \underset{k}{\operatorname{argmax}} P(X \mid C) P(C)$$



$$f:[X] \longrightarrow [C]$$

Output as Discrete
Class Label
C₁, C₂, ..., C₁

Discriminative

$$\underset{c \in \mathcal{C}}{\operatorname{arg\,max}} P(c \mid \mathbf{X}) \quad C = \{c_1, \dots, c_L\}$$

Generative

$$\underset{c \in \mathcal{C}}{\operatorname{argmax}} P(c \mid X) = \underset{c \in \mathcal{C}}{\operatorname{argmax}} P(X,c) = \underset{c \in \mathcal{C}}{\operatorname{argmax}} P(X \mid c) P(c)$$

this lecture!

An Example

Example: Play Tennis

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

X_{1}	X_2	X_3	С
			,

Learning Phase:

Example: Play Tennis

Z₁

Z₁

PlayTenni

 χ_3 χ_4 ng examples

	X_{1}	X_2	X_3	С
				!
٦				
ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ				

∠ Z:
Stot,
Mild,
(001 }
(wigh)
Z3={High}
K3=2

				0 1	
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

C: 2 ([=2)	Tes, Nof
\mathbb{Z}_{1} :	Sunny
(K (= 3)	ovec,

Learning: maximum likelihood estimates

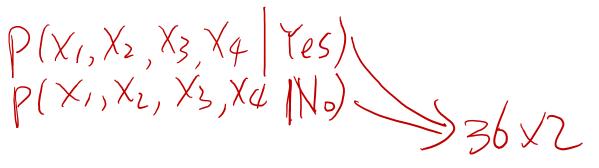
- simply use the frequencies in the data

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Directly estimate from data

p (overcast, hot, high, weat) No



PlayTennis: training examples

		<i>,</i>	0	1	
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny 🗸	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	_No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny 🗸	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

P(C= YeS) = 9/14

 X_1 X_2 X_3

Generative Bayes Classifier: Erglish Distincty 21,... 21

P~30k 22/xL

$$P(C_1), P(C_2), ..., P(C_L)$$
 $P(Play=Yes) = 9/14$

$$P(X_1, X_2, ..., X_p|C_1), P(X_1, X_2, ..., X_p|C_2)$$

Outlook	Temperature	Humidity	Wind	Play=Yes	Play=No
(3 values)	(3 values)	(2 values)	(2 values)		
sunny	hot	high	weak	0/9	1/5
sunny	hot	high	strong	/9	/5
sunny	hot	normal	weak	/9	/5
sunny	hot	normal	strong	/9	/5
••••	••••	••••	••••	• • • •	• • • •
••••	••••	••••	••••	••••	
••••	••••		••••	••••	
••••	••••	••••	••••	••••	• • • •

3*3*2*2 [conjunctions of attributes] * 2 [two classes]=72 parameters

Generative Bayes Classifier:

Testing Phase

- – Given an unknown instance $\mathbf{X}_{ts}' = (a_1', \cdots, a_p')$
 - Look up tables to assign the label c* to X_{ts} if

Last Page

$$\hat{P}(a'_1, \dots a'_p | c^*) \hat{P}(c^*) > \hat{P}(a'_1, \dots a'_p | c) \hat{P}(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

$$\begin{cases} p(x'|Yes) p(C=Yes) \\ p(x'|No) p(C=No) \end{cases} \Rightarrow argmax \Rightarrow predicted C*$$

$$P(C=Yes \mid X_1, X_2, X_3, X_4)$$

$$P(C=No \mid X_1, X_2, X_3, X_4)$$

Today Recap: Generative Bayes Classifiers

- ✓ Bayes Classifier
 - Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC → LDA, QDA

Bayes classification

$$\underset{c_{j} \in C}{\operatorname{argmax}} P(x_{1}, x_{2}, \dots, x_{p} | c_{j}) P(c_{j})$$

Difficulty: learning the joint probability

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$= P(x_1|C_j) P(x_2|C_j) \cdot P(x_p|S_j)$ Naïve Bayes Classifier

Bayes classification

$$\underset{c_{j} \in \mathcal{C}}{\operatorname{argmax}} P(x_{1}, x_{2}, \dots, x_{p} | c_{j}) P(c_{j})$$

Difficulty: learning the joint probability

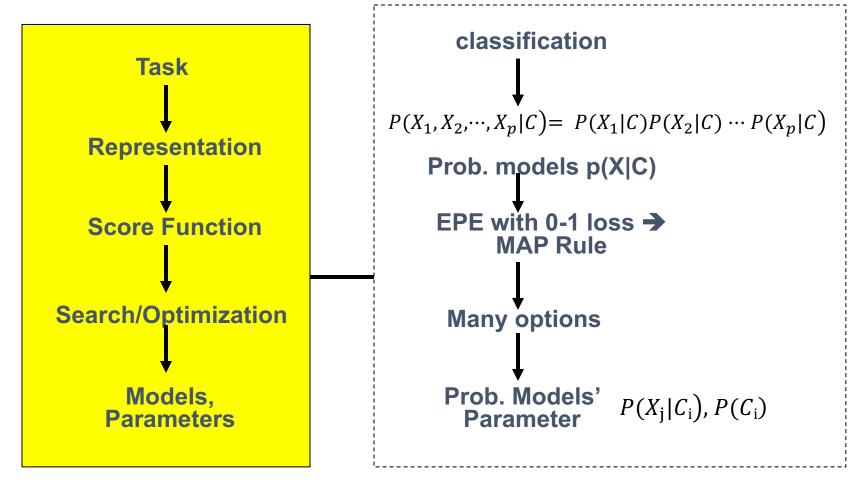
- **Naïve** Bayes classification
 - Assumption that all input attributes are conditionally independent! given C variable

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_{1}, X_{2}, \dots, X_{p} | C) = P(X_{1} | C)P(X_{2} | C) \dots P(X_{p} | C)$$

$$P(C_{5} | X_{1}, \dots X_{p}) \propto P(X_{1}, X_{2}, \dots X_{p} | C_{5})P(C_{5})$$

$$= P(X_{1} | C_{5})P(X_{2} | C_{5}) \dots P(X_{p} | C_{5})P(C_{5})$$



Estimate $P(X_i = x_{ik} | C = c_i)$ with examples in training;

$P(X_2|C_1), P(X_2|C_2)$

Outlook	Play=Yes	Play=No
Sunny		
Overcast		
Rain		

Temperature	Play=Yes	Play=No
Hot		
Mild		
Cool		

Humidity	Play=Yes	Play=N
		0
High		
Normal		

$P(X_4|C_1), P(X_4|C_2)$

Wind	Play=Yes	Play=No
Strong		
Weak		

$$P(\text{Play}=Yes) = ??$$

$$P(\text{Play}=No) = ??$$

 $P(C_1), P(C_2), ..., P(C_L)$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$$

- MAP classification rule: for a sample $\mathbf{x} = (x_1, x_2, \dots, x_p)$

$$[P(x_1 | c^*) \cdots P(x_p | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_p | c)]P(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$$

MAP classification rule: for a sample $\mathbf{x} = (x_1, x_2, \dots, x_n)$

$$[P(x_{1} \mid c^{*}) \cdots P(x_{p} \mid c^{*})]P(c^{*}) > [P(x_{1} \mid c) \cdots P(x_{p} \mid c)]P(c),$$

$$c \neq c^{*}, c = c_{1}, \cdots, c_{L}$$

$$(C) P(x_{1} \mid c) P(x_{p} \mid c) P(x_{p} \mid c)$$

$$(C) P(x_{1} \mid c) P(x_{p} \mid c) P(x_{p} \mid c)$$

$$(C) P(x_{1} \mid c) P(x_{1} \mid c) P(x_{1} \mid c)$$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$$

- MAP classification rule: for a sample $\mathbf{x} = (x_1, x_2, \dots, x_n)$

$$[P(x_{1} | c^{*}) \cdots P(x_{p} | c^{*})]P(c^{*}) > [P(x_{1} | c) \cdots P(x_{p} | c)]P(c),$$

$$c \neq c^{*}, c = c_{1}, \cdots, c_{L}$$

$$(C_{1} | c^{*}) = c_{1}, \cdots, c_{L}$$

$$($$

Naïve Bayes Classifier (for discrete input attributes) – training/ Learning phase

Learning Phase: Given a training set S,

For each target value of c_i ($c_i = c_1, \dots, c_L$)

 $\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};$

Naïve Bayes Classifier (for discrete input attributes) – training/ Learning phase

Learning Phase: Given a training set S,

```
For each target value of c_i (c_i = c_1, \dots, c_L)
\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};
For every attribute value x_{jk} of each attribute X_j (j = 1, \dots, p; \ k = 1, \dots, K_j)
\hat{P}(X_j = x_{jk} \mid C = c_i) \leftarrow \text{estimate } P(X_j = x_{jk} \mid C = c_i) \text{ with examples in } \mathbf{S};
```

Output: conditional probability tables; for $X_j: K_j \times L$ elements

Naïve Bayes Classifier (for discrete input attributes) - training

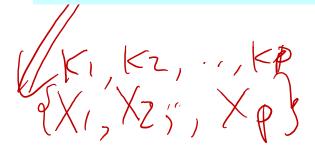
Learning Phase: Given a training set S,

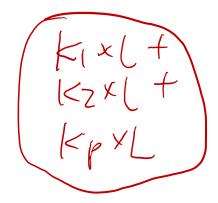
For each target value of c_i ($c_i = c_1, \dots, c_L$)

 $\hat{P}(C=c_i) \leftarrow \text{estimate } P(C=c_i) \text{ with examples in } \mathbf{S};$

For every attribute value X_{jk} of each attribute X_{j} $(j = 1, \dots, p; k = 1, \dots, K_{j})$

 $\hat{P}(X_i = x_{jk} | C = c_i) \leftarrow \text{estimate } P(X_i = x_{jk} | C = c_i) \text{ with examples in } \mathbf{S};$





Naïve Bayes (for discrete input attributes) - testing

- Test Phase: Given an unknown instance Look up tables to assign the label c^* to X' if $X' = (a'_1, \dots, a'_n)$

$$[\hat{P}(a'_1 | c^*) \cdots \hat{P}(a'_p | c^*)] \hat{P}(c^*) > [\underline{\hat{P}(a'_1 | c) \cdots \hat{P}(a'_p | c)}] \hat{P}(c),$$

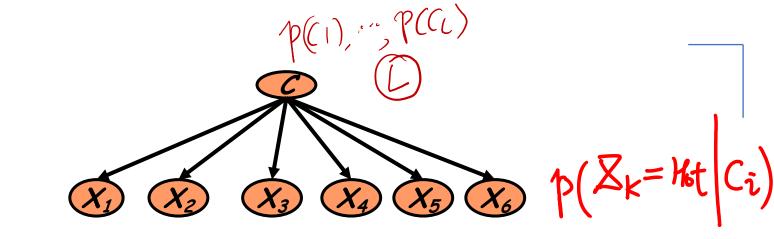
$$c \neq c^*, c = c_1, \dots, c_L$$

$$= P(x|C_i)P(C_i)$$

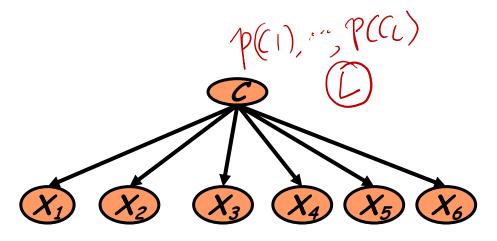
$$= P(a_1|C_i)P(a_2|C_i).P(a_p|C_i)P(c_i)$$

$$= i=1,2,...L$$

Learning (training) the NBC Model



Learning (training) the NBC Model



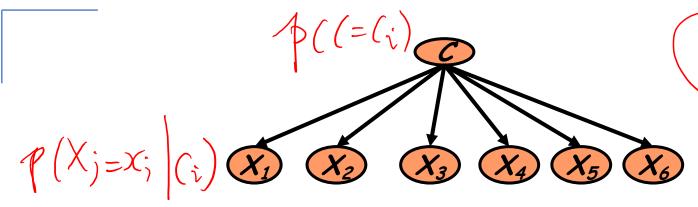
- maximum likelihood estimates:
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C=c_j)}{N}$$

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C=c_j)}{N(C=c_j)}$$

39

Learning (training) the NBC Model



- maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C=c_j)}{N}$$

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C=c_j)}{N(C=c_j)}$$

Bayes Nets

11/6/19 Dr. Yanjun Qi / UVA CS

40

PlayTennis: training examples

							_
Ι	Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
	D1	Sunny	Hot	High	Weak	No	
	D2	Sunny	Hot	High	Strong	No	1 (XI= Rain C= Yes)
	D3	Overcast	Hot	High	Weak	Yes ←	+ (/// /// /// /// /// /// /// //// //
	D4	(Rain	Mild	High	Weak	Yes (7
	D5	(Rain	Cool	Normal	Weak	Yes 🧲	= -
	D6	Rain	Cool	Normal	Strong	No	9
	D7	Overcast	Cool	Normal	Strong	Yes ←	
	D8	Sunny	Mild	High	Weak	No	
	D9	Sunny	Cool	Normal	Weak	Yes \in	+
	010	Rain	Mild	Normal	Weak	Yes ∈	<u> </u>
	D11	Sunny	Mild	Normal	Strong	Yes E	_
	012	Overcast	Mild	High	Strong	Yes E	
	013	Overcast	Hot	Normal	Weak	Yes ∈	+
L	014	Rain	Mild	High	Strong	No	

$$p(x_1 = Rain \mid C = No)$$

$$= \frac{2}{5}$$

Estimate $P(X_i = x_{ik} | C = c_i)$ with examples in training;

 $P(X_2|C_1), P(X_2|C_2)$

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=N o
High	3/9	4/5
Normal	6/9	1/5

$P(X_4|C_1), P(X_4|C_2)$

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

3+3+2+2 [naïve assumption] * 2 [two classes]= 20 parameters

$$P(\text{Play}=Yes) = 9/14$$
 $P(\text{Play}=No) = 5/14$

$$P(\text{Play}=No) = 5/14$$

 $P(C_1), P(C_2), ..., P(C_L)$

Estimate $P(X_i = x_{ik} | C = c_i)$ with examples in training;

Learning Phase

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

 Humidity
 Play=Yes
 Play=N

 0
 High
 3/9
 4/5

 Normal
 6/9
 1/5

$P(X_4|C_1), P(X_4|C_2)$

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

3+3+2+2 [naïve assumption] * 2 [two classes] = 20 parameters

$$P(\text{Play=Yes}) = 9/14$$

$$P(\text{Play}=No) = 5/14$$

$$P(C_1), P(C_2), ..., P(C_L)$$

P((i)

$$[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$$

- Test Phase
 - Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Using the NBC Model

$$[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$$

- Test Phase
 - Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Testing the NBC Model

 $[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$

- Test Phase
 - Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Look up in conditional-prob tables

$[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$

Test Phase

Given a new instance,

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Look up in conditional-prob tables

MAP rule

 $P(Yes \mid \mathbf{x}'): [P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = 0.0053$ $P(No \mid \mathbf{x}'): [P(Sunny \mid No) P(Cool \mid No)P(High \mid No)P(Strong \mid No)]P(Play=No) = 0.0206$

Given the fact $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$, we label \mathbf{x}' to be "No".

47

WHY? Naïve Bayes Assumption

- Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, ..., x_p | c_j)$
 - $O(|X_1|, |X_2|, |X_3|, ..., |X_p|, |C|)$ parameters
 - Could only be estimated if a very, very large number of training examples was available.

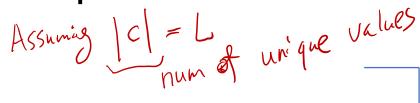
Not

Naïve

- $P(x_k/c_i)$
 - O($[|X_1| + |X_2| + |X_3| + |X_p|] . |C|$) parameters
 - Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(x_i | c_i)$.

WHY? Naïve Bayes Assumption

• $P(c_i)$



• Can be estimated from the frequency of classes in the Assuming $|X_i|=2$, i=1,2,...,P $\Rightarrow 2^p \times 1$. training examples.

• $P(x_1, x_2, ..., x_p | c_i)$

Could only be estimated if a very, very large number of

training examples was available.

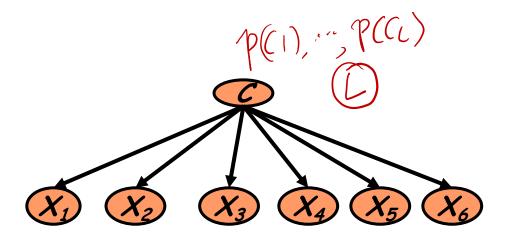
Not

Naïve

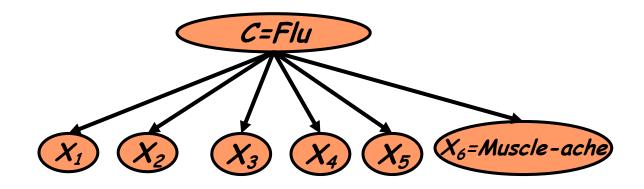
• $P(x_k/c_i)$

 $P(x_k/c_j)$ • O([$/X_1/+ |X_2/+ |X_3/....+ |X_p/]$./C/) parameters
• Assume that the probability of observing of attributes is $O(x_1/2)$ Assume that the probability of observing the conjunction probabilities $P(x_i | c_i)$.

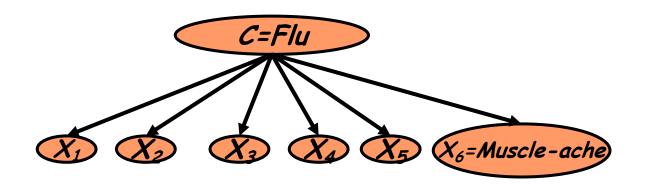
Challenges during Learning (training) the NBC Model



For instance:



For instance:



 What if we have seen no training cases where patient had no flu and muscle aches?

$$\widehat{P}(X_6 = T | C = not_flu) = \frac{N(X_6 = T, C = nf)}{N(C = nf)} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

??= arg max_c
$$\hat{P}(c)\prod_{i}\hat{P}(x_{i}|c)$$

Th= f((=nf)p(x1/nf)p(x2/nf)p(x3/nf)p(x4/nf)p(x5/nf)p(x6/nf)

if any term gives O,

$$\Rightarrow \delta_n f = 0$$

no matter other terms value

11/6/19 Dr. Yanjun Qi / UVA CS

52

Smoothing to Avoid Overfitting

Why necessary ??

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k_i}$$

$$\text{To make sum_i (P(xi \mid Cj) = 1)}$$
of values of feature X_i

$$|X'_{i}| = k_{i}$$

Smoothing to Avoid Overfitting

$$\hat{P}(x_i | c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k_i}$$
of values of X_i

Somewhat more subtle version

overall fraction in data where $X_{i}=x_{i,k}$

"smoothing"

$$\hat{P}(x_{i,k} \mid c_j) = \frac{N(X_i = x_{i,k}, C = c_j) + mp_{i,k}}{N(C = c_j) + m}$$
extent of

Summary: Generative Bayes Classifier

Task: Classify a new instance X based on a tuple of attribute values $X = \langle X_1, X_2, ..., X_p \rangle$ into one of the classes

$$c_{MAP} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j} \mid x_{1}, x_{2}, ..., x_{p})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, ..., x_{p} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, ..., x_{p})}$$

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_p \mid c_j) P(c_j)$$

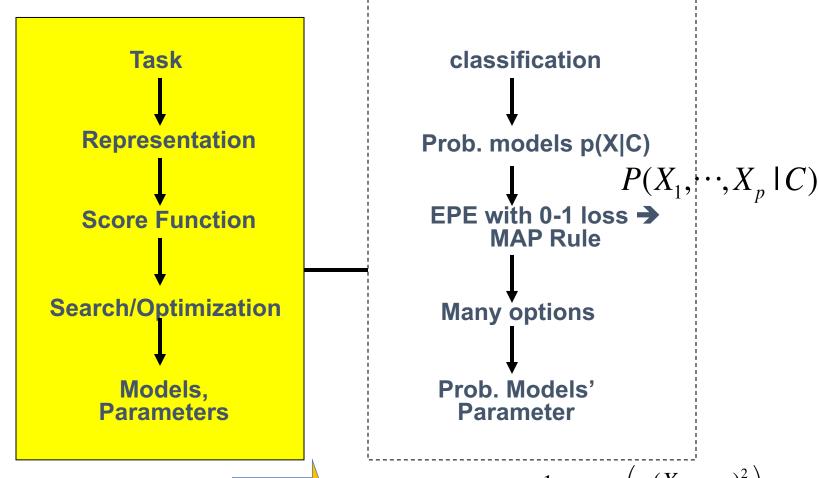
MAP = Maximum A Posteriori

NEXT: More Generative Bayes Classifiers

- ✓ Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC → LDA, QDA
- ✓ Discriminative vs. Generative

$$\underset{k}{\operatorname{argmax}} P(C_{k} \mid X) = \underset{k}{\operatorname{argmax}} P(X, C) = \underset{k}{\operatorname{argmax}} P(X \mid C) P(C)$$

Generative Bayes Classifier



 $p(W_i = true \mid c_k) = p_{i,k}$

Gaussian

$$\hat{P}(X_{j} \mid C = c_{k}) = \frac{1}{\sqrt{2\pi}\sigma_{jk}} \exp\left(-\frac{(X_{j} - \mu_{jk})^{2}}{2\sigma_{jk}^{2}}\right)$$

 $P(W_1 = n_1, ..., W_v = n_v \mid c_k) = \frac{N!}{n_{1k}! n_{2k}! ... n_{vk}!} \theta_{1k}^{n_{1k}} \theta_{2k}^{n_{2k}} ... \theta_{vk}^{n_{vk}}$

References

- Prof. Andrew Moore's review tutorial
- ☐ Prof. Ke Chen NB slides
- ☐ Prof. Carlos Guestrin recitation slides