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Course Content Plan =»
Six major sections of this course

B-Regression{supervised) Y1s a continuous \

1 Classification (supervised) Yis a discrete

. Unsupervised models NO Y

d Learning theory About 1

D Graphical mOdels About interactions among X1,... Xp
D Reinfo rcement Lea rning Learn program to Interact with its

environment
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Three major sections for classification

* We can divide the Iar%e variety of classification
approaches into roughly three major types

1. Discriminative
directly estimate a decision rule/boundary

e. g—suppert—veeter—maehme decision tree, logisticregression;

E> 2. Generative:

build a generative statistical model

e.g., Bayesian-networks, - Naive Bayesclassifier

3—tnstance based classifiers
- Use observation directly (no models)
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Decision Tree / Random Forest

Task

v
Representation

v
Score Function

v
Search/Optimization

\4

Models,
Parameters

____________________________________________________

Classification

Partition }eature space
into set of rectangles,
local smoothness

Greedy to find partitions

1

Split with Purity measure / 5
. e.g. IG / cross-entropy / Gini/

}

Tree Model (s), i.e.
space partition

____________________________________________________
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Today

» Decision Tree (DT):

» Tree representation
» Brief information theory
» Learning decision trees
» Bagging
» Random forests: Ensemble of DT
» More about ensemble
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A study comparing Classifiers

An Empirical Comparison of Supervised Learning Algorithms

Rich Caruana
Alexandru Niculescu-Mizil

CARUANAQCS.CORNELL.EDU
ALEXNQ@QCS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

A number of supervised learning methods
have been introduced in the last decade. Un-
fortunately, the last comprehensive empiri-
cal evaluation of supervised learning was the
Statlog Project in the early 90’s. We present
a large-scale empirical comparison between
ten supervised learning methods: SVMs,
neural nets, logistic regression, naive bayes,
memory-based learning, random forests, de-
cision trees, bagged trees, boosted trees, and
boosted stumps. We also examine the effect
that calibrating the models via Platt Scaling
and Isotonic Regression has on their perfor-
mance. An important aspect of our study is

IR RPN S S PV SR TGN SNSRI Ry B

This paper presents results of a large-scale empirical
comparison of ten supervised learning algorithms us-
ing eight performance criteria. We evaluate the perfor-
mance of SVMs, neural nets, logistic regression, naive
bayes, memory-based learning, random forests, deci-
sion trees, bagged trees, boosted trees, and boosted
stumps on eleven binary classification problems using
a variety of performance metrics: accuracy, F-score,
Lift, ROC Area, average precision, precision/recall
break-even point, squared error, and cross-entropy.
For each algorithm we examine common variations,
and thoroughly explore the space of parameters. For
example, we compare ten decision tree styles, neural
nets of many sizes, SVMs with many kernels, etc.

Because some of the performance metrics we examine
————le a1l ] o]

tddviccal e a A Nl

Proceedings of the 23rd International

11/25/19

Conference on Machine Learning (ICML "06).
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A study comparing Classifiers

=» 11 binary classification problems / 8 metrics

Top 8 Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)
Models
\\\ CAL ACC FSC LFT ROC APR BEP RMS MXE MEAN OPT-SEL

BST-DT PLT | .843% 779 .939 .963 .938 .929* | .880 .896 .896 917
RF PLT | .872% .805 .934* | 957 931 .930 .851 858 892 .898
BAG-DT - 846 781 938* | .962*  .937* 918 .845 872 .88T* .899
BST-DT 180 .826*  .860*  .929* | .952 921 .925%* 854 815 885 917*
RF - 872 .790 .934* | 957 931 .930 .829 .830 .884 .890
BAG-DT PLT | .841 774 .938% | .962*  .937* 918 .836 .852 882 .895
RF 180 .861*%  .861 .923 .946 910 925 836 776 .880 .895
BAG-DT I1SO 826 .843*  .933* | .954 921 915 832 791 877 .894
SVM PLT 824 .(oU .8Y0 U3 B8Y8 913 831 830 802 3380
ANN - .803 762 910 .936 .892 .899 811 821 .854 .885
SVM I1SO 813 .836%* .892 925 882 911 814 744 852 882
ANN PLT 815 .748 910 .936 .892 .899 783 785 846 875
ANN I1SO .803 836 908 .924 876 .891 77 718 842 .884
BST-DT - .834%* 816 .939 963 938 .929%* 598 .605 828 851
KNN PLT 757 707 .889 918 872 872 742 764 815 837
KNN - 756 728 .889 918 872 872 729 718 .810 .830
KNN I1SO 755 758 882 .907 .854 .869 738 .706 .809 .844
BST-STMP | PLT 724 651 876 908 .853 845 716 754 791 .808
SVM - 817 .804 .895 .938 .899 913 514 A67 781 .810
BST-STMP | ISO .709 744 873 .899 835 .840 .695 .646 780 .810
BST-STMP - 741 .684 876 .908 .853 .845 .394 382 710 726
DT I1SO .648 .654 818 .838 756 778 690 .589 .709 774

11/25/19 7



Primary ML software tool used by top-5 teams on Kaggle
in each competition (n=120)

Keras

[

[ LightGBM

I XGBoost
L I N -

PyTorch

TensorFlow
(non-Keras)

Sci-kit Learn

Fastai

Caffe

From: Francois Chollet 2019



https://twitter.com/fchollet

Readability Hierarchy

Readable
N

Decision Trees: Classifies based on a series of
onhe-variable decisions.

Linear Classifier: Weight vector w tells us how
important each variable is for classification and
in which direction it points.

Quadratic Classifier: Linear weights work as in
linear classifier, with additional information
coming from all products of variables.

k Nearest Neighbors: Classifies using the
complete training set, no information about the
nature of the class difference
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Example p\0

Example: Play Tennis
PlayTennis: training examples

NBC

Day || Outlook  Temperature = Humidity =~ Wind | PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes ]
D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes —

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes <~

D13 Overcast Hot Normal Weak Yes = ]
D14 Rain Mild High Strong No

10
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Anatomy of a decision tree

overcast

‘4r‘\',0—>

Yes

11/25/19

Dag

false

true

o

/ Each node is a test on
one feature/attribute

rain Possible attribute values
of the node

Yes

Leaves are the
decisions

11
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Anatomy of a decision tree

(D' + .5 ’)/ Each node is a test on

one attribute

Your data suﬁy - . |
gets smaller overcast raln Possible attribute values
\' ‘ of the node
high normal

‘ k ‘ Leaves are the
Yes Yes | decisions

0 LY 15
11/25/19 Q% g L 0 ) :7&\»\& v~ 12
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Anatomy of a decision tree

/ Each node is a test on
one attribute

Your data sunny

‘/ > T ‘ m

raln Possible attribute values
of the node

overcast

‘ %

high normal true false

k ‘ Leaves are the
Yes Yes | decisions

0*\ LY S5
11/25/19 Q%’ L } \J\\& b 13




Apply Model to Test Data: ™"
To ‘play tennis’ or not.

A new test example:
(Outlook==rain) and
\ (Windy==false)
rain Pass |t.o.n tffe tree
-> Decision is yes.

‘ /
/
sunny

‘ overcast

|
/’\ e

high normal

\
i Yes

11/25/19

14
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Apply Model to Test Data:
To ‘play tennis’ or not.

(Outlook ==overcast) -> yes
‘ (Outlook==rain) and (Windy==false) ->yes
/ (Outlook==surjny)’and (Humidity=normal) ->yes

/\

hree cases of
IIYES”

sunny
‘ overcast

true false

Yes

11/25/19 15



Decision trees (on Discrete)

* Decision trees represent a disjunction of
conjunctions of constraints on the attribute
values of instances.

°* | (Outlook ==overcast)

| OR

* | ((Outlook==rain) and (Windy==false))

| OR

* | ((Outlook==sunny) and (Humidity=normal))
* | => yes play tennis




Decision trees

R»>

(on Continuous) .
From ESL book Ch9 : X Rj

to R4

Ry

Classification and

Regression Trees t ta
(CART) X1

e Partition feature
space into set of i
rectangles

® Fit simple model

in each partition R R Ry |‘“‘
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Decision Tree / Random Forest

Task

v
Representation

\ 4
Score Function

v
Search/Optimization

v

Models,
Parameters

____________________________________________________

Classification

Partition }eature space 5
into set of rectangles,

local smolothness g
Greedy to find partitions

1

Split with Purity measure / 5
. e.g. IG / cross-entropy / Gini/

}

Tree Model (s), i.e. 5
space partition |

18
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Today

» Decision Tree (DT):

» Tree representation
» Brief information theory
» Learning decision trees
» Bagging
» Random forests: Ensemble of DT
» More about ensemble

Dr. Yanjun Qi / UVA CS
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Challenge in Tree Representation

/. Y=((A and B) or ((not A) and C)) —‘
Y. NI N

false true false true

11/25/19 20
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Challenge in Tree Representation

Y=((A and B) or ((not A) and C))
/I 1

false @ false @

11/25/19 21
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Same concept / different representation

/. Y=((A and B) or ((not A) and C)) _‘
/I\ /A L
1 \

false true false rue

false .\ false true
y 0

/e true | |false »
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Which attribute to select for splitting?

KEY: the distribution of
each class (not attribute)

(o ﬂo% L
Mk € JelgenS

At wnpure V\Dd"é

This is bad splitting...

11/25/19 23



How do we choose which

attribute to split ?
Which attribute should be used first to test? @

(g +’ I.'- high normal
Intuitively, you would prefer the yes yes (6"‘: |“)
one that separates the training rt clesS 1 e yos
. no yes
examples as much as possible” A;g@:\a,ﬁw o yes
@ no yes

temperature
false true P

yes cool
yes yes
il,z: yes zzz yes yes yes
o yes e yes yes yes yes yes
no yes o yes no yes yes e
yes o yes no no yes yes
no no no no no

Q,: \ K&O{\ Cf\ ("W C? i\ h
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Information gain is one criteria to
decide on which attribute for splitting

* |Imagine: _‘

— 1. Someone is about to tell you your own name

— 2. You are about to observe the outcome of a dice roll

— 2. You are about to observe the outcome of a coin flip

— 3. You are about to observe the outcome of a biased coin flip

e Each situation has a different amount of uncertainty
as to what outcome you will observe.

11/25/19 25



“.rw\¢

4
y
. 3r y=log, (x)
Information 2 SR
1..
0 6 8 1;(%
* Information: o I
=» Reduction in uncertainty (amount of :;

surprise in the outcome)

I(X)=log, L =—log, p(x)
p(x)

If the probability of this event happening is small and it happens,
the information is large.

> Observing the outcome of a coin flip —— [ =-log,1/2=1
is head

» Observe the outcome of a dice is 6

—> [=-log,1/6=2.58

11/25/19



Entropy

The expected amount of information when observing the
output of a random variable X

H(X)=E(U(X))= Zp(xi)[(xi) = _Zp(xi)logz p(xi)

If the X can have 8 outcomes and all are equally likely

H(X) ::—21/810g21/8:3



Entropy

* If there are k possible
outcomes

H(X)<log, k

* Equality holds when all
outcomes are equally likely

* The more the probability
distribution that deviates
from uniformity, the lower
the entropy

HE&)

Dr. Yanjun Qi / UVA CS

0.8f

0.6

entropy

0.4f

0.2t

0

0

0.2 0.4 0.6 0.8

H(X)=E((X))= Zp(x M (x;) = —ZP(X )log, p(x) e.g. for a random

11/25/19

binary variable
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Entropy

* If there are k possible
outcomes

* Equality holds when all
outcomes are equally likely

* The more the probability
distribution that deviates
from uniformity, the lower
the entropy v

)9\/\(’, 0 0.2 04 06 08 1
p1

e.g. for a random
11/25/19 binary variable

entropy
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Entropy Lower =» better purity

* Entropy measures the purity _‘

/F: 8/8 :’ ;/K\fej
('T:D = /(7“0

The distribution isﬂess uniformj
Entropy is lower
The node isE)urer)

11/25/19 30



Information gain

o IG(X,Y)=H(Y)-H(Y|X)

Dr. Yanjun Qi / UVA CS

Reduction in uncertainty of Y by knowing a feature

variable X

Information gain:

= (information before split) — (information after split)

= entropy(parent) — [average entropy(children)]

A

Fixed S the lower, the
better (children
nodes are purer)

11/25/19

For IG, the
higher, the
better

31
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Information gain

« IG(X,Y)=H(Y)-H(Y|X) %W‘X 1_&’(“? Y\:}

Reduction in uncertainty of Y by knowmg a feature
variable X

?\mlﬁ pge %/C\ (X

Information gain:

= (information before split) — (information after split)
= entropy(parent) — [average entropy(children)]

m M\XV\ For IG, the

Fixed S the Iower, the higher. the
better (children
better
nodes are purer)

11/25/19 32



Conditional entropy

HO) == p(3)log, p(3) -

H(Y| X =x)==2 p(3|x)log, p(y,|x))

H(Y|X)= 3, p(x )H(Y| X =x))
L \

:_Zp(xj)zp(yi |x;)log, p(y; |x;)
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Example

Attributes Labels

P Which one do we choose
T & +

T 2

-7 [F ] 2 X1 or X2?
F T& 5
F F + 1

11/25/19 34



T T +

2 O R
oy £
5 76’]' F D

HOY | ®i=T) = — g\wﬂ\x.:ﬂ foy DO+ 267

é + ’(?(Y=—IX1=T),&3 Pl1=- )XP‘T%

—~0

11/25/19



H(Y|Ri=T) = '> @(H%’F(ﬂﬂ%—)ﬁg(?{-))}
= —(| &l +000) =0

- Lo?e)
(T pth+ FO
H (Yl R=F)= @8_ o :ﬂ%_t_ +T@3—€2/
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Example

Attributes Labels

_ Which one do we choose

T T + 2

LI b 2 X1 or X27?

F T 5

F F + 1
IG(X1,Y) = H(Y) - H(Y|X1)
HY)  =-(5/10) log(5/10) -5/10log(5/10) = 1

H(Y|X1) = P(XI=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)
= 4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6)
=0.39

Information gain (X1,Y)= 1-0.39=0.61

11/25/19

37
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Which one do we choose?

WlB o a

+

—

iNM®

2
2
5
1

m | m | —

Information gain (X1,Y)=0.61 = H( Y) — \(l X ,3 — {mi U@/ /rj MVQ/f

. . ) . —_— G‘ A‘gw
Information gain (X2,Y)=0.12 < (v ]_ H ( U
on gain (X2 Hiy) @ o 448

Pick the variable which provides
the most information gain about Y > Pick X1

=» Then recursively choose next Xi on branches

11/25/19 ‘ 38
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Which one do we choose?

Splt by X _‘
P [xe |v [coun |

One branch

1

|||

=

= ™ | -
o+

= 0NN

m |4 |™ | -
+

2
2
5
1

The other branch

N
+

m | m | —

+

Information gain (X1,Y)=0.61 = H () — \(‘x ,3 —> Smd U@/ /rj MVQ/f

. . ) . —_— G‘ A‘gw
Information gain (X2,Y)=0.12 < (v ]_ H ( U
on gain (X2 Hiy) @ o 448

Pick the variable which provides
the most information gain about Y :> Pick X1

=» Then recursively choose next Xi on branches

11/25/19 ‘ 39



Intuitively, you would prefer the
one that separates the training
examples as much as possible.

=>» Then recursively choose next Xi on each of

the branches,
=>» To compare, e.g.,

IG( humidity, y| Outlook ==sunny)

IG( windy, y|Outlook ==sunny)
IG( windy, y| Outlook ==rainy)

overcast

yes

yes y:z

no yes

no Y
yes

rainy

yes

yes
yes

@ v

false

|

true

yes
yes
yes
no
no

()

high normal

yes yes
yes yes
yes yes
no yes
no yes
no yes
no no

temperature

yes
yes yes
yes yes
no yes
no no

yes
yes
yes
no

-
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Decision Trees H(x )s@k

 Caveats: The number of possible values influences the \
information gain.

 The more possible values, the higher the gain (the more likely it is to
form small, but pure partitions)

PP A
e Other Purity (diversity) measures m

— Information Gain T/';- ->P
— Gini (population impurity) fo:l Pk (1 — Prnk)

* where p,, is proportion of class k at node m

— Chi-square Test

11/25/19 : 41
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Overfitting

* You can perfectly fit DT to any training data _‘

* |nstability of Trees

o High variance (small changes in training set will
result in changes of tree model)

o Hierarchical structure =2 Error in top split
propagates down

 Two approaches:

— 1. Stop growing the tree when further splitting the data does not
yield an improvement

— 2. Grow a full tree, then prune the tree, by eliminating nodes.

11/25/19 42



Summary: Decision trees

Non-linear classifier / regression _‘
Easy to use

Easy to interpret

Susceptible to overfitting but can be avoided.
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Decision Tree / Random Forest

Classification
Task }
v Partition feature space
Representation into set of rectangles,
local smoothness
\/ : i |
Score Function . Greedy to find partitions <

v . 1

Search/Optimization Spllt with Purity measure / q g.
' 1G / cross-entropy / Gini /
v : 1
Models, i
Parameters . Tree Model (s), i

space partitlori

11/25/19 44



Today

» Decision Tree (DT):

» Tree representation
» Brief information theory
» Learning decision trees
» Bagging
» Random forests: Ensemble of DT
» More about ensemble



Bagging

* Bagging or bootstrap aggregation

* atechnique for reducing the variance of an
estimated prediction function.

* Forinstance, for classification, a committee
of trees

e Each tree casts a vote for the predicted class.
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Bootstrap

The basic idea:

randomly draw datasets with replacement (i.e. allows duplicates)

from the training data, each samples the same size as the original
training set

11/25/19 47
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Bootstrap

The basic idea:

randomly draw datasets with replacement (i.e. allows duplicates)

from the training data, each samples the same size as the original
training set

------ Bootstrap
---- replications

NSRS ‘ Var[S(Z)] = !

B
(S(Z*") = 5%)°,
S(Z S(Z*2) =7 S(Z B‘IZ

b=1

N ------2 Bootstrap
—------""771- samples

11/25/19 48
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With vs Without Replacement

sampling size the same as the original size for
every repeated sampling. The sampled data

E * Bootstrap with replacement can keep the
groups are independent on each other.

* Bootstrap without replacement cannot keep the
sampling size the same as the original size for
every repeated sampling. The sampled data
groups are dependent on each other.

11/25/19 49



Bagging

Create bootstrap samples
‘ from the training data

|

M features

2
-

N examples
=2

11/25/19
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-
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Bagging of DT Classifiers

M features
(Vs
Q
o
% Take the
) majority
pd vote

i.e. Refit the model to
each bootstrap
dataset, and then
examine the behavior
over the B
replications.

11/25/19 51
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Peculiarities of Bagging

 Model Instability is good when bagging —‘

— The more variable (unstable) the basic model is, the more
improvement can potentially be obtained

— Low-Variability methods (e.g. SVM, LDA) improve less than High-
Variability methods (e.g. decision trees)

Can understand the bagging effect
in terms of a consensus of
independent weak leaners and
wisdom of crowds

11/25/19 52



Bagging : an example with simulated data

N = 30 training samples,
two classes and p =5 features,
Each feature N(O, 1) distribution and pairwise correlation .95
Response Y generated according to:
Pr(Y = 1|z, <0.5) =02 Pr(Y = 1|z, > 0.5) = 0.8
Test sample size of 2000
Fit classification trees to training set and bootstrap samples
B =200

ESL book / Example 8.7.1



Notice the
bootstrap
trees are
different than
the original
tree

Original Tree
x.1<0.395

b=3
x2<0285

—
ESL book / Example 8.7.1

b=2
x2<0205

b=5
x4 <-136

0
0
1
10

1
10

b=8
x.3<0.985

o

1 0
0

T
_

Five features
highly correlated
with each other

=>» No clear
difference with
picking up which
feature to split

=» Small
changes in
the training
set will result
in different
tree

=>» But these
trees are
actually quite
similar for
classification



Consensus
0 Probability

0.50
]

=» For B>30, more trees

0 Original Tree .

S Tl do not improve the
| bagging results

s ] Bagged Trees

=>» Since the trees
correlate highly to

Test Error
0.35
1

o each other and give
S similar classifications
19}
N -t
(=]
T
(=]

| | | | |

0 50 100 150 200

Number of Bootstrap Samples

Consensus: Majority vote
Probability: Average distribution at terminal nodes

ESL book / Example 8.7.1



Bagging

* Slightly increases model space

— Cannot help where greater enlargement of
space is needed

* Bagged trees are correlated

— Use random forest to reduce correlation
between trees
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Bagged Decision Tree

Task

v
Representation

\ 4
Score Function

v
Search/Optimization

v

Models,
Parameters

Classification
| Regression

multiple (almost) full
decision trees /
bootstra[1$amples

measure / e.g. IG /
cross-entropy / Gini /

Greedy like Decision

Tree (e.g. GINI) <

Multiple Tree Model
(s), i.e. space

o partition__________________. i

Split with Purity <

57
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Some Extra Slides
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Tree-building algorithms

ID3: Iterative Dichotomiser 3. Developed in the 80s by \
Ross Quinlan.

e Uses the top-down induction approach described
previously.

* Works with the Information Gain (IG) metric.

* At each step, algorithm chooses feature to split on and
calculates IG for each possible split along that feature.

* Greedy algorithm.

From Dr. Camilo Fosco



Tree-building algorithms

C4.5: Successor of ID3, also developed by Quinlan (‘93). Main \
improvements over |13D:

* Works with both continuous and discrete features, while ID3 only
works with discrete values.

* Handles missing values by using fractional cases (penalizes splits that
have multiple missing values during training, fractionally assigns the
datapoint to all possible outcomes).

 Reduces overfitting by pruning, a bottom-up tree reduction
technique.

* Accepts weighting of input data.
 Works with multiclass response variables.

From Dr. Camilo Fosco



Tree-building algorithms

CART: Most popular tree-builder. Introduced by Breiman \
et al. in 1984. Usually used with Gini purity metric.

 Main characteristic: builds binary trees.

* Can work with discrete, continuous and categorical
values.

* Handles missing values by using surrogate splits.
* Uses cost-complexity pruning.
e Sklearn uses CART for its trees.

From Dr. Camilo Fosco



Many more algorithmes...

Unbiased Splits
Split Type
Branches/Split
Interaction Tests
Pruning
User-specified Costs
User-specified Priors
Variable Ranking
Node Models
Bagging & Ensembles
Missing Values

w

o
—

!

NG S S S

wn

v
u,l u,l
>2 2
v v
i v
i v
v i
i
¢d ck,n
. i
is m

b, missing value branch; ¢, constant model; d, discriminant model; i, missing value imputation; k, kernel density model; /, linear splits;
m, missing value category; n, nearest neighbor model; u, univariate splits; s, surrogate splits; w, probability weights

From Dr. Camilo Fosco

N e
—

A NG S

—
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Regression trees

Can be considered a piecewise constant Xt |
regression model. < :

Prediction is made by averaging values at
given leaf node.

Two advantages: interpretability and
modeling of interactions.

The model’s decisions are easy to track,
analyze and to convey to other people.

Can model complex interactions in a
tractable way, as it subdivides the support
and calculates averages of responses in that
support.

From Dr. Camilo Fosco



Regression trees - Cons

Two major disadvantages: difficulty to capture simple \
relationships and instability.

Trees tend to have high variance. Small change in the
data can produce a very different series of splits.

Any change at an upper level of the tree is propagated
down the tree and affects all other splits.

Large number of splits necessary to accurately capture
simple models such as linear and additive relationships.

Lack of smoothness.

From Dr. Camilo Fosco



Surrogate splits

When an observation is missing a value for predictor X, it \
cannot get past a node that splits based on this predictor.

We need surrogate splits: Mimic of original split in a node, but

using another predictor. It is used in replacement of the original

split in case a datapoint has missing data.

To build them, we search for a feature-threshold pair that most
closely matches the original split.

“Association”: measure used to select surrogate splits. Depends
on the probabilities of sending cases to a particular node + how
the new split is separating observations of each class.
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Pruning

Reduces the size of decision trees by removing branches that \
have little predictive power. This helps reduce overfitting. Two

main types:

Reduced Error Prunning: Starting at leaves, replace each node
with its most common class. If accuracy reduction is inferior
than a given threshold, change is kept.

Cost Complexity Pruning: remove subtree that minimizes the
difference of the error of pruning that tree and leaving it as is,
normalized by the difference in leaves:

err(T,S) —err(Ty, S)
|leaves(T)| — |leaves(T,)|
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