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Ensemble LearningBoosting: 

• Learners are ordered: Each learner tries to reduce error (residual) 
on “hard” examples (those misclassified by earlier learners). 

• ADABOOST: weight hard samples more; 

• GRADIENT BOOST: use residual to train later models. Reduces bias 
and possibly variance compared to base learners. 

• Gradient-boosted decision trees (GBDT) often gives state-of-the-
art performance on simple classification tasks, e.g. XGBOOST. 

• Neural networks are used fairly often with bagging, but rarely 
with boosting. 

• Decision trees work well in both bagging and boosting. From Stanford CV class



Boosting
• Sequential algorithm where at each step, a weak learner is trained 

based on the results of the previous learner.
• Two main types:

• Adaptive Boosting: Reweight datapoints based on performance of last 
weak learner. Focuses on points where previous learner had trouble. 
Example: AdaBoost.

• Gradient Boosting: Train new learner on residuals of overall model. 
Constitutes gradient boosting because approximating the residual and 
adding to the previous result is essentially a form of gradient descent. 
Example: XGBoost.
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Gradient Boosting



XGBoost
• XGBoost is a very efficient Gradient Boosting Decision Tree implementation 

with some interesting features:
• Regularization: Can use L1 or L2 regularization.
• Handling sparse data: Incorporates a sparsity-aware split finding algorithm to handle different types of 

sparsity patterns in the data.

• Weighted quantile sketch: Uses distributed weighted quantile sketch algorithm to effectively handle 
weighted data.

• Block structure for parallel learning: Makes use of multiple cores on the CPU, possible because of a 
block structure in its system design. Block structure enables the data layout to be reused. 

• Cache awareness: Allocates internal buffers in each thread, where the gradient statistics can be stored.

• Out-of-core computing: Optimizes the available disk space and maximizes its usage when handling 
huge datasets that do not fit into memory.
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XGBoost (an example performance figure  ) 
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• Task is to estimate target continuous function F(x). We measure 
goodness of estimation with loss function 𝐿(𝑦, 𝐹 𝑥 ).

• Gradient boosting assumes that:
• 𝐹 𝑥 = 𝛼* + 𝛼,ℎ, 𝑥 +⋯+ 𝛼/ℎ/(𝑥)
• Basic Gradient boosting workflow:

1. Initialize 𝐹* 𝑥 = 𝛼*
2. Estimate 𝛼0 and ℎ0 1 such that:

3. Update 𝐹0 𝑥 = 𝐹02, 𝑥 + 𝛼0ℎ0(𝑥)
4. Repeat from 2, M times.
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Gradient Boosting

𝐿 𝑦, 𝐹02, 𝑥 + 𝛼0ℎ0(𝑥) < 𝐿(𝑦, 𝐹 02, 𝑥 )
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Gradient Boosting

𝐿 𝑦, 𝐹02, 𝑥 + 𝛼0ℎ0(𝑥) < 𝐿(𝑦, 𝐹 02, 𝑥 )

If we can find a vector 𝑟0 that we can plug in here 
to make this equation true, we can train a basic 
learner ℎ0(𝑥) to predict 𝑟0 from 𝑥!

We are basically searching for a vector that points to the direction that 
reduces our loss… does that sound familiar?

Gradient descent!
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• By solving a simple 1D optimization problem, we could also find the 
optimal 𝛼0 for each step, by computing:
• 𝛼0 = 𝑎𝑟𝑔𝑚𝑖𝑛:𝐿(𝑦, 𝐹02, 𝑥 + 𝛾ℎ0(𝑥))

• This gives us an updated Gradient Boosting algorithm:
1. Initialize 𝐹* 𝑥 = 𝛼*
2. Compute negative gradient per observation: 𝑟0< = −>? @<, ABCD 1<

>ABCD 1<
3. Train base learner ℎ0 𝑥 on predicting the gradients 𝑟0<
4. Compute 𝛼0 with line search strategy
5. Update 𝐹0 𝑥 = 𝐹02, 𝑥 + 𝛼0ℎ0(𝑥)
6. Repeat from 2, M times.
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Gradient Boosting
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• Where do the residuals come in?

• If we consider Mean Squared Error as our loss function, the per-
observation gradient is:

• >? @<,AB 1<
>AB(1<)

=
> D

EF ∑< @<2AB 1<
E

>AB 1<
=

> D
E @<2AB 1<

E

>AB 1<
= 𝑦H − 𝐹0 𝑥H

• The derivation we found before works with any loss function.
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Gradient Boosting
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Gradient Tree Boosting
• When dealing with decision trees, we can take the concept further 

by selecting a specific 𝛼0 for each of the tree’s regions. The output 
of a tree is:
• ℎ0 𝑥 = ∑IB 𝑏K01MNB(𝑥)
• The model update rule becomes:

• 𝐹0 𝑥 = 𝐹02, 𝑥 + ∑KO,
IB 𝛼K0𝟏MNB 1

• 𝛼K0 = 𝑎𝑟𝑔𝑚𝑖𝑛: ∑1<∈MNB 𝐿 𝑦H, 𝐹02, 𝑥H + 𝛾
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Rjm: Number 
of leaves

Jm: Disjoint regions 
partitioned by the tree
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• Three main forms of gradient boosting are supported:
• Gradient Boosting algorithm, as we defined above.
• Stochastic Gradient Boosting with sub-sampling at the row, column and 

column per split levels.
• Random procedure where we subsample observations and features

• Regularized Gradient Boosting with both L1 and L2 regularization.
• add a regularization term to the loss function that we are optimizing: 

𝐿M 𝑦, 𝐹 𝑥 = 𝐿 𝑦, 𝐹 𝑥 + Ω 𝐹
Where Ω 𝐹 = 𝛾𝑇 + ,

T 𝜆 𝑤 T
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XGBoost

T: Number of leaves

W: Leaf weights: prediction of each leaf
credit: Camilo Fosco



XGBoost

• Remember, we still want to find the tree structure that minimizes 
our loss, which means best score structure. Doing this for all 
possible tree structures is unfeasible.

• A greedy algorithm that starts from a single leaf and iteratively adds 
branches to the tree is used instead.
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XGBoost

• XGBoost adds multiple other important advancements that make it 
state of the art in several industrial applications.
• In practice:
- Can take a while to run if you don’t set the n_jobs parameter 

correctly
- Defining the eta parameter (analogous to learning rate) and 

max_depth is crucial to obtain good performance.
- Alpha parameter controls L1 regularization, can be increased on 

high dimensionality problems to increase run time.
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XGBoost

• General approach to parameter tuning:
• Cross-validate learning rate. 
• Determine the optimum number of trees for this learning rate. XGBoost can 

perform cross-validation at each boosting iteration for this, with the “cv” 
function.

• Tune tree-specific parameters (max_depth, min_child_weight, gamma, 
subsample, colsample_bytree) for chosen learning rate and number of trees.

• Tune regularization parameters (lambda, alpha).
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LGBM
• Stands for Light Gradient Boosted 

Machines. It is a library for training GBMs 
developed by Microsoft, and it competes 
with XGBoost.

• Extremely efficient implementation. 
• Usually much faster than XGBoost with low 

hit on accuracy.
• Main contributions are two novel 

techniques to speed up split analysis: 
Gradient based one-side sampling and 
Exclusive Feature Building.

• Leaf-wise tree growth vs level-wise tree 
growth of XGBoost.
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