
UVA CS 6316:
Machine Learning

Lecture 18c: More and Extra
about Boosting

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

Ensemble LearningBoosting:

• Learners are ordered: Each learner tries to reduce error (residual)
on “hard” examples (those misclassified by earlier learners).

• ADABOOST: weight hard samples more;

• GRADIENT BOOST: use residual to train later models. Reduces bias
and possibly variance compared to base learners.

• Gradient-boosted decision trees (GBDT) often gives state-of-the-
art performance on simple classification tasks, e.g. XGBOOST.

• Neural networks are used fairly often with bagging, but rarely
with boosting.

• Decision trees work well in both bagging and boosting. From Stanford CV class

Boosting
• Sequential algorithm where at each step, a weak learner is trained

based on the results of the previous learner.
• Two main types:

• Adaptive Boosting: Reweight datapoints based on performance of last
weak learner. Focuses on points where previous learner had trouble.
Example: AdaBoost.

• Gradient Boosting: Train new learner on residuals of overall model.
Constitutes gradient boosting because approximating the residual and
adding to the previous result is essentially a form of gradient descent.
Example: XGBoost.

3
credit: Camilo Fosco

Gradient Boosting

XGBoost
• XGBoost is a very efficient Gradient Boosting Decision Tree implementation

with some interesting features:
• Regularization: Can use L1 or L2 regularization.
• Handling sparse data: Incorporates a sparsity-aware split finding algorithm to handle different types of

sparsity patterns in the data.

• Weighted quantile sketch: Uses distributed weighted quantile sketch algorithm to effectively handle
weighted data.

• Block structure for parallel learning: Makes use of multiple cores on the CPU, possible because of a
block structure in its system design. Block structure enables the data layout to be reused.

• Cache awareness: Allocates internal buffers in each thread, where the gradient statistics can be stored.

• Out-of-core computing: Optimizes the available disk space and maximizes its usage when handling
huge datasets that do not fit into memory.

5
credit: Camilo Fosco

11/20/19 Dr. Qi / UVA CS 6

XGBoost (an example performance figure)

Test Set

Train Set

• Task is to estimate target continuous function F(x). We measure
goodness of estimation with loss function 𝐿(𝑦, 𝐹 𝑥).

• Gradient boosting assumes that:
• 𝐹 𝑥 = 𝛼* + 𝛼,ℎ, 𝑥 +⋯+ 𝛼/ℎ/(𝑥)
• Basic Gradient boosting workflow:

1. Initialize 𝐹* 𝑥 = 𝛼*
2. Estimate 𝛼0 and ℎ0 1 such that:

3. Update 𝐹0 𝑥 = 𝐹02, 𝑥 + 𝛼0ℎ0(𝑥)
4. Repeat from 2, M times.

7

Gradient Boosting

𝐿 𝑦, 𝐹02, 𝑥 + 𝛼0ℎ0(𝑥) < 𝐿(𝑦, 𝐹 02, 𝑥)

credit: Camilo Fosco

8

Gradient Boosting

𝐿 𝑦, 𝐹02, 𝑥 + 𝛼0ℎ0(𝑥) < 𝐿(𝑦, 𝐹 02, 𝑥)

If we can find a vector 𝑟0 that we can plug in here
to make this equation true, we can train a basic
learner ℎ0(𝑥) to predict 𝑟0 from 𝑥!

We are basically searching for a vector that points to the direction that
reduces our loss… does that sound familiar?

Gradient descent!

credit: Camilo Fosco

• By solving a simple 1D optimization problem, we could also find the
optimal 𝛼0 for each step, by computing:
• 𝛼0 = 𝑎𝑟𝑔𝑚𝑖𝑛:𝐿(𝑦, 𝐹02, 𝑥 + 𝛾ℎ0(𝑥))

• This gives us an updated Gradient Boosting algorithm:
1. Initialize 𝐹* 𝑥 = 𝛼*
2. Compute negative gradient per observation: 𝑟0< = −>? @<, ABCD 1<

>ABCD 1<
3. Train base learner ℎ0 𝑥 on predicting the gradients 𝑟0<
4. Compute 𝛼0 with line search strategy
5. Update 𝐹0 𝑥 = 𝐹02, 𝑥 + 𝛼0ℎ0(𝑥)
6. Repeat from 2, M times.

9

Gradient Boosting

credit: Camilo Fosco

• Where do the residuals come in?

• If we consider Mean Squared Error as our loss function, the per-
observation gradient is:

• >? @<,AB 1<
>AB(1<)

=
> D

EF ∑< @<2AB 1<
E

>AB 1<
=

> D
E @<2AB 1<

E

>AB 1<
= 𝑦H − 𝐹0 𝑥H

• The derivation we found before works with any loss function.

10

Gradient Boosting

credit: Camilo Fosco

Gradient Tree Boosting
• When dealing with decision trees, we can take the concept further

by selecting a specific 𝛼0 for each of the tree’s regions. The output
of a tree is:
• ℎ0 𝑥 = ∑IB 𝑏K01MNB(𝑥)
• The model update rule becomes:

• 𝐹0 𝑥 = 𝐹02, 𝑥 + ∑KO,
IB 𝛼K0𝟏MNB 1

• 𝛼K0 = 𝑎𝑟𝑔𝑚𝑖𝑛: ∑1<∈MNB 𝐿 𝑦H, 𝐹02, 𝑥H + 𝛾

11

Rjm: Number
of leaves

Jm: Disjoint regions
partitioned by the tree

credit: Camilo Fosco

• Three main forms of gradient boosting are supported:
• Gradient Boosting algorithm, as we defined above.
• Stochastic Gradient Boosting with sub-sampling at the row, column and

column per split levels.
• Random procedure where we subsample observations and features

• Regularized Gradient Boosting with both L1 and L2 regularization.
• add a regularization term to the loss function that we are optimizing:

𝐿M 𝑦, 𝐹 𝑥 = 𝐿 𝑦, 𝐹 𝑥 + Ω 𝐹
Where Ω 𝐹 = 𝛾𝑇 + ,

T 𝜆 𝑤 T

12

XGBoost

T: Number of leaves

W: Leaf weights: prediction of each leaf
credit: Camilo Fosco

XGBoost

• Remember, we still want to find the tree structure that minimizes
our loss, which means best score structure. Doing this for all
possible tree structures is unfeasible.

• A greedy algorithm that starts from a single leaf and iteratively adds
branches to the tree is used instead.

13
credit: Camilo Fosco

XGBoost

• XGBoost adds multiple other important advancements that make it
state of the art in several industrial applications.
• In practice:
- Can take a while to run if you don’t set the n_jobs parameter

correctly
- Defining the eta parameter (analogous to learning rate) and

max_depth is crucial to obtain good performance.
- Alpha parameter controls L1 regularization, can be increased on

high dimensionality problems to increase run time.

14
credit: Camilo Fosco

XGBoost

• General approach to parameter tuning:
• Cross-validate learning rate.
• Determine the optimum number of trees for this learning rate. XGBoost can

perform cross-validation at each boosting iteration for this, with the “cv”
function.

• Tune tree-specific parameters (max_depth, min_child_weight, gamma,
subsample, colsample_bytree) for chosen learning rate and number of trees.

• Tune regularization parameters (lambda, alpha).

15
credit: Camilo Fosco

LGBM
• Stands for Light Gradient Boosted

Machines. It is a library for training GBMs
developed by Microsoft, and it competes
with XGBoost.

• Extremely efficient implementation.
• Usually much faster than XGBoost with low

hit on accuracy.
• Main contributions are two novel

techniques to speed up split analysis:
Gradient based one-side sampling and
Exclusive Feature Building.

• Leaf-wise tree growth vs level-wise tree
growth of XGBoost.

16
credit: Camilo Fosco

