UVA CS 6316: Machine Learning

Lecture 19c: Unsupervised Clustering (III): Gaussian Mixture Model

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Course Content Plan Six major sections of this course

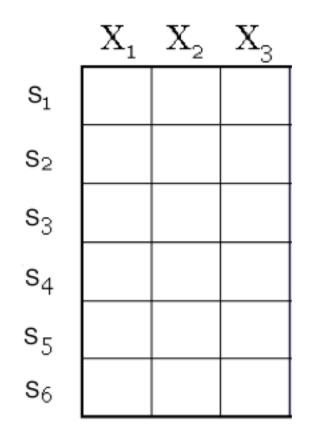
Regression (supervised) Y is a continuous Classification (supervised) - Feature Selection Y is a discrete Unsupervised models NO Y ☐ Dimension Reduction (PCA) Clustering (K-means, GMM/EM, Hierarchical) Learning theory About f() Graphical models About interactions among X1,... Xp

Learn program to Interact with its

environment

☐ Reinforcement Learning

11/6/19 Dr. Yanjun Qi / UVA CS



An unlabeled Dataset X

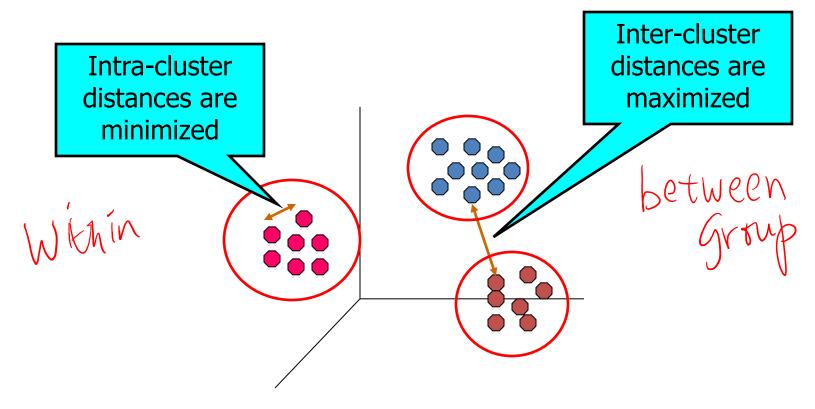
a data matrix of n observations on p variables $x_1, x_2, ... x_p$

Unsupervised learning = learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification label of examples is given

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns]

What is clustering?

 Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups

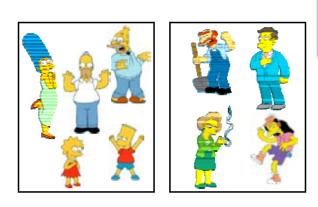


Roadmap: clustering

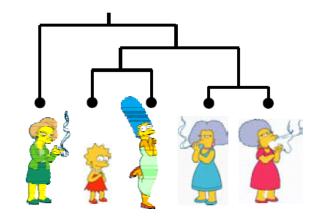
- Definition of "groupness"
- Definition of "similarity/distance"
- Representation for objects
- How many clusters?
- Clustering Algorithms
- Partitional algorithms
 - Hierarchical algorithms
 - Formal foundation and convergence

Clustering Algorithms

- Partitional algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - 5
- K means clustering
- Mixture-Model based clustering

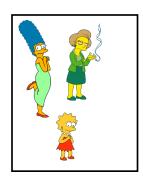


- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive



(2) Partitional Clustering

- Nonhierarchical
- Construct a partition of n objects into a set of K clusters
- User has to specify the desired number of clusters K.



Other partitioning Methods

• Partitioning around medoids (PAM): instead of averages, use multidim medians as centroids (cluster "prototypes"). Dudoit and Freedland (2002).

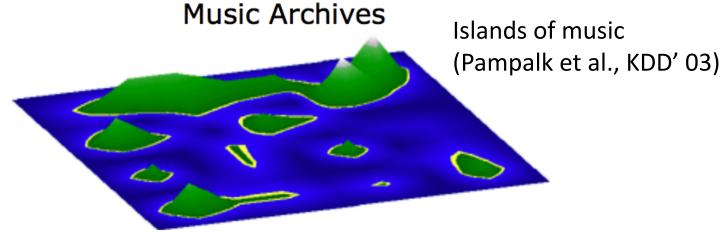
Other partitioning Methods

- Partitioning around medoids (PAM): instead of averages, use multidim medians as centroids (cluster "prototypes"). Dudoit and Freedland (2002).
- Self-organizing maps (SOM): add an underlying "topology" (neighboring structure on a lattice) that relates cluster centroids to one another. Kohonen (1997), Tamayo et al. (1999).

E.g.: SOM Used for Visualization

Islands of Music

Analysis, Organization, and Visualization of



piece of music: member of a *music collection* and inhabitant of *islands of music*. Groups of similar pieces of music (also known as *genres*) like to gather around large mountains or small hills depending on the size of the group. Groups which are similar to each other like to live close together. Individuals which are not members of specific groups usually live near the beach and some very individualistic pieces might be found swimming in deep water.

islands of music: serve as graphical user interface to a music collection and are intended to help the user explore vast amounts of music in an efficient way. Islands of music are generated automatically based on psychoacoustics models and self-organizing maps.

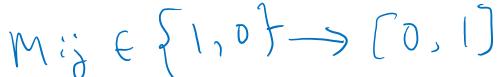
Other partitioning Methods

- Partitioning around medoids (PAM): instead of averages, use multidim medians as centroids (cluster "prototypes"). Dudoit and Freedland (2002).
- Self-organizing maps (SOM): add an underlying "topology" (neighboring structure on a lattice) that relates cluster centroids to one another. Kohonen (1997), Tamayo et al. (1999).
- Fuzzy k-means: allow for a "gradation" of points between clusters; soft partitions. Gash and Eisen (2002).

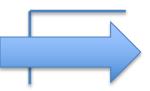
CaE train Set

Other partitioning Methods

- Partitioning around medoids (PAM): instead of averages, use multidim medians as centroids (cluster "prototypes"). Dudoit and Freedland (2002).
- Self-organizing maps (SOM): add an underlying "topology" (neighboring structure on a lattice) that relates cluster centroids to one another. Kohonen (1997), Tamayo et al. (1999).
- Fuzzy k-means: allow for a "gradation" of points between clusters; soft partitions. Gash and Eisen (2002).
 - Mixture-based clustering: implemented through an EM (Expectation-Maximization) algorithm. This provides soft partitioning, and allows for modeling of cluster centroids and shapes. (Yeung et al. (2001), McLachlan et al. (2002))



Partitional: Gaussian Mixture Model

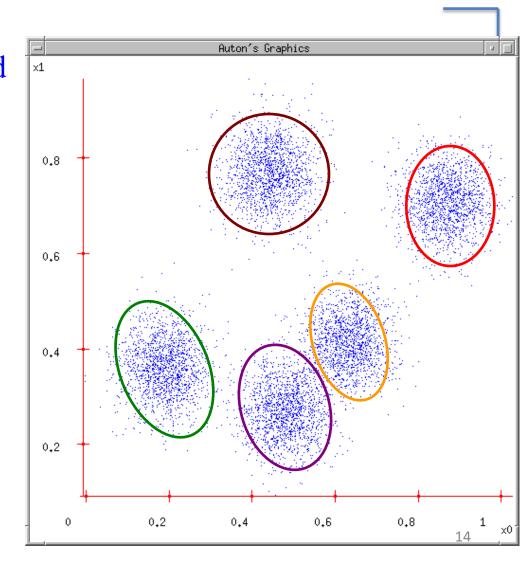


- 1. Review of Gaussian Distribution
- 2. GMM for clustering: basic algorithm
- 3. GMM connecting to K-means
- 4. Problems of GMM and K-means

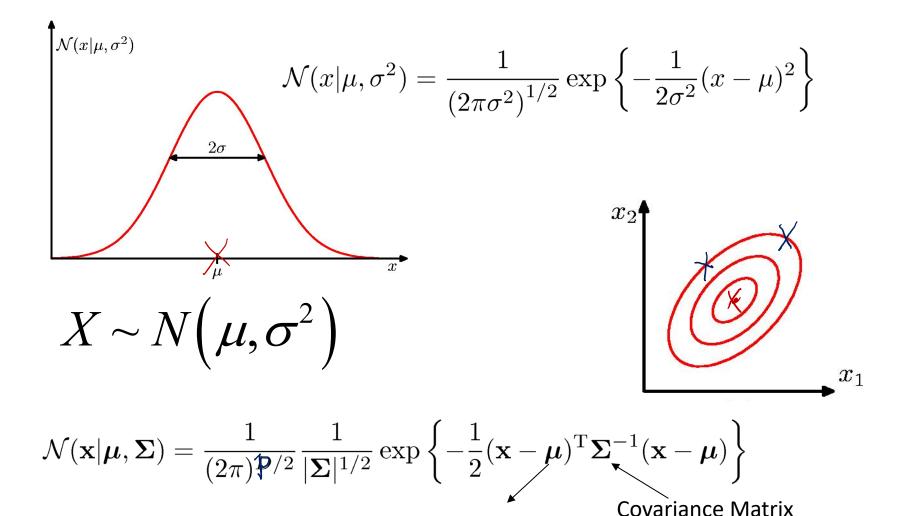
A Gaussian Mixture Model for Clustering

- Assume that data are generated from a mixture of Gaussian distributions
- For each Gaussian distribution
 - Center: $\mu_{\rm j}$
 - covariance: \sum_{i}
- For each data point
 - Determine membership

 z_{ii} : if x_i belongs to j-th cluster



Gaussian Distribution



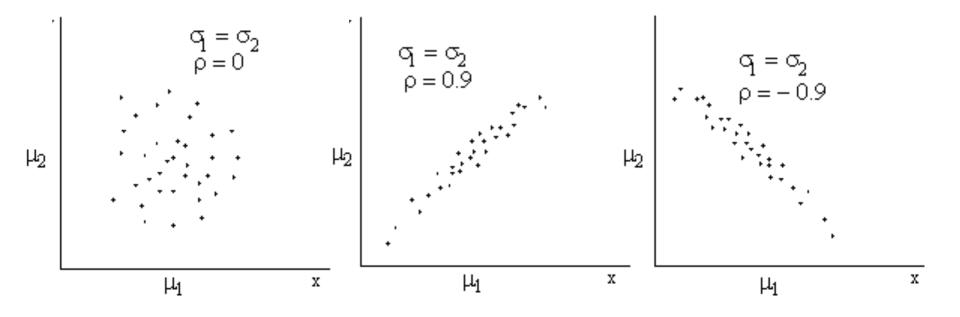
Mean

Example: the Bivariate Normal distribution Dr. Yanjun Qi / UVA CS

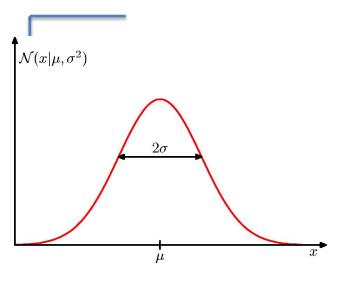
$$p(\vec{x}) = f(x_1, x_2) = \frac{1}{(2\pi)|\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})}$$

with
$$\vec{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
 and
$$\sum_{2 \times 2} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} = \sum_{1/25/1} |\Sigma| = \sigma_{11}\sigma_{22} - \sigma_{12}^2 = \sigma_1^2 \sigma_2^2 \left(1 - \rho^2\right)$$

Scatter Plots of data from the bivariate Normal distribution



How to Estimate Gaussian: MLE



• In the 1D Gaussian case, we simply set the mean and the variance to the sample mean and the sample variance:

$$\overline{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\overline{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{\mu})^{2}$$

The p-multivariate Normal distribution

$$\langle X_{1}, X_{2}, \dots, X_{p} \rangle \sim N(\overrightarrow{\mu}, \Sigma)$$

$$\overrightarrow{\mu} = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

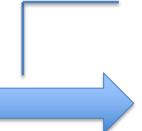
$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N & 1 \\ N & 2 \end{bmatrix}$$

$$N = \begin{bmatrix} N$$

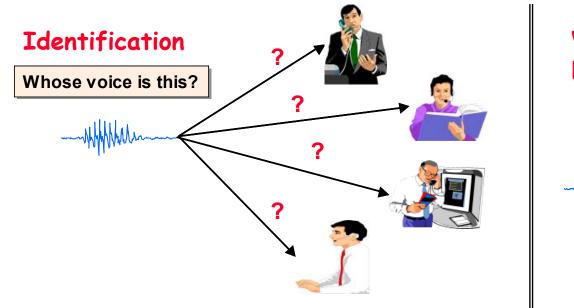
Partitional: Gaussian Mixture Model



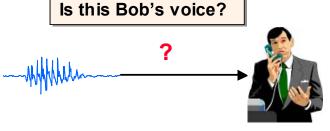
- 1. Review of Gaussian Distribution
- 2. GMM for clustering: basic algorithm
- 3. GMM connecting to K-means
- 4. Problems of GMM and K-means

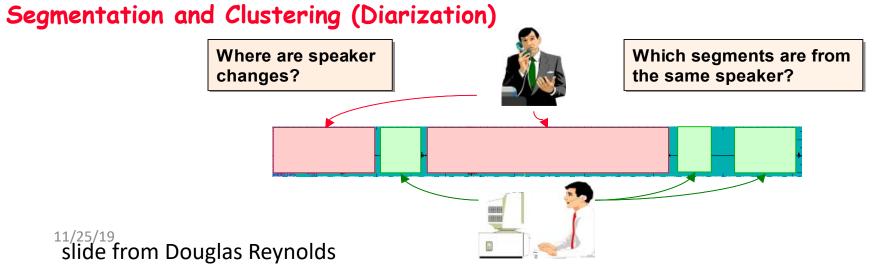
Application:

Three Speaker Recognition Tasks



Verification/Authentication/ Detection



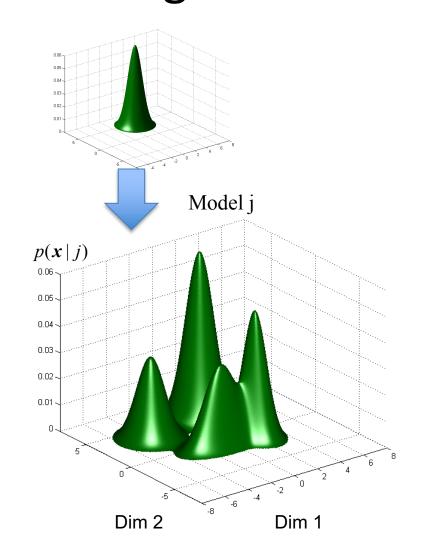


Application: GMMs for speaker recognition

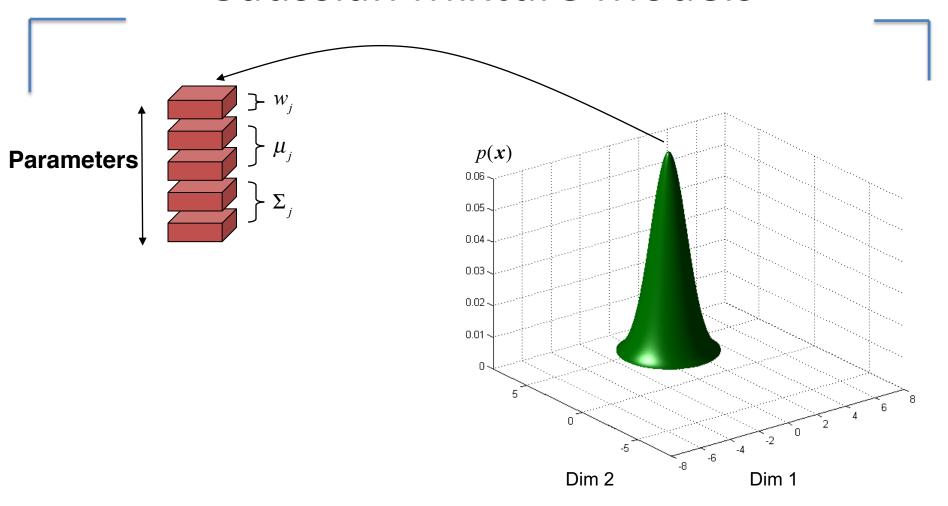
 A Gaussian mixture model (GMM) represents as the weighted sum of multiple Gaussian distributions

- Each Gaussian state i has a
 - Mean μ_j
 - Covariance
 - Weight

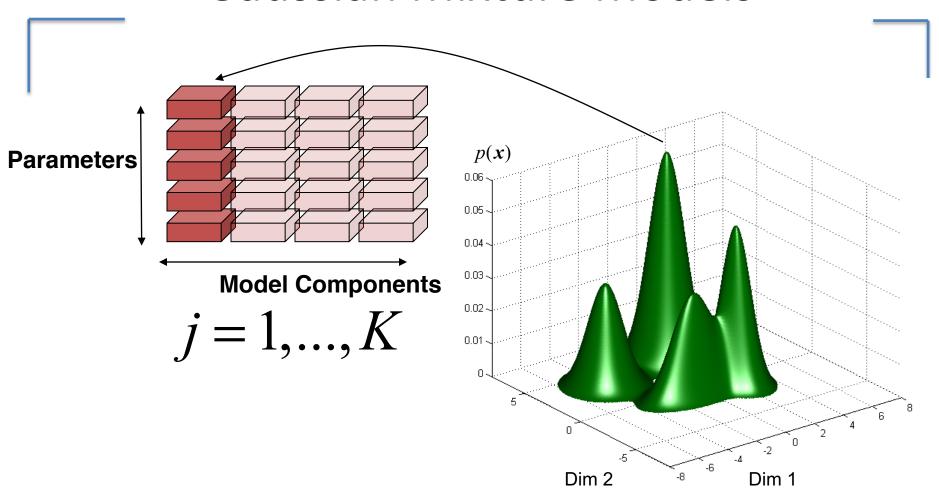
$$w_j \equiv p(\mu = \mu_j)$$



Recognition Systems Gaussian Mixture Models



Recognition Systems Gaussian Mixture Models



Learning a Gaussian Mixture

Probability Model

$$p(\vec{x} = \vec{x}_i)$$

$$= \sum_{j} p(\vec{x} = \vec{x}_i, \vec{\mu} = \vec{\mu}_j)$$

A Gaussian mixture model (GMM) represents as the weighted sum of multiple Gaussian distributions

Total low of probability

$$= \sum_{j} p(\vec{\mu} = \vec{\mu}_j) p(\vec{x} = \vec{x}_i \mid \vec{\mu} = \vec{\mu}_j)$$
 Chain rule

$$= \sum_{j} p(\vec{\mu} = \vec{\mu}_{j}) \frac{1}{(2\pi)^{p/2} |\Sigma_{j}|^{1/2}} e^{-\frac{1}{2} (\vec{x} - \vec{\mu}_{j})^{T} \sum_{j}^{-1} (\vec{x} - \vec{\mu}_{j})}$$

Max Log-likelihood of Observed Data Samples

Log-likelihood of data
$$logp(x_1, x_2, x_3, ..., x_n) =$$

$$\log \prod_{i=1..n} \sum_{j=1..K} p(\vec{\mu} = \vec{\mu}_j) \frac{1}{\left(2\pi\right)^{p/2} \left|\Sigma_j\right|^{1/2}} e^{-\frac{1}{2}\left(\vec{x}_i - \vec{\mu}_j\right)^T \sum_{j=1..K} \sum_{j=1}^{n-1} \left(\vec{x}_i - \vec{\mu}_j\right)^T \sum_{j=1..K} \sum_{j=1..K} p(\vec{\mu} = \vec{\mu}_j) \frac{1}{\left(2\pi\right)^{p/2} \left|\Sigma_j\right|^{1/2}} e^{-\frac{1}{2}\left(\vec{x}_i - \vec{\mu}_j\right)^T \sum_{j=1..K} p(\vec{\mu} = \vec{\mu}_j)}$$

26

 $\{ \{ p(\vec{\mu} = \mu_i) \}, j = 1...K \}$

Apply MLE to find

optimal Gaussian parameters $\{\vec{\mu}_i, \Sigma_i, j=1...K\}$

Expectation-Maximization for training GMM

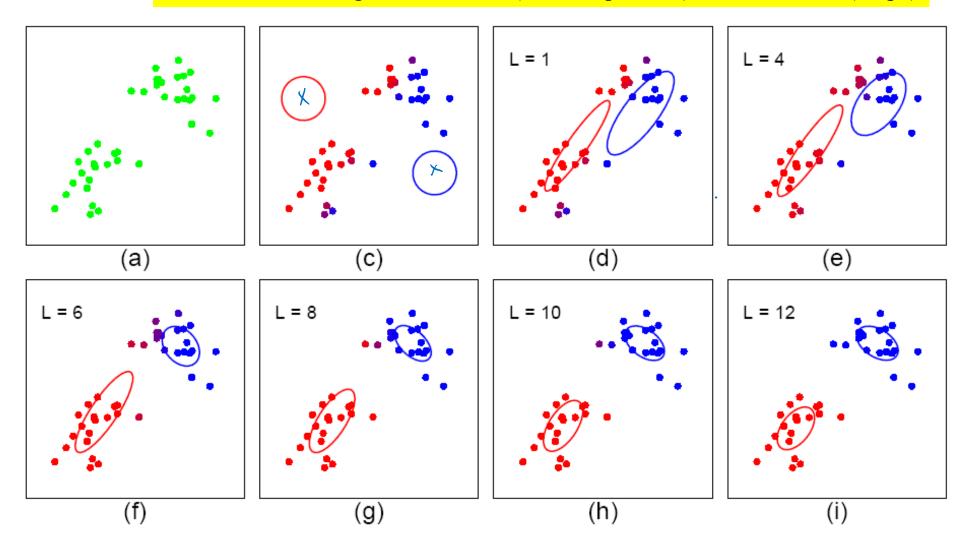
Start:

- "Guess" the centroid and covariance for each of the K clusters
- "Guess" the proportion of clusters, e.g., uniform prob 1/K

Loop

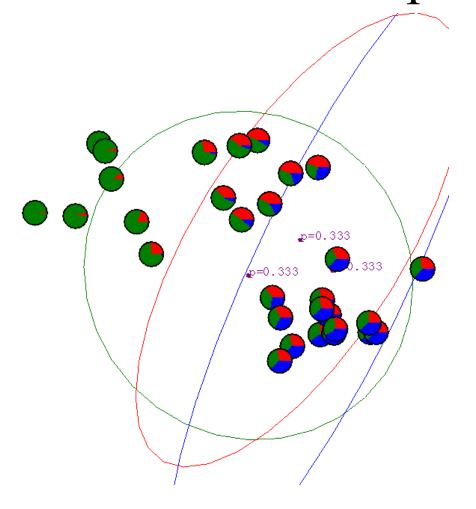
- For each point, revising its proportions belonging to each of the K clusters
- For each cluster, revising both the mean (centroid position) and covariance (shape)

each cluster, revising both the mean (centroid position) and covariance (shape)



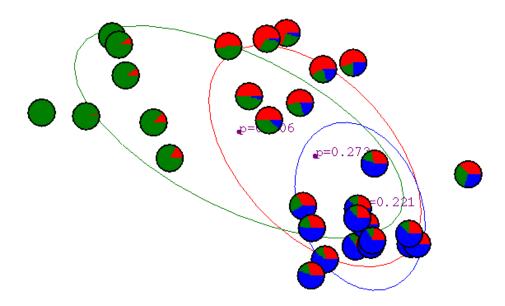
Another

Gaussian Mixture Example: Start



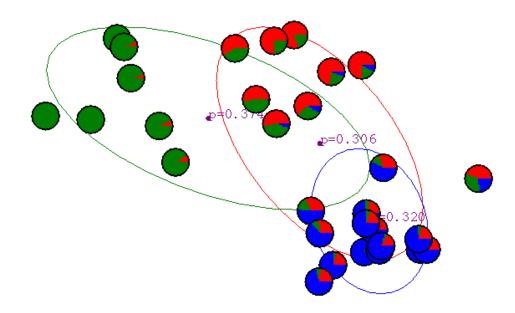
Another GMM Example:After First Iteration

For each point, revising its proportions belonging to each of the K clusters



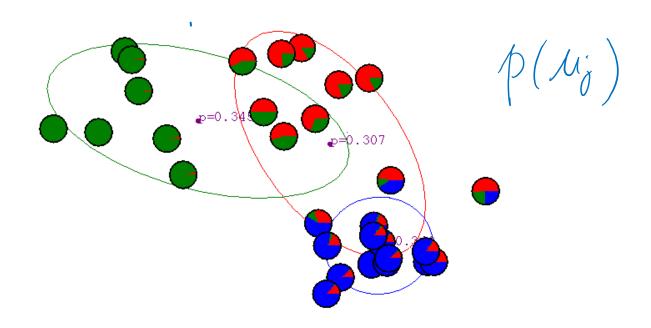
Another GMM Example:After 2nd Iteration

For each point, revising its proportions belonging to each of the K clusters



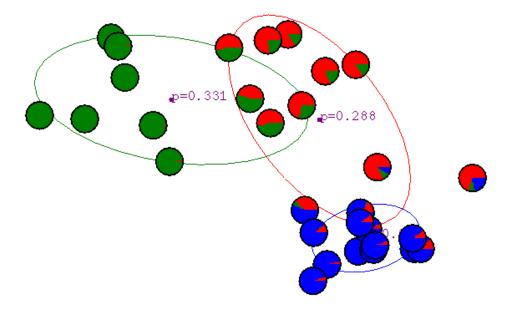
After 3rd Iteration

For each point, revising its proportions belonging to each of the K clusters



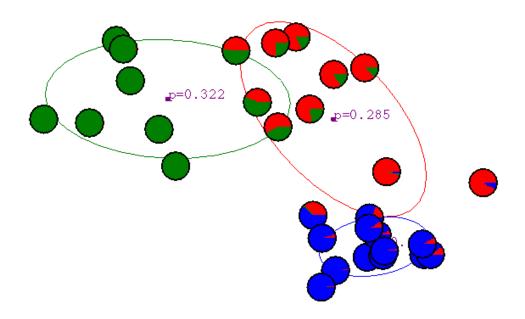
After 4th Iteration

For each point, revising its proportions belonging to each of the K clusters



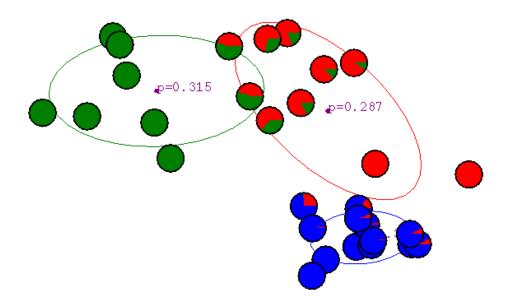
After 5th Iteration

For each point, revising its proportions belonging to each of the K clusters



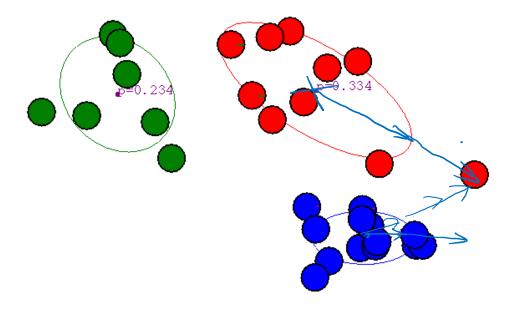
After 6th Iteration

For each point, revising its proportions belonging to each of the K clusters

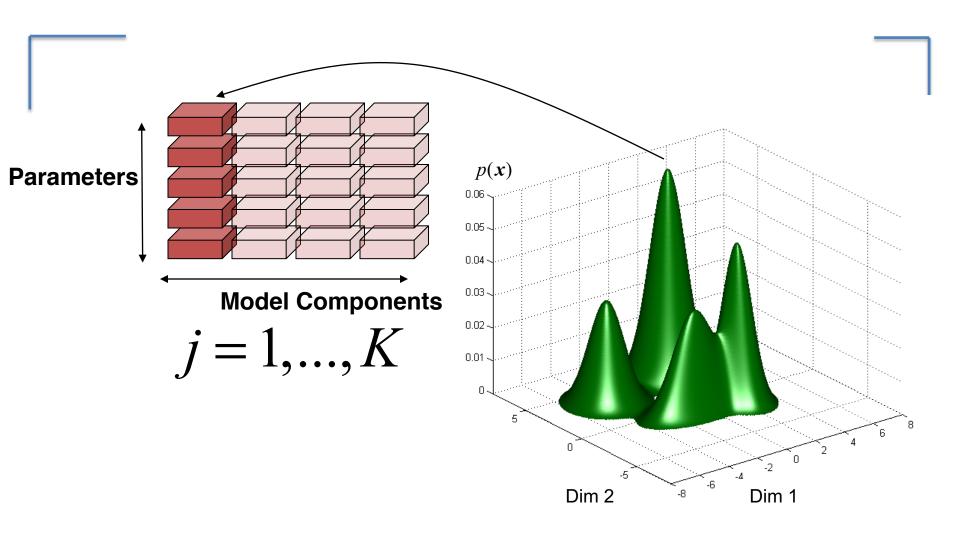


Another GMM Example: After 20th Iteration

For each point, revising its proportions belonging to each of the K clusters



Recap: Gaussian Mixture Models

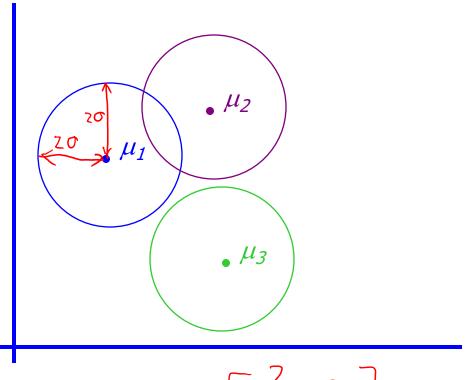


11/25/19

Dr. Yanjun Qi / UVA CS

The Simplest GMM assumption

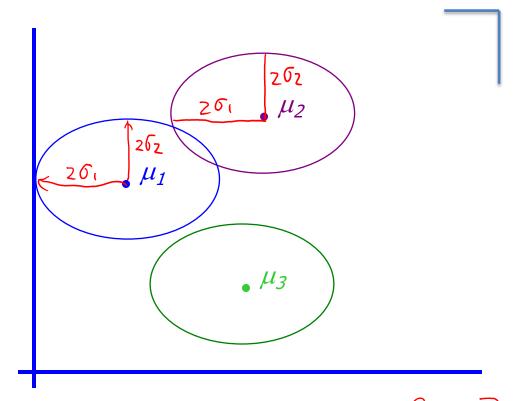
- Each component generates data from a Gaussian with
 - mean μ_i
 - Shared diagonal covariance matrix $\sigma^2 \mathbf{I}$



$$\sum_{j} = \sum_{k=1}^{\infty} \begin{bmatrix} 0 & 0 \\ 0 & 0^{2} \end{bmatrix}$$

Another Simple GMM assumption

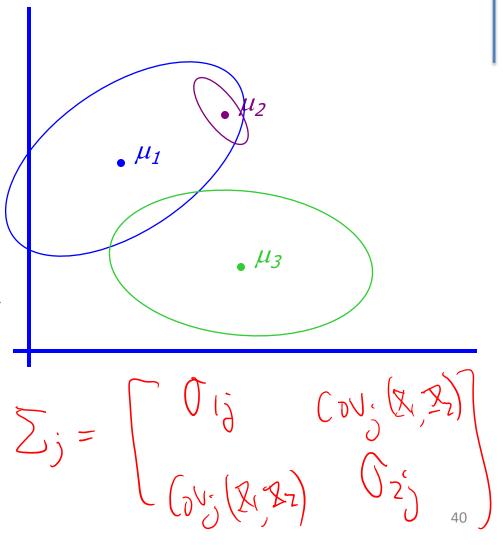
- Each component generates data from a Gaussian with
 - mean μ_i
 - Shared covariance matrix as diagonal matrix



$$\sum_{j} = \sum_{j=1}^{\infty} \left(\frac{C_{j}^{2}}{Q_{j}^{2}} \right)^{2}$$

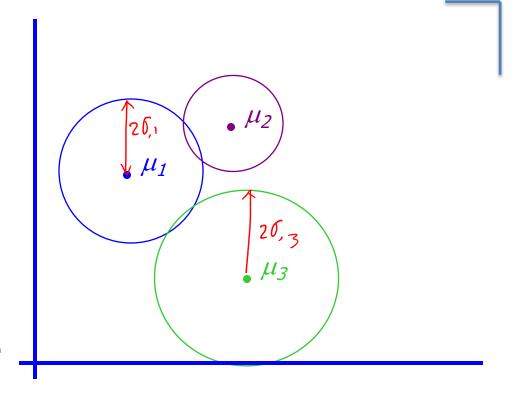
The General GMM assumption

- Each component generates data from a Gaussian with
 - mean μ_i
 - covariance matrix Σ_i



Another Simple GMM assumption

- Each component generates data from a Gaussian with
 - mean μ_i
 - Cluster-specific diagonal covariance matrix as $\sigma_{\varphi}^{2}\mathbf{I}$

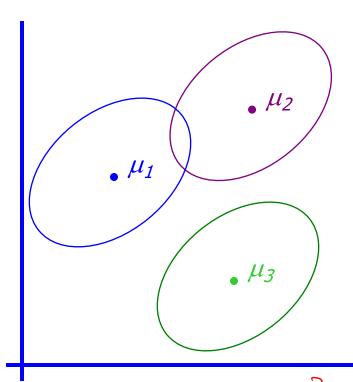


$$\sum_{j} = \sigma_{\varphi}^{2} I = \begin{bmatrix} \delta_{j}^{2} & 0 \\ 0 & 0_{j} \end{bmatrix}$$

D1:/225n/jL9n Qi / UVA CS

A bit More General GMM assumption

- Each component generates data from a Gaussian with
 - mean μ_i
 - Shared covariance matrix as full matrix



$$\sum_{j} = \sum_{j} = \begin{bmatrix} G_{1} & G_{1}G_{2} \\ G_{1}G_{2} & G_{2}^{2} \\ G_{3}G_{2} & G_{42} \end{bmatrix}$$

Concrete Equations for Learning a Gaussian Mixture

when assuming with known shared covariance

$$\begin{split} p(\vec{x} = \vec{x}_i) \\ &= \sum_{\mu_j} p(\vec{x} = \vec{x}_i, \vec{\mu} = \vec{\mu}_j) \\ &= \sum_{j} p(\vec{\mu} = \vec{\mu}_j) p(\vec{x} = \vec{x}_i \,|\, \vec{\mu} = \vec{\mu}_j) \\ &= \sum_{j} p(\vec{\mu} = \vec{\mu}_j) \frac{1}{\left(2\pi\right)^{p/2} \left|\Sigma\right|^{1/2}} \mathrm{e}^{-\frac{1}{2}\left(\vec{x}_i - \vec{\mu}_j\right)^T \Sigma^{-1}\left(\vec{x}_i - \vec{\mu}_j\right)} \\ &\quad \text{Assuming Known and Shared} \end{split}$$

Learning a Gaussian Mixture

(when assuming with known shared covariance)

E-Step

$$E[z_{ij}] = p(\vec{\mu} = \mu_j \mid x = x_i)$$

$$= \frac{p(x = x_i \mid \mu = \mu_j) p(\mu = \mu_j)}{\sum_{s=1}^{k} p(x = x_i \mid \mu = \mu_s) p(\mu = \mu_s)}$$

$$= \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (\vec{x}_i - \vec{\mu}_j)^T \Sigma^{-1} (\vec{x}_i - \vec{\mu}_j)} p(\mu = \mu_j)$$

$$= \frac{\sum_{s=1}^{k} \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (\vec{x}_i - \vec{\mu}_s)^T \Sigma^{-1} (\vec{x}_i - \vec{\mu}_s)} p(\mu = \mu_s)}{\sum_{s=1}^{k} \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (\vec{x}_i - \vec{\mu}_s)^T \Sigma^{-1} (\vec{x}_i - \vec{\mu}_s)} p(\mu = \mu_s)}$$

E-step (vs. Assignment Step in K-means)

when assuming with known shared covariance

$$E-Step \qquad E[z_{ij}] = p(\mu = \mu_{j} \mid x = x_{i})$$

$$= \frac{p(x = x_{i} \mid \mu = \mu_{j}) p(\mu = \mu_{j})}{\sum_{k=1}^{k} p(x = x_{i} \mid \mu = \mu_{s}) p(\mu = \mu_{s})}$$

$$= \frac{p(x = x_{i} \mid \mu = \mu_{s}) p(\mu = \mu_{s})}{\sum_{k=1}^{k} p(x = x_{i} \mid \mu = \mu_{s}) p(\mu = \mu_{s})}$$

$$= \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_{s})^{T} \Sigma^{-1}(\vec{x} - \vec{\mu}_{s})} p(\mu = \mu_{s})$$

$$= \frac{1}{\sum_{k=1}^{k} \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_{s})^{T} \Sigma^{-1}(\vec{x} - \vec{\mu}_{s})} p(\mu = \mu_{s})}{\sum_{k=1}^{k} \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_{s})^{T} \Sigma^{-1}(\vec{x} - \vec{\mu}_{s})} p(\mu = \mu_{s})}$$

Learning a Gaussian Mixture

when assuming with known shared covariance

M-Step

$$\mu_{j}^{(t_{1})} \leftarrow \frac{1}{\sum_{i=1}^{n} E[z_{ij}]} \sum_{i=1}^{n} E[z_{ij}] x_{i}$$

$$p(\mu = \mu_j) \leftarrow \frac{1}{n} \sum_{i=1}^n E[z_{ij}]$$

Covariance: \sum_{j} (j: 1 to K) can also be derived in the M-step under a full setting

M-step (vs. Centroid Step in K-means)

when assuming with known shared covariance

M-Step

$$\mu_{j} \leftarrow \frac{1}{n} \sum_{i=1}^{n} E[z_{ij}] x_{i}$$

$$p(\mu = \mu_{j}) \leftarrow \frac{1}{n} \sum_{i=1}^{n} E[z_{ij}] x_{i}$$

Covariance: Σ_j (j: 1 to K) will also be derived in the M-step under a full setting

M-step for Estimating University unknown Covariance Matrix (more general, details in EM-Extra lecture)

$$\Sigma_{j}^{(t+1)} = \frac{\sum_{i=1}^{n} E[z_{ij}]^{(t)} (x_{i} - \mu_{j}^{(t+1)}) (x_{i} - \mu_{j}^{(t+1)})^{T}}{\sum_{j=1}^{n} E[z_{ij}]^{(t)}}$$

$$\sum_{i=1}^{n} E[z_{ij}]^{(t)}$$

$$\sum_{i=1}^{n} E[z_{ij}]^{(t)}$$

$$\sum_{j=1}^{n} E[z_{ij}]^{(t)}$$

Recap: Expectation-Maximization for training GMM

Start:

- "Guess" the centroid and covariance for each of the K clusters
- "Guess" the proportion of clusters, e.g., uniform prob 1/K

Loop

- For each point, revising its proportions belonging to each of the K clusters
- For each cluster, revising both the mean (centroid position) and covariance (shape)

Partitional: Gaussian Mixture Model

- 1. Review of Gaussian Distribution
- 2. GMM for clustering: basic algorithm
- 3. GMM connecting to K-means
- 4. Problems of GMM and K-means

Recap: K-means iterative learning

$$\underset{\left\{\vec{C}_{j}, m_{i, j}\right\}}{\operatorname{arg\,min}} \sum_{j=1}^{K} \sum_{i=1}^{n} m_{i, j} \left(\vec{x}_{i} - \vec{C}_{j}\right)^{2}$$

Memberships $\{m_{i,j}\}$ and centers $\{C_j\}$ are correlated.

Given centers
$$\{\vec{C}_j\}$$
, $m_{i,j} = \begin{cases} 1 & j = \arg\min(\vec{x}_i - \vec{C}_j)^2 \\ 0 & \text{otherwise} \end{cases}$

M-Step

Given memberships
$$\{m_{i,j}\}$$
, $\vec{C}_j = \frac{\sum_{i=1}^n m_{i,j} \vec{x}_i}{\sum_{i=1}^n m_{i,j}}$

Compare: K-means

- The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.
- In the K-means "E-step" we do hard assignment:
- In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:

$$\begin{array}{l} \text{K-means: arg min } \sum_{j=1}^K \sum_{i=1}^n m_{i,j} \left(\vec{x}_i - \vec{C}_j \right)^2 \\ \left\{ \vec{C}_j, m_{i,j} \right\} \stackrel{j=1}{=} \stackrel{i=1}{=} \\ \end{array}$$

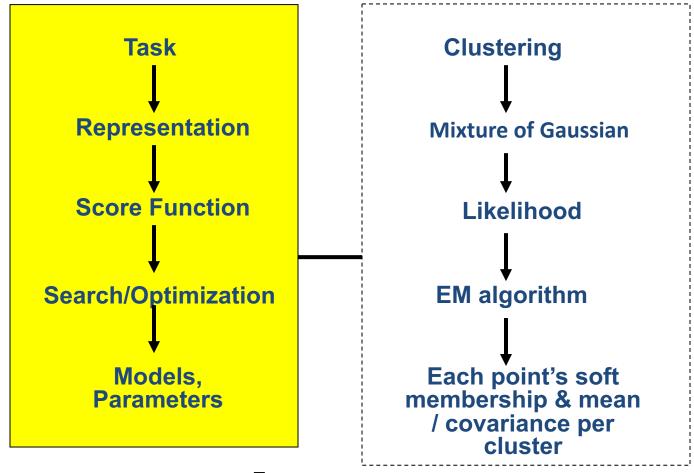
$$Mij = \begin{cases} 0 \\ 1 \end{cases}$$

$$\sum_{i} \log \prod_{i=1}^{n} p(x = x_{i}) = \sum_{i} \log \left[\sum_{\mu_{j}}^{\partial = 1, \dots K} \frac{1}{(2\pi) |\Sigma|^{1/2}} e^{-\frac{1}{2} (\vec{x} - \vec{\mu}_{j})^{T} \Sigma^{-1} (\vec{x} - \vec{\mu}_{j})} \right]$$

- K-Mean only detect spherical clusters.
- GMM can adjust its self to elliptic shape clusters.

(3) GMM Clustering

Dr. Yanjun Qi / UVA CS



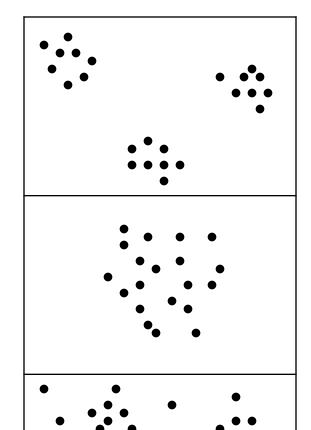
$$\sum_{i} \log \prod_{i=1}^{n} p(x = x_{i}) = \sum_{i} \log \left[\sum_{\mu_{j}} p(\mu = \mu_{j}) \frac{1}{(2\pi) |\Sigma_{j}|^{1/2}} e^{-\frac{1}{2} (\vec{x} - \vec{\mu}_{j})^{T} \sum_{j}^{-1} (\vec{x} - \vec{\mu}_{j})} \right]$$

Partitional: Gaussian Mixture Model

- 1. Review of Gaussian Distribution
- 2. GMM for clustering: basic algorithm
- 3. GMM connecting to K-means
- 4. Problems of GMM and K-means

11/25/19 55

Unsupervised Learning: not as hard as it looks



Sometimes easy

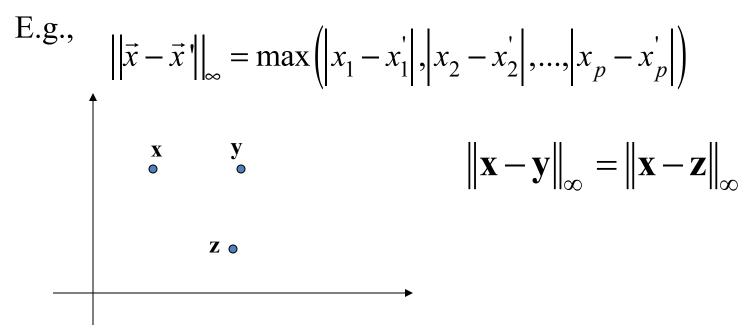
Sometimes impossible

and sometimes in between

Dr. Yanjun Qi / UVA CS

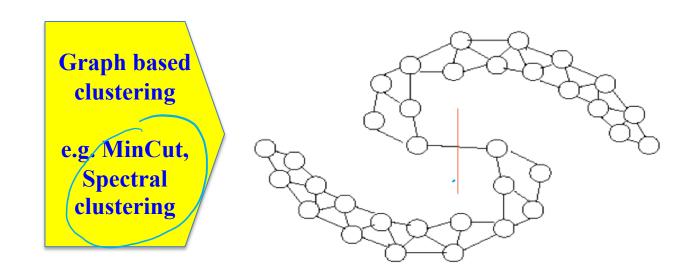
Problems (I)

- Both k-means and mixture models need to compute centers of clusters and explicit distance measurement
 - Given strange distance measurement, the center of clusters can be hard to compute

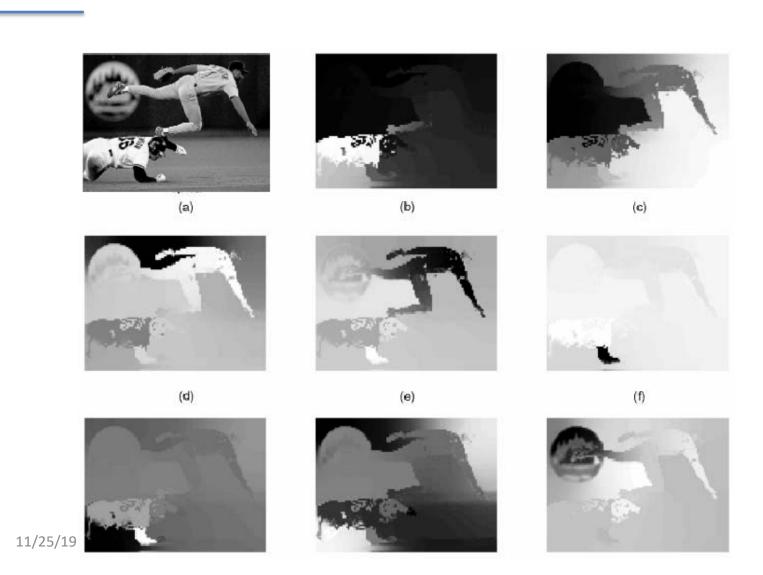


Problem (II)

- Both k-means and mixture models look for compact clustering structures
 - In some cases, connected clustering structures are more desirable



e.g. Image Segmentation through minCut



References

- ☐ Hastie, Trevor, et al. *The elements of statistical learning*. Vol. 2. No. 1. New York: Springer, 2009.
 - ☐ Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
 - ☐ Big thanks to Prof. Ziv Bar-Joseph @ CMU for allowing me to reuse some of his slides
 - ☐ clustering slides from Prof. Rong Jin @ MSU