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Course Content Plan è
Six major sections of this course

q Regression (supervised)
q Classification (supervised)

qFeature Selection

q Unsupervised models 
q Dimension Reduction (PCA)
q Clustering (K-means, GMM/EM, Hierarchical )

q Learning theory 

q Graphical models 

q Reinforcement Learning 
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Y is a continuous

Y is a discrete

NO Y 

About f()

About interactions among X1,… Xp

Learn program to Interact with its 
environment



An unlabeled 
Dataset X 

• Data/points/instances/examples/samples/records: [ rows ]
• Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns] 
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a data matrix of n observations on 
p variables x1,x2,…xp

Unsupervised learning = learning from raw (unlabeled, 
unannotated, etc) data, as opposed to supervised data 
where a classification label of examples is given
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• Find groups (clusters) of data points such that data points in a 
group will be similar (or related) to one another and different from 
(or unrelated to) the data points in other groups

What is clustering?

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized
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Roadmap: clustering

§ Definition of "groupness”
§ Definition of "similarity/distance"
§ Representation for objects
§ How many clusters?
§ Clustering Algorithms

§ Partitional algorithms
§ Hierarchical algorithms

§ Formal foundation and convergence
5
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Clustering Algorithms

• Partitional algorithms
– Usually start with a random 

(partial) partitioning
– Refine it iteratively

• K means clustering
• Mixture-Model based clustering

• Hierarchical algorithms
– Bottom-up, agglomerative
– Top-down, divisive

Dr. Yanjun Qi / UVA CS 



(2) Partitional Clustering

• Nonhierarchical
• Construct a partition of n objects into a set of 

K clusters
• User has to specify the desired number of 

clusters K.
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Other partitioning Methods
• Partitioning around medoids (PAM): instead of averages, 

use multidim medians as centroids (cluster “prototypes”). 
Dudoit and Freedland (2002).

• Self-organizing maps (SOM): add an underlying “topology”
(neighboring structure on a lattice) that relates cluster 
centroids to one another. Kohonen (1997), Tamayo et al. 
(1999).

• Fuzzy k-means: allow for a “gradation” of points between 
clusters; soft partitions. Gash and Eisen (2002).

• Mixture-based clustering: implemented through an EM 
(Expectation-Maximization)algorithm. This provides soft
partitioning, and allows for modeling of cluster centroids 
and shapes. (Yeung et al. (2001), McLachlan et al. (2002))
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Islands of music 
(Pampalk et al., KDD’ 03)

E.g.: SOM Used for Visualization
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Partitional : Gaussian Mixture Model 

• 1. Review of Gaussian Distribution 
• 2. GMM for clustering : basic algorithm
• 3. GMM connecting to K-means
• 4. Problems of GMM and K-means  

11/25/19
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A Gaussian Mixture Model for Clustering

• Assume that data are generated 
from a mixture of Gaussian 
distributions

• For each Gaussian distribution
– Center: j

– covariance:      j

• For each data point
– Determine membership 

:  if  belongs to j-th clusterij iz x

11/25/19 14
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Gaussian Distribution

Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm

Covariance MatrixMean
11/25/19
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Example: the Bivariate Normal distribution 
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Scatter Plots of data from the 
bivariate Normal distribution

Dr. Yanjun Qi / UVA CS 



How to Estimate Gaussian: 
MLE

		
µ = 1

n ix
i=1

n

∑

• In the 1D Gaussian case,  we simply set 
the mean and the variance to the sample 
mean and the sample variance:

		
2

σ = 1
n

2

(Xi−µ)i=1

n

∑
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< X1, X2!, X p >~ N µ

"#
,Σ( )

The p-multivariate Normal distribution 



Partitional : Gaussian Mixture Model 

• 1. Review of Gaussian Distribution 
• 2. GMM for clustering : basic algorithm
• 3. GMM connecting to K-means
• 4. Problems of GMM and K-means  

11/25/19
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Application: 
Three Speaker Recognition Tasks

MIT Lincoln Laboratory
7

Speaker Recognition Tasks

?

?

?

?

Whose voice is this?Whose voice is this?
?

?

?

?

Whose voice is this?Whose voice is this?

Identification

?

Is this Bob’s voice?Is this Bob’s voice?

?

Is this Bob’s voice?Is this Bob’s voice?

Verification/Authentication/
Detection

Speaker B

Speaker A

Which segments are from 
the same speaker?
Which segments are from 
the same speaker?

Where are speaker 
changes?
Where are speaker 
changes?

Speaker B

Speaker A

Which segments are from 
the same speaker?
Which segments are from 
the same speaker?

Where are speaker 
changes?
Where are speaker 
changes?

Segmentation and Clustering (Diarization)

slide from Douglas Reynolds
11/25/19

Dr. Yanjun Qi / UVA CS 

21



Application : 
GMMs for speaker recognition

• A Gaussian mixture model 
(GMM) represents as the 
weighted sum of multiple 
Gaussian distributions

• Each Gaussian state i has a
– Mean 
– Covariance
– Weight

Dr. Yanjun Qi / UVA CS 

Dim 1Dim 2

 Model j

   p(x | j)

 µ j

 Σ j

  wj ≡ p(µ = µ j )



Recognition Systems
Gaussian Mixture Models

Dr. Yanjun Qi / UVA CS 

Parameters  µ j

 Σ j

 wj

Dim 1Dim 2

( )p x

11/25/19 23



Recognition Systems
Gaussian Mixture Models
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Model Components

Parameters

Dim 1Dim 2

( )p x
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  j = 1,..., K



Learning a Gaussian Mixture
• Probability Model  

   

p( !x = !xi )

= p( !x = !xi ,
!
µ =
!
µ j )

j
∑

= p(
!
µ =
!
µ j ) p( !x = !xi |

!
µ =
!
µ j )

j
∑

= p(
!
µ =
!
µ j )

1

2π( )p/2
Σ j

1/2 e
−1

2
!
x−
!
µ j( )T Σ j

−1 !x−
!
µ j( )

j
∑
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Total low of probability 

Chain rule

A Gaussian mixture model (GMM) 
represents as the weighted sum 
of multiple Gaussian distributions



Max Log-likelihood of Observed Data Samples 
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o Log-likelihood of data  

Apply MLE to find 

optimal Gaussian parameters 
   

{p(
!
µ = µ j )}, j = 1...K{ }

{
!
µ j ,Σ j , j = 1...K}
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logp(x1, x2, x3, ..., xn) =

   

log
i=1..n
∏ p(

!
µ =
!
µ j )

1

2π( )p/2
Σ j

1/2
e
−1

2
!
xi−
!
µ j( )T Σ j

−1 !xi−
!
µ j( )

j=1..K
∑
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Expectation-Maximization 
for training  GMM

• Start: 
– "Guess" the centroid and covariance for each of the K 

clusters 
– “Guess” the proportion of clusters, e.g., uniform prob 1/K

• Loop
– For each point, revising its proportions belonging to each 

of the K clusters 
– For each cluster, revising both the mean (centroid

position) and covariance (shape) 
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each cluster, revising both the mean (centroid position) and covariance (shape) 



Another 
Gaussian Mixture Example: Start

11/25/19 29
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Another GMM Example: 
After First Iteration
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For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 

For each point, revising its proportions belonging to each of the K clusters 



Another GMM Example: 
After 2nd Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



After 3rd Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



After 4th Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



After 5th Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



After 6th Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



Another GMM Example: 
After 20th Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



Recap: Gaussian Mixture Models
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Model Components

Parameters

Dim 1Dim 2

( )p x
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  j = 1,..., K
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The Simplest GMM assumption

• Each component 
generates data from a 
Gaussian with 
• mean μi

• Shared diagonal 
covariance matrix 
σ2I

µ1

µ2

µ3
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Another Simple GMM assumption

• Each component 
generates data from a 
Gaussian with 
• mean μi

• Shared covariance 
matrix as diagonal 
matrix 

µ1

µ2

µ3
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The General GMM assumption

µ1

µ2

µ3

• Each component 
generates data from a 
Gaussian with 
• mean μi

• covariance matrix Σi
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Another Simple GMM assumption

• Each component 
generates data from a 
Gaussian with 
• mean μi

• Cluster-specific 
diagonal covariance 
matrix as σj2I

µ1

µ2

µ3

σj2I
11/25/19 41
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A bit More General GMM assumption

• Each component 
generates data from a 
Gaussian with 
• mean μi

• Shared covariance 
matrix as full matrix 

µ1

µ2

µ3
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Concrete Equations for Learning a Gaussian Mixture
(when assuming with known shared covariance)
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Assuming Known 
and Shared

   

p( !x = !xi )

= p( !x = !xi ,
!
µ =
!
µ j )

µ j

∑

= p(
!
µ =
!
µ j ) p( !x = !xi |

!
µ =
!
µ j )

j
∑

= p(
!
µ =
!
µ j )

1

2π( )p/2
Σ

1/2 e
−1

2
!
xi−
!
µ j( )T Σ−1 !xi−

!
µ j( )

j
∑

when assuming with known shared covariance



Learning a Gaussian Mixture
(when assuming with known shared covariance)

   

=

1

2π( )p/2
Σ

1/2 e
−1

2
!
xi−
!
µ j( )T Σ−1 !xi−

!
µ j( )    p(µ = µ j )

1

2π( )p/2
Σ

1/2 e
−1

2
!
xi−
!
µs( )T Σ−1 !xi−

!
µs( )

   p(µ = µs )
s=1

k

∑

   
E[zij ] = p(

!
µ = µ j | x = xi )E-Step
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=
p(x = xi |µ = µ j ) p(µ = µ j )

p(x = xi |µ = µs ) p(µ = µs )
s=1

k

∑



E-step (vs. Assignment Step in K-means)

   

=

1

2π( )p/2
Σ

1/2 e
−1

2
!
x−
!
µ j( )T Σ−1 !x−

!
µ j( )    p(µ = µ j )

1

2π( )p/2
Σ

1/2 e
−1

2
!
x−
!
µs( )T Σ−1 !x−

!
µs( )

   p(µ = µs )
s=1

k

∑

[ ] ( | )ij j iE z p x xµ µ= = =E-Step

11/25/19 45

Dr. Yanjun Qi / UVA CS 

  

=
p(x = xi |µ = µ j ) p(µ = µ j )

p(x = xi |µ = µs ) p(µ = µs )
s=1

k

∑

when assuming with known shared covariance



Learning a Gaussian Mixture

  

µ j ←
1

E[zij ]
i=1

n

∑
E[zij ]xi

i=1

n

∑M-Step

  
p(µ = µ j )←

1
n

E[zij ]
i=1

n

∑
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Covariance:     j (j: 1 to K) can also be 
derived in the M-step under a full setting 

⌃

when assuming with known shared covariance



M-step (vs. Centroid Step in K-means)

  

µ j ←
1

E[zij ]
i=1

n

∑
E[zij ]xi

i=1

n

∑M-Step

  
p(µ = µ j )←

1
n

E[zij ]
i=1

n

∑
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Covariance:     j (j: 1 to K) will also be 
derived in the M-step under a full setting 

⌃

when assuming with known shared covariance
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M-step for Estimating 
unknown Covariance Matrix

(more general, details in EM-Extra lecture)

!! 

!Σ j
(t+1) = i=1

n E[zij ](t )(xi − µ j
(t+1))(xi − µ j

(t+1))T∑
E[zij ](t )

i=1

n

∑
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Recap: Expectation-Maximization 
for training  GMM

• Start: 
– "Guess" the centroid and covariance for each of the K 

clusters 
– “Guess” the proportion of clusters, e.g., uniform prob 1/K

• Loop
– For each point, revising its proportions belonging to each 

of the K clusters 
– For each cluster, revising both the mean (centroid

position) and covariance (shape) 

Dr. Yanjun Qi / UVA CS 



Partitional : Gaussian Mixture Model 

• 1. Review of Gaussian Distribution 
• 2. GMM for clustering : basic algorithm
• 3. GMM connecting to K-means
• 4. Problems of GMM and K-means  

11/25/19
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Recap: K-means iterative learning 

   

argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑

{ } { },Memberships  and centers  are correlated.i j jm C

   

 Given memberships mi, j{ },  
!
C j =

mi, j
!
xi

i=1

n

∑

mi, j
i=1

n

∑
 

   

 Given centers {
!
C j},  mi, j =

1 j = argmin
k

(
!
xi −
!
C j )

2

0 otherwise

⎧
⎨
⎪

⎩⎪
 

M-Step

E-Step
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Compare: K-means

• The EM algorithm for mixtures of Gaussians is 
like a "soft version" of the K-means algorithm.

• In the K-means “E-step” we do hard assignment:
• In the K-means “M-step” we update the means 

as the weighted sum of the data, but now the 
weights are 0 or 1:

11/25/19
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑

   

log p(x = xi )
i=1

n

∏
i
∑ = log p(µ = µ j )

1

2π( ) Σ 1/2
e
−1

2
!
x−
!
µ j( )T Σ−1 !x−

!
µ j( )

 
µ j

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥i

∑

• K-Mean only detect spherical clusters.
• GMM can adjust its self to elliptic shape clusters.



(3) GMM Clustering 

Clustering

Likelihood 

EM algorithm

Each point’s soft 
membership & mean 

/ covariance per 
cluster 

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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Mixture of Gaussian
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log p(x = xi )
i=1

n

∏
i
∑ = log p(µ = µ j )
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2π( ) Σ j

1/2
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2
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x−
!
µ j( )T Σ j

−1 !x−
!
µ j( )
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∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦
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Partitional : Gaussian Mixture Model 

• 1. Review of Gaussian Distribution 
• 2. GMM for clustering : basic algorithm
• 3. GMM connecting to K-means
• 4. Problems of GMM and K-means  
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Unsupervised Learning:
not as hard as it looks

Sometimes easy

Sometimes impossible

and sometimes                  
in between



Problems (I)

• Both k-means and mixture models need to compute 
centers of clusters and explicit distance measurement
– Given strange distance measurement, the center of clusters 

can be hard to compute
E.g., 

   

!
x − !x '

∞
= max x1 − x1

' , x2 − x2
' ,..., xp − xp

'( )
x y

z

¥ ¥
- = -x y x z
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Problem (II)

• Both k-means and mixture models look for compact 
clustering structures
– In some cases, connected clustering structures are more desirable

Graph based 
clustering 

e.g. MinCut, 
Spectral 

clustering  
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e.g. Image Segmentation through 
minCut
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