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Course Content Plan è
Six major sections of this course

q Regression (supervised)
q Classification (supervised)

qFeature Selection

q Unsupervised models 
q Dimension Reduction (PCA)
q Clustering (K-means, GMM/EM, Hierarchical )

q Learning theory 

q Graphical models 

q Reinforcement Learning 
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Y is a continuous

Y is a discrete

NO Y 

About f()

About interactions among X1,… Xp

Learn program to Interact with its 
environment



Today Outline

• Principles for Model Inference 
– Maximum Likelihood Estimation
– Bayesian Estimation

• Strategies for Model Inference
– EM Algorithm – simplify difficult MLE
• Algorithm
• Application
• Theory

– MCMC – samples rather than maximizing
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Model Inference through 
Maximum Likelihood Estimation (MLE)

Assumption: the data is coming from a known probability distribution

The probability distribution has some parameters that are unknown to you

Example: data is distributed as Gaussian                                      ,
so the unknown parameters here are  

MLE is a tool that estimates the unknown parameters of the probability
distribution from data

✓ = (µ,�2)
yi = N(µ,�2)
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MLE: e.g. Single Gaussian 
Model (when p=1)

• Need to adjust the 
parameters (è model 
inference)

• So that the resulting 
distribution fits the 
observed data well
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Maximum Likelihood revisited
yi = N(µ,�2)

!! Y = { y1 , y2 ,…, yN }

!!
l(θ )= log(L(θ ;Y ))= log p( yi )

i=1

N

∏

)
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MLE: e.g. Single Gaussian Model 

• Assume observation data yi are independent

• Form the Likelihood:

• Form the Log-likelihood: 

!! 

L(θ ;Y )= p( yi )
i=1

N

∏ = 1
2πσ 2i=1

N

∏ exp(− ( yi − µ)
2

2σ 2 );

Y = { y1 , y2 ,…, yN }

!!
l(θ )= log( 1

2πσi=1

N

∏ exp(− ( yi − µ)
2

2σ 2 ))= − ( yi − µ)2
2σ 2

i=1

N

∑ −N log( 2πσ )
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MLE: e.g. Single Gaussian Model 

• To find out the unknown parameter values, maximize the 
log-likelihood with respect to the unknown parameters:
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MLE: A Challenging Mixture Example

histogram

Indicator variable

is the probability with which the observation is chosen from density model 2

(1- ) is the probability with which the observation is chosen from density 1

Mixture model:
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MLE: Gaussian Mixture Example

Maximum likelihood fitting for parameters:

Numerically (and of course analytically, too) 
Challenging to solve!!

),,,,( 2121 σσμμπ=q

)
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Bayesian Methods & 
Maximum Likelihood

• Bayesian
Pr(model|data)  i.e. posterior  
=>Pr(data|model) Pr(model)
=> Likelihood * prior

• Assume prior is uniform, equal to MLE
argmax_model Pr(data | model) Pr(model)

= argmax_model Pr(data | model)
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Today Outline

• Principles for Model Inference 
– Maximum Likelihood Estimation
– Bayesian Estimation

• Strategies for Model Inference
– EM Algorithm – simplify difficult MLE
• Algorithm
• Application
• Theory

– MCMC – samples rather than maximizing
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Here is the problem

11/25/19

Dr. Yanjun Qi / UVA CS 

13



All we have is 

From which we need to infer the likelihood function 
which generate the observations 

histogram
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Expectation Maximization: add
latent variable   è latent data

EM augments the data space– assumes with latent data
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Computing log-likelihood based on 
complete data

Maximizing this form of log-likelihood is now tractable

Note that we cannot analytically maximize the previous log-likelihood with only 
observed Y={y_1, y_2, …, y_n}

T = {ti = (yi,�i), i = 1...N}
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EM: The Complete Data Likelihood
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By simple differentiations we have:

How do we get the latent variables?

So, maximization of the complete data likelihood is much easier!
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EM: The Complete Data Likelihood
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By simple 
differentiations we 
have:

How do we get the latent variables?

So, 
maximization of 
the complete 
data likelihood 
is much easier!
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Obtaining Latent Variables
The latent variables are computed as expected values 
given the data and parameters:
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Dilemma Situation  

• We need to know latent variable / data to maximize the 
complete log-likelihood to get the parameters 

• We need to know the parameters to calculate the 
expected values of latent variable / data 

• è Solve through iterations
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So we iterate è
EM for Gaussian Mixtures…

Y Y

Y
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EM for Gaussian Mixtures…

Y
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EM for Two-component Gaussian Mixture

• Initialize 
• Iterate until convergence
– Expectation of latent variables

– Maximization for finding parameters
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EM in….simple words
• Given observed data, you need to come up 

with a generative model
• You choose a model that comprises of some 

hidden variables  hi    (this is your belief!)
• Problem: To estimate the parameters of model

– Assume some initial values parameters
– Replace values of hidden variable with their 

expectation (given the old parameters)
– Recompute new values of parameters (given       )
– Check for convergence using log-likelihood

�i

�i
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EM – Example (cont’d)

Selected iterations of the EM algorithm
For mixture example

Iteration p
1 0.485
5 0.493
10 0.523
15 0.544
20 0.546

⇡

histogram

11/25/19

Dr. Yanjun Qi / UVA CS 

25



EM Summary
• An iterative approach for MLE
• Good idea when you have missing or latent 

data
• Has a nice property of convergence
• Can get stuck in local minima (try different 

starting points)
• Generally hard to calculate expectation over 

all possible values of hidden variables
• Still not much known about the rate of 

convergence
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Today Outline

• Principles for Model Inference 
– Maximum Likelihood Estimation
– Bayesian Estimation

• Strategies for Model Inference
– EM Algorithm – simplify difficult MLE
• Algorithm
• Application
• Theory

– MCMC – samples rather than maximizing
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Applications of EM

–Mixture models
– HMMs
– Latent variable models
–Missing data problems
– …
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Applications of EM (1)

• Fitting mixture models
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Applications of EM (2)

• Probabilistic Latent Semantic Analysis (pLSA)
– Technique from text for topic modeling 

P(w,d)      P(w|z) 
P(z|d)       

Z

W D

Z

D

W
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Applications of EM (3)

• Learning parts and structure models
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Applications of EM (4)

• Automatic segmentation of layers in video

http://www.psi.toronto.edu/images/figures/cutouts_vid.gif
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Expectation Maximization (EM)

• Old idea (late 50’s) but formalized by Dempster, 
Laird and Rubin in 1977

• Subject of much investigation. See McLachlan & 
Krishnan book 1997.
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Today Outline

• Principles for Model Inference 
– Maximum Likelihood Estimation
– Bayesian Estimation

• Strategies for Model Inference
– EM Algorithm – simplify difficult MLE
• Algorithm
• Application
• Theory

– MCMC – samples rather than maximizing
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Why is Learning Harder?

• In fully observed iid settings, the complete log 
likelihood decomposes into a sum of local 
terms.

• When with latent variables, all the parameters 
become coupled together via marginalization

),|(log)|(log)|,(log);( xzc zxpzpzxpD qqqq +==l

!! 
l (θ ;D)= logp(x |θ )= log p(z |θz )p(x |z ,θ x )

z
∑
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Gradient Learning for mixture models

• We can learn mixture densities using gradient descent on 
the observed log likelihood. The gradients are quite 
interesting:

• In other words, the gradient is the responsibility weighted 
sum of the individual log likelihood gradients.

• Can pass this to a conjugate gradient routine.
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Parameter Constraints
• Often we have constraints on the parameters, e.g.         

being symmetric positive definite.
• We can use constrained optimization, or we can re-

parameterize in terms of unconstrained values.
– For normalized weights, softmax to e.g. 

– For covariance matrices, use the Cholesky decomposition:

where A is upper diagonal with positive diagonal:

– Use chain rule to compute 

AAT=S-1
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Identifiability

• A mixture model induces a multi-modal likelihood.
• Hence gradient ascent can only find a local maximum.
• Mixture models are unidentifiable, since we can always switch 

the hidden labels without affecting the likelihood.
• Hence we should be careful in trying to interpret the 
“meaning” of latent variables.
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Expectation-Maximization (EM) Algorithm

• EM is an Iterative algorithm with two linked steps:
– E-step: fill-in hidden values using inference: p(z|x, \thetat).

– M-step: update parameters (t+1) rounds using 
standard MLE/MAP method applied to completed 
data

• We will prove that this procedure monotonically 
improves (or leaves it unchanged). Thus it always 
converges to a local optimum of the likelihood.
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Theory underlying EM
• What are we doing?

• Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

• But we do not observe z, so computing  

is difficult!

• What shall we do?
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(1) Incomplete Log Likelihoods

• Incomplete log likelihood

With z unobserved, our objective becomes the log of a marginal probability:

– This objective won't decouple 

!! 
l (θ ;x)= logp(x |θ )= log p(x ,z |θ )

z
∑
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(2) Complete Log Likelihoods

• Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

– Usually, optimizing lc() given both z and x is 
straightforward (c.f. MLE for fully observed models).

– Recalled that in this case the objective for, e.g., MLE, 
decomposes into a sum of factors, the parameter for 
each factor can be estimated separately.

– But given that Z is not observed, lc() is a random 
quantity, cannot be maximized directly.

!! l c(θ ;x ,z)=
def
logp(x ,z |θ )= logp(z |θz )p(x |z ,θ x )



Complete log-likelihood (CLL)

Log-likelihood [Incomplete log-likelihood (ILL)]

Expected complete log-likelihood (ECLL)

Three types of log-likelihood 
over multiple observed samples (x_1, x_2, …, x_N)

Observed data

Latent variables

Iteration index
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(3) Expected Complete Log Likelihood

• For any distribution q(z), define expected 
complete log likelihood (ECLL):

• CLL is random variable è ECLL is a deterministic 
function of q
• Linear in CLL() --- inherit its factorizabiility
• Does maximizing this surrogate yield a maximizer of the 

likelihood?

!! 
ECLL= l c(θ ;x ,z) q

=
def

q(z |x ,θ )logp(x ,z |θ )
z
∑
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Jensen’s inequality
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Jensen’s inequality

!! 
ECLL= l c(θ ;x ,z) q

=
def

q(z |x ,θ )logp(x ,z |θ )
z
∑

!! 

ILL= l (θ ;x)= logp(x |θ )
= log p(x ,z |θ )

z
∑

= log q(z |x)p(x ,z |θ )
q(z |x)z

∑

≥ q(z |x)log p(x ,z |θ )
q(z |x)z

∑

= q(z |x)logp(x ,z |θ )− q(z |x)log
z
∑ q(z |x)

z
∑

= ECLL+Hq

qqc Hzxx +³Þ ),;();(     qq ll

• Jensen’s inequality

Entropy term
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Lower Bounds and Free Energy

• For fixed data x, define a functional called the 
free energy:

• The EM algorithm is coordinate-ascent on F :
– E-step:

– M-step:
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How EM optimize ILL ?  
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E-step: maximization of w.r.t. q
• Claim: 

– This is the posterior distribution over the latent variables given the 
data and the parameters. Often we need this at test time anyway 
(e.g. to perform clustering).

• Proof (easy): this setting attains the bound of ILL

• Can also show this result using variational calculus or the fact 
that
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E-step: Alternative derivation
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( )),|(||KL),();( qqq xzpqqFx =-l
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M-step: maximization w.r.t. \theta 

• Note that the free energy breaks into two 
terms:

– The first term is the expected complete log 
likelihood (energy) and the second term, which 
does not depend on q, is the entropy.
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M-step: maximization w.r.t. \theta 

• Thus, in the M-step, maximizing with respect 
to q for fixed q we only need to consider the 
first term:

– Under optimal qt+1, this is equivalent to solving a 
standard MLE of fully observed model p(x,z|q), 
with the sufficient statistics involving z replaced 
by their expectations w.r.t. p(z|x,q).
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Summary: EM Algorithm
• A way of maximizing likelihood function for latent variable models. 

Finds MLE of parameters when the original (hard) problem can be 
broken up into two (easy) pieces:
1. Estimate some “missing” or “unobserved” data from observed data 

and current parameters.
2. Using this “complete” data, find the maximum likelihood parameter 

estimates.

• Alternate between filling in the latent variables using the best 
guess (posterior) and updating the parameters based on this guess:
– E-step: 
– M-step: 

• In the M-step we optimize a lower bound on the likelihood. In the 
E-step we close the gap, making bound=likelihood.

),(maxarg t
q

t qFq q=+1

),(maxarg ttt qF qq
q

11 ++ =



How EM optimize ILL ?  
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A Report Card for EM
• Some good things about EM:
– no learning rate (step-size) parameter
– automatically enforces parameter constraints
– very fast for low dimensions
– each iteration guaranteed to improve likelihood
– Calls inference and fully observed learning as subroutines.

• Some bad things about EM:
– can get stuck in local minima
– can be slower than conjugate gradient (especially near 

convergence)
– requires expensive inference step
– is a maximum likelihood/MAP method
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