UVA CS 6316: Machine Learning

Lecture 20: Review

Dr. Yanjun Qi

University of Virginia Department of Computer Science

Final Review

Five Tribes of Machine Learning

Review of ML methods covered so far

- Regression (supervised)
- □ Classification (supervised)
- Unsupervised models
- Learning theory
- Review of Six Assignments

Given books to recommend

Objective

• To help students be able to build machine learning tools

– (not just a tool user!!!)

- Key Results:
 - Able to build a few simple machine learning methods from scratch
 - Able to understand a few complex machine learning methods at the source code and equation level

Traditional Programming

Machine Learning

A Typical Machine Learning Application's Pipeline

Two Modes of Machine Learning

Course Content Plan → Six major sections of this course

- Regression (supervised)
 Classification (supervised)
 - Feature Selection

Unsupervised models
 Dimension Reduction (PCA)
 Clustering (K-means, GMM/EM, Hierarchical)

Learning theory

Graphical models

Reinforcement Learning

About f()

About interactions among X1,... Xp

Learn program to Interact with its environment

http://scikit-learn.org/stable/tutorial/machine_learning_map/

Scikit-learn algorithm cheat-sheet

http://scikit-learn.org/stable/

scikit-learn

Machine Learning in Python

Examples

- · Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ... – Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ... – Examples

Clustering

Automatic grouping of similar objects into sets.

 Applications: Customer segmentation,

 Grouping experiment outcomes

 Algorithms: k-Means, spectral clustering,

 mean-shift, ...

 — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. - Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning **Modules**: grid search, cross validation, met-

rics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. **Modules**: preprocessing, feature extraction.

Examples

Highly Recommend One Book: 0. By Dr. Domingos: Master Algorithm

So How Do Computers Discover New Knowledge?

- 1. Symbolists--Fill in gaps in existing knowledge
- 2. **Connectionists**--Emulate the brain
- 3. Evolutionists -- Simulate evolution
- 4. Bayesians--Systematically reduce uncertainty
- 5. Analogizers--Notice similarities between old and new

SRC: Pedro Domingos ACM Webinar Nov 2015 http://learning.acm.org/multimedia.cfm

Machine Learning in a Nutshell

ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

The Five Tribes of Machine Learning:

Tribe	Origins	Key Algorithm
Symbolists	Logic, philosophy	Inverse deduction
Connectionists	Neuroscience	Backpropagation
Evolutionists	Evolutionary biology	Genetic programming
Bayesians	Statistics	Probabilistic inference
Analogizers	Psychology	Kernel machines

SRC: Pedro Domingos ACM Webinar Nov 2015 http://learning.acm.org/multimedia.cfm

Symbolists

Tom Mitchell Steve Muggleton Ross Quinlan

Tribe	Origins	Key Algorithm
Symbolists	Logic, philosophy	Inverse deduction

From: Dr. Pedro Domingos

e.g., Decision Tree-building algorithms (1990s)

ID3: Iterative Dichotomiser 3. Developed in the 80s by Ross Quinlan.

C4.5: Successor of ID3, also developed by Quinlan ('93). Main improvements over I3D:

Adaboost: by Robert Schapire (1999)

Connectionists

Yann LeCun	Geoff Hinton	Yoshua Bengio
Tribe	Origins	Key Algorithm
Connectionists	Neuroscience	Backpropagation

Deep Learning (CNN) in the 90's

- Prof. Yann LeCun invented Convolutional Neural Networks (CNN) in 1998
- First NN successfully trained with many layers

Evolutionaries

John Koza	John Holland	Hod Lipson	
Tribe	Origins	Key Algorithm	
Evolutionists	Evolutionary biology	Genetic programming	

From: Dr. Pedro Domingos

Genetic Algorithms

Bayesians

David Heckermar	n Judea Pearl	Michael Jordan

Tribe	Origins	Key Algorithm
Bayesians	Statistics	Probabilistic inference

From: Dr. Pedro Domingos

Probabilistic Inference

Likelihood

How probable is the evidence given that our hypothesis is true?

Prior

How probable was our hypothesis before observing the evidence?

$$P(H \mid e) = \frac{P(e \mid H) P(H)}{P(e)}$$

Posterior

How probable is our hypothesis given the observed evidence? (Not directly computable)

Marginal

How probable is the new evidence under all possible hypotheses? $P(e) = \sum P(e | H_i) P(H_i)$

Reasoning with uncertainty

- "Bayesian network" was termed by <u>Judea Pearl</u> in 1985
- Bayes' conditioning is the basis for updating information in the graph
- The distinction between causal and evidential modes of reasoning
- In the late 1980s, established as a field of study.
 - Pearl's *Probabilistic Reasoning in Intelligent Sy*
 - Neapolitan's Probabilistic Reasoning in Expert

Analogizers

Peter Hart Vladimir Vapnik Douglas Hofstadter

Tribe	Origins	Key Algorithm
Analogizers	Psychology	Kernel machines

From: Dr. Pedro Domingos

A little bit History

- **SVM** : first introduced in 1992, popular because of its success in handwritten digit recognition (1994); Regarded as an important example of "kernel methods"
- Recommender Systems:
 - E.g., Matrix Factorization

Recommender Systems

NETFLIX				 Your Account & Help Movies, TV shows, actors, directors, genres
Watch Instantly	Browse DVDs	Your Queue	Movies You'll 💙	
Cong Add mov Spider-Man 3 Spider-Man 3 Spider-Man 3 Add Add Add Add Mat Interester Las Vegas: Sease (6-Disc Series	son 2 s	ns! Movies v or Rate ones you'v 300 300 Add Add Not Interested The Last Samurai	ve think You re seen for even bett The Rundown The Rundown Add Add Met Add Met Interested Star Wars: Episode III	will www. er suggestions. Ba Bays I

Machine Learning in a Nutshell

ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

The Big Picture

Tribe	Problem	Origins	Solution	Module in Nutshell
Symbolists	Knowledge composition	Logic, philosophy	Inverse deduction	Representations;
Connectionists	Credit assignment	Neuroscience	Backpropagation	Representations; Numerical Optimization
Evolutionaries	Search Structure discovery	Evolutionary biology	Genetic programming	Discrete Optimization;
Bayesians	Uncertainty	Statistics	Probabilistic inference	Likelihood type Score function;
Analogizers	Similarity	Psychology	Kernel machines	Representations; Reconstruction loss

Dr. Yanjun Qi / UVA CS

Your UVA Email ID:

Your Name:

Q12: Summarize what we have covered

Task	
Representation	
Score Function	
Search/Optimization	
Models, Parameters	

Final Review

□ Five Tribes of Machine Learning

□ Four books to recommend

What we have covered (I)

Supervised Regression models

- Linear regression (LR)
- LR with non-linear basis functions
- LR with Regularizations
- Feature selection *

Scikit-learn : Regression

- **Data**/points/instances/examples/samples/records: [rows]
- **Features**/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

(1) Multivariate Linear Regression

(2) Multivariate Linear Regression with basis Expansion

 $\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)\theta$

(3) Regularized multivariate linear regression

12/4/19

(4) Feature Selection

(4) Feature Selection

 Thousands to millions of low level features: select the most relevant one to build better, faster, and easier to understand learning machines.

Final Review

□ Five Tribes of Machine Learning

Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory Review of Six Assignments

□ Four books to recommend

Scikit-learn : Classification

What we have covered (II)

Supervised Classification models

- K-nearest Neighbor
- Support Vector Machine
- Logistic Regression
- Neural Network (e.g. MLP, CNN)
- Generative Bayes Classifier (Naïve, Gaussian LDA, QDA)
- Random forest / Decision Tree / Boosting

Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression, neural networks
 - e.g., support vector machine, decisionTrees
- 2. Generative:
 - build a generative statistical model
 - e.g., naïve bayes classifier, Bayesian networks
 - 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

(1) K-Nearest Neighbor

(2) Support Vector Machine

(3) Logistic Regression

(4) Neural Network

Deep Learning Way: Learning features / Representation from data

Some Recent DNN Trends

(6) Decision Tree / Bagging DT

(7) Random Forest

(8) Boosting

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

✓ different assumptions on data
 ✓ different scalability profiles at training time
 ✓ different latencies at prediction (test) time
 ✓ different model sizes (embedability in mobile devices)

✓ different level of model interpretability

52

Final Review

□ Five Tribes of Machine Learning

Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory Review of Six Assignments

□ Four books to recommend

Then after classification

What we have covered (III)

Unsupervised models

- Dimension Reduction (PCA)
- Hierarchical clustering
- K-means clustering
- GMM/EM clustering

An unlabeled Dataset X

a data matrix of *n* observations on *p* variables $x_1, x_2, \dots x_p$

Unsupervised learning = learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a label of examples is given

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns]

(0) Principal Component Analysis (optional)

Reconstruction Loss: force the 'hidden layer' units to become good / reliable feature detectors

(1) Hierarchical Clustering

(2) K-means Clustering

(3) GMM Clustering

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

/ different scalability profiles

12/4/19

✓ different model sizes (embedability in mobile devices)

Final Review

□ Five Tribes of Machine Learning

Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory Review of Six Assignments

□ Four books to recommend

What we have covered (IV)

Learning theory / Model selection

- K-folds cross validation
- Expected prediction error
- Bias and variance tradeoff
- Generative vs. Discriminative Classifiers

http://scikit-learn.org/stable/

scikit-learn

Machine Learning in Python

Examples

- · Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ... – Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ... – Examples

Clustering

Automatic grouping of similar objects into sets.

 Applications: Customer segmentation,

 Grouping experiment outcomes

 Algorithms: k-Means, spectral clustering,

 mean-shift, ...

 — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. - Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning **Modules**: grid search, cross validation, met-

rics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. **Modules**: preprocessing, feature extraction.

Examples

CV-based Model Selection We're trying to decide which algorithm / hyperparameter to use.

• We train each model and make a table...

i	f _i	TRAINERR	10-FOLD-CV-ERR	Choice
1	<i>f</i> ₁			
2	<i>f</i> ₂			
3	<i>f</i> ₃			\checkmark
4	<i>f</i> ₄			
5	f ₅			
6	f ₆			

Hyperparameter tuning

Bias-Variance Trade-off for EPE: (Extra)

Recap: Bias-Variance Tradeoff / Model Selection

Logistic Regression vs. Naïve/ LDA

Discriminative classifier (Logistic Regression)

- Smaller asymptotic error
- Slow convergence ~ O(p)

Generative classifier (Naive Bayes)

- Larger asymptotic error
- Can handle missing data (EM)
- Fast convergence ~ O(lg(p))

the speed at which a convergent sequence approaches its limit is called the rate of convergence.

What we have covered for each Component

Task	Regression, classification, clustering, dimen-reduction	
Representation	Linear func, nonlinear function (e.g. polynomial expansion), local linear, logistic function (e.g. p(c x)), tree, multi-layer, prob-density family (e.g. Bernoulli, multinomial, Gaussian, mixture of Gaussians), local func smoothness, kernel matrix, local smoothness, partition of feature space,	
Score Function	MSE, Margin, log-likelihood, EPE (e.g. L2 loss for KNN, 0-1 loss for Bayes classifier), cross-entropy, cluster points distance to centers, variance, conditional log-likelihood, complete data-likelihood, regularized loss func (e.g. L1, L2), goodness of inter-cluster similar	
Search/ Optimization	Normal equation, gradient descent, stochastic GD, Newton, Linear programming, Quadratic programming (quadratic objective with linear constraints), greedy, EM, asyn-SGD, eigenDecomp, backprop	
Models, Parameters	Linear weight vector, basis weight vector, local weight vector, dual weights, training samples, tree-dendrogram, multi-layer weights, principle components, member (soft/hard) assignment, cluster centroid, cluster covariance (shape),	

Final Review

□ Five Tribes of Machine Learning

Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory Review of Six Assignments

□ Four books to recommend

HW1

- Q1: Linear algebra review
- Q2: Linear regression model fitting
 - Data loading
 - Basic linear regression
 - Ways to train : Normal equation/ SGD / (mini)-Batch GD
- Sample exam QA:
 - regression model fitting

- Q1: Polynomial regression
 - Model fitting
 - Model selection of degree
 - Many sanity figures to plot
- Q2: Ridge regression
 - Math derivation of ridge
 - Understand why/how Ridge
 - Model selection of Ridge with kCV
- Sample QA:
 - Regularization

- Q1: KNN to implement and model selection of K
- Q2: Support Vector Machines with Scikit-Learn
 - Data preprocessing
 - How to use SVM package
 - Model selection for SVM
 - Model selection pipeline with train-vali, or train-CV; then test
- Sample QAs:
 SVM

- Q1: Neural Network Tensorflow' Playground
 - Interactive learning of MLP
 - Feature engineering vs.
 - Feature learning
- Q2: Image Classification /Keras
 - DNN Tool: Keras using
 - Extra: PCA for image classification
- Sample QAs:
 - Neural Nets

- Q1: Naive Bayes Classifier for Text-based Movie Review Classification
 - Preprocessing of text samples
 - BOW Document Representation
 - Multinomial Naive Bayes
 Classifier BOW way
 - Multivariate Bernoulli Naive
 Bayes Classifier
- Sample QAs:
 - Bayes Classifier

- Q1: Unsupervised Clustering of audio data and consensus data
 - Data loading
 - K-mean clustering
 - GMM clustering (several variations)
 - How to find K: knee-finding plot
 - How to measure clustering: purity
- Sample QAs:
 - Kmeans and GMM
 - Decision trees

Final Review

□ Five Tribes of Machine Learning

Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory Review of Six Assignments

Four books to recommend

Highly Recommend One Book: 0. By Dr. Domingos: Master Algorithm

So How Do Computers Discover New Knowledge?

- 1. Symbolists--Fill in gaps in existing knowledge
- 2. **Connectionists**--Emulate the brain
- 3. Evolutionists -- Simulate evolution
- 4. Bayesians--Systematically reduce uncertainty
- 5. Analogizers--Notice similarities between old and new

SRC: Pedro Domingos ACM Webinar Nov 2015 http://learning.acm.org/multimedia.cfm

Highly Recommend Four Extra-curriculum books

- 1. Book Algorithms to Live By: The Computer Science of Human Decisions
 - <u>https://books.google.com/books/about/Algorithm</u>
 <u>s to Live By The Computer Scien.html?id=xmeJ</u>
 <u>CgAAQBAJ&source=kp book description</u>
 - This book provides a fascinating exploration of how computer algorithms can be applied to our everyday lives.

Highly Recommend Four Extra-curriculum books

- 2. Book: So Good They Cannot Ignore You-Why Skills Trump Passion in the Quest for Work You Love
 - <u>https://www.amazon.com/Good-They-Cant-Ignore-You-gebook/dp/B0076DDBJ6/ref=tmm_kin_swatch_0?</u>

encoding=UTF8&qid=1497747881&sr=1-1

- The idea of Career capital rare and valuable skills need deliberate practice
- − 10,000 hours of deliberate practice → Expert!

Highly Recommend Four Extra-curriculum books

- 3. Book: <u>Homo Deus- A Brief History of Tomorrow</u>
 - <u>https://www.goodreads.com/book/show/31138556-</u>
 <u>homo-deus</u>
 - "Homo Deus explores the projects, dreams and nightmares that will shape the twenty-first century from overcoming death to creating artificial life. It asks the fundamental questions: Where do we go from here? And how will we protect this fragile world from our own destructive powers? This is the next stage of evolution. This is Homo Deus.""

References

Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.

- □ Prof. Domingos' slides
- □ Prof. Andrew Ng's slides