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Notation

* [nputs

* X, X; (jth element of vector X ') : random variables written in capital
letter

* p #input variables, n #observations
e X : matrix written in bold capital
* Vectors are assumed to be column vectors

* Discrete inputs often described by characteristic vector (dummy
variables)

* Qutputs
* quantitative Y
* qualitative C (for categorical)

e Observed variables written in lower case
* The i-th observed value of X; is X;; (a scalar)



DEFINITIONS - SCALAR

€ ascalaris a number
* (denoted with regular type: 1 or 22)



DEFINITIONS - VECTOR

®\/ector: a single row or column of numbers
e denoted with bold small letters
* rOW vector

= 1 2 3 4 5]

* column vector (default)

b=

N WN—
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DEFINITIONS - VECTOR

e \ector in real space R"is an
ordered set of n real numbers.

—e.g.v=(16,3,4)"isin R?

— A column vector:

— v! as a row vector:

—/—}

\

1 6 3 4)

~ W &N =




DEFINITIONS - MATRIX

* m-by-n matrix in R™"with m rows and n columns, each entry filled
with a (typically) real number:

* e.g.3*3 matrix

1 2 8)
4 78 6
\9 3 2) Square

matrix




DEFINITIONS - MATRIX

€ We normally write the entry of a matrix as

A= an d»n dAi
aA» d» A2

€ Denoted with a Capital letter
€ All matrices have an order (or dimension):
that is, the number of rows * the number of columns.

So, Ais2 by 3 or (2 *3).

€ A square matrix is a matrix that has the same number of rows and
columns (n * n)
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Special matrices

S O O Q

(a 0 0
0O b O
0 0 ¢/
b 0 O
d e 0
/g h
0 i J

diagonal

tri-diagonal

(1 0
0 1
0 0

0"
0

(a b
0 d e

0 0 f)

c)

(a 0 0)
b ¢ 0

L)

Kd e f}

upper-triangular

lower-triangular

| (identity matrix)



Special matrices:
Symmetric Matrices

_ 4T (., _
A=4" (a;=a ;)
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_ I ai;z; Q12 -+ Qin |
Column or Row Views to ) Qg1 Q9o -+ Qo
Denote - ; ;
Am1l1 am2 Amn

e We denote the jth column of A by a; or A. ;:

e We denote the ith row of A by a! or A;.:
T

_a S

b —

e Note that these definitions are ambiguous (for example, the a; and a in the previous
two definitions are not the same vector). Usually the meaning of the notation should
be obvious from its use.
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Review of MATRIX OPERATIONS

Transposition

Addition and Subtraction
Multiplication

Norm (of vector)

Matrix Inversion

Matrix Rank

Matrix calculus



(1) Transpose

Transpose: You can think of it as

e “flipping” the rows and columns

e.8. a)
8 (b] =(a ) o (A1) =4
a bY (a c o (AB)" =pB'A!
c d) \b d o (A4 B)T = AT + BT
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(2) Matrix Addition/Subtraction

* Matrix addition/subtraction
* Matrices must be of same size.
* Entry-wise operation across all entries



(2) Matrix Addition/Subtraction

An Example

* |f we have

>
|
(OANOO N

(@) QLAY O

and B=|8 11

7 10|

9 12

then we can calculate C= A + B by

C=A+B=

8/4/20

O

(@) PN\

7 10] [ 8 12]
8 11|=|11 15

9 12| |14 18
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(2) Matrix Addition/Subtraction

An Example

* Similarly, if we have

>
|
(OANOO N

then we can calculate C=A-B by

8/4/20

(@) QLAY O

O

and B=

(@) JELNY O

7 10|
8 11

9 12

7 10] [-6
8 11|=|-5
9 12| |4
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OPERATION on MATRIX

w N

o

(@)}

~J .b
™ e e v v v
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Transposition

Addition and Subtraction
Multiplication

Norm (of vector)

Matrix Inversion

Matrix Rank

Matrix calculus
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(3) Products of Matrices

* We write the multiplication of two matrices A and B as AB

 This is referred to either as
* pre-multiplying B by A
or
e post-multiplying A by B

 So for matrix multiplication AB, A is referred to as the premultiplier
and B is referred to as the postmultiplier



Products of Matrices

* If we have A;z,3) and B, then

all a12 a13 bll I:)12

21 I:)22
a31 a32 a33 I:)31 b32

AB

Il
Q
~
Q
N
N
Q
N
W
>
[l

where Ciy = aybyy +apb, +ay3b;,
Ci, = ayby, +a,,b,, +a;5bs,
Cy; = @yby; +ay,D,, +axbsy,
Cy, = Ay, +a,,0,, +255b;,
C3; = @yby; +a3,b,, +axby,
C3, = ayby, +a5,b,, +a55b;,
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Matrix Multiplication

An Example
* If we have (1 4 7] 1 4
A=(2 5 8| and B=|2 5
36 9 3 6
1 4 7| [1 4] |cy c,| [30 66]
then aAg_|2 5 8[x|2 5|=|cy c.|=|36 81
36 9] |3 6] |cy G| |42 96
where ¢, =a,b,, +a,b,, +a.b,, = 1(1)+4(2)+7(3)=30
C, = ayby, +apby, +apb;, =1(4)+4(5)+7(6)=66
Cyy = ayby, +ay,b,, +ayb; =2(1)+5(2)+8(3)=36
Cpy = ayby, +ayb,, +aybs, =2(4)+5(5)+8(6) =81
Cy; = ayby, +ay,b,, +ayb; =3(1)+6(2)+9(3) =42
e Cy, = ay,by, +a,b5; % a,bs, =3(4)+6(5)+9(6) =96



Products of Matrices

M X N gxp
[ay ap . ay |[buy b o D] [en
d dx : ap byy Dby . bzp | 21
L dm1 dm2 . (’mnd_bql bql : bqu L Cim1
n
T - =Y dgby
Condition: n=q ¢ = Z %’y
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Cp - Cip |

C»n . Cyp
Cij

Cm2 . Cmp |
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Products of Matrices: Conformable

* In order to multiply matrices, they must be conformable (the number
of columns in the premultiplier must equal the number of rows in
postmultiplier)

* Note that
ean (mxn)x(nxp)=(mxp)
an (m xn) x(p x n) =cannot be done
*a(lxn)x(nx1)=ascalar(1x1)



Some Properties of
Matrix Multiplication

* Note that
* Even if conformable, AB does not necessarily

equal BA (i.e., matrix multiplication is not
commutative)

* Matrix multiplication can be extended beyond
two matrices

* matrix multiplication is associative, i.e.,
A(BC) = (AB)C



Some Properties of
Matrix Multiplication

€ Multiplication and transposition

(AB)T = BTAT

€ Multiplication with Identity Matrix

Al =14 = A. where [ =




Special Uses for
Matrix Multiplication

* Products of Scalars & Matrices = Example, If we have

LS

A=|3 4

_5 6_

and b=3.5

then we can calculate bA by

bA =35

# Note that bA=A

8/4/20

SRS
3 4

_5 6_

3.5 7.0
10.5 14.0

17.5 21.0

0 if b is a scalar
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Special Uses for
Matrix Multiplication

* Dot (or Inner) Product of two Vectors

* Premultiplication of a column vector a by
conformable row vector b yields a single value
called the dot product or inner product

ol b — g a"=[3 4 6]

then their inner product gives us

aTb:aob::3 4 6} g =3(5)+4(z)+6(8)=71=bTa

which is the sum of products of elements in
similar positions for the two vectors



Special Uses for
Matrix Multiplication

e OQuter Product of two Vectors

* Postmultiplication of a column vector a by
conformable row vector b yields a matrix
containing the products of each pair of elements

from the two matrices (called the outer product)
- If

00]) 9105

3
a=| 4 and b=
6

then abT gives us

_ |3 15 6 24
ab=4[528]=20832
6 30 12 48
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Special Uses for
Matrix Multiplication

e Quter Product of two Vectors, e.g. a special case :

As an example of how the outer product can be useful, let 1 € R™ denote an n-dimensional
vector whose entries are all equal to 1. Furthermore, consider the matrix A € R™*" whose
columns are all equal to some vector x € R™. Using outer products, we can represent A
compactly as,

| | .
A=z z - z|=| " . = l[11 . 1]=z1".
| | | . . . .
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Special Uses for

Matrix Multiplication

*Matrix-Vector Products (I)

Given a matrix A € R™*" and a vector z € R", their product is a vector y = Az € R™.

If we write A by rows, then we can express Az as,

@
|

8/4/20

Az =
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Special Uses for
Matrix Multiplication

*Matrix-Vector Products (Il)

Alternatively, let’s write A in column form. In this case we see that,

| 1 o
y=Az=|a; ay --- a, ) =\|la |1+ ]| @ |22+...+ | @,
| | ‘

In other words, y is a linear combination of the columns of A, where the coefficients of
the linear combination are given by the entries of z.

Tn .
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Special Uses for
Matrix Multiplication

*Matrix-Vector Products (lll)

to multiply on the left by a row vector. This is written, y! = 27 A for A € R™*", z € R™,
and y € R".

| |

which demonstrates that the ith entry of y” is equal to the inner product of z and the ith
column of A.
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Special Uses for
Matrix Multiplication

*Matrix-Vector Products (V)

yT — :L‘TA
T -
— o —
= ["El "I;2 « s "'B'n,] .
T
c— am _-

= o [— o —]+2[— o —]+.4z[— o —]

so we see that y’ is a linear combination of the rows of A, where the coefficients for the
linear combination are given by the entries of x.
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MATRIX OPERATIONS

w N

o

(@)}

~ BRS
N N N N —' — —

8/4/20

Transposition

Addition and Subtraction
Multiplication

Norm (of vector)

Matrix Inversion

Matrix Rank

Matrix calculus
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(4) Vector norms

A norm of a vector | |x]|| is informally a measure of the
“length” of the vector.

n l/p
ol = (z )
1=1

— Common norms: L4, L, (Euclidean)

n n \/T
lelle =D ol ol = | a2 =X X
i=1 \i:l

- L

infinity

|||~ = max; |x;]
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Vector Norm (L2, when p=2)

°
® [ L ®

8/4/20 Dr. Yanjun Qi /



Special Uses for
Matrix Multiplication

* Sum the Squared Elements of a Vecto

r

* Premultiply a column vector a by its transpose —

If _5
a=|2
3

then premultiplication by a row vector a’
a’ =[ 5 2 8 ]
will yield the sum of the squared values of

elements for a, i.e.

ala=| 5 2 8 |

8/4/20 Dr. Yanjun Qi /
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Vector Norms (e.g.,)

Drawing shows unit sphere in two dimensions for each
norm 5

(—1.6,1.2)
—— L

N

Norms have following values for vector shown
|lzl[1 = 2.8 ||z]l2=20 |z =106

In general, for any vector = in R™, ||z|[; > ||z|2 > ||=]

8/4/20 Dr. Yanjun Qi / 37
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More General : Norm

* A norm is any function g() that maps vectors to real numbers that
satisfies the following conditions:

Non-negativity: for all z € RP, g(x) > 0
Strictly positive: for all x, g(x) = 0 implies that x = 0
Homogeneity: for all  and a, g(ax) = |a| g(x), where |a| is the absolute value.

Triangle inequality: for all x,y, g(x +y) < g(x) + g(y)
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Orthogonal & Orthonormal

Inner Product defined between
column vector x and y, as Y1

n
lyeR = [ Ty Ty - Iy, } L_- = Z.zyyi. = Xey
i=1

If uev=0, ||ul|;!=0, [|v]],!=0
= u and v are orthogonal

If uev=0, [ [u]],=1, ||v[[,=1
- u and v are orthonormal
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Orthogonal matrices

« Notation:

[ dy dp
dr1  da
[ '—qml ”ml

Hi.ﬁ'ﬂ .

« A is orthogonal if:

8/4/20

-

T
Upp

Ili
e

- [aml po "

(1) up.u; =1 or ||up| =1, for every &

(2) uj.up =0, for every j # k (u; 1s perpendicular to u;)
cos(9)
sin(@)

|

—sin(8)
cos(6)

aryun W g

=lay; ayy -+
= [ay ay -+

|

aln]

aZn]qA

a mn ]
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Orthogonal matrices

e|f square A is orthogonal, it is easy to find its inverse:

A4T =AT4=1 (e, 4 =47

Property:  ||4v|| = ||v|| (does not change the magnitude of v)



Matrix Norm

* Definition: Given a vector norm | |x]||, the matrix
norm defined by the vector norm is given by:

| Ax
HAH =max ——
0 x|

* What does a matrix norm represent?

* It represents the maximum “stretching” that A does
to a vector x -> (Ax).



Matrix 1- Norm

Theorem A: The matrix norm corresponding to 1-norm
is maximum absolute column sum:

4], =
Proof: From previous sllde we can have |4 = max|4x],

|x[=1
Also, AX:xlAl‘l'szz +...+ann:ZXjAj

j=!

where A, is the j-th column of A.



MATRIX OPERATIONS

w N

o

(@)}

~J .b
™ e v v v e

8/4/20

Transposition

Addition and Subtraction
Multiplication

Norm (of vector)

Matrix Inversion

Matrix Rank

Matrix calculus
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(5) Inverse of a Matrix

e The inverse of a matrix A is commonly denoted by A or inv A.

* The inverse of an n x n matrix A is the matrix Al such that AAl1=1=
AlA

* The matrix inverse is analogous to a scalar reciprocal

* A matrix which has an inverse is called nonsingular



(5) Inverse of a Matrix

* For some n x n matrix A, an inverse matrix A1 may not exist.
* A matrix which does not have an inverse is singular.
e An inverse of n x n matrix A exists iff |A| not O

P e

—— - —



THE DETERMINANT OF A MATRIX

®The determinant of a matrix A is denoted by |A| (or det(A) or det A).

®Determinants exist only for square matrices.

®E g IfA=

|:all al2 :|
a21 aZ2

‘A‘ = a,a, —a,,a,,



THE DETERMINANT OF A MATRIX

2 X2
adyp; dypo dyy dypo
'I: . (?TE;'I(A): :Hllﬁj_ﬁ_ﬁzlﬁlz
dz1  dao a1 A2
3x3
ay; dypp dyz
dr7 a3 dyp  dis a2
try dxy dxz | =dyy — + d3;
(33 d33 3y 33 a7
(3 dzx  dsz
N XN

m :
det(A4) = Ei(_l)j *a jgdet(Ay), forany k2 1 <k <m
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THE DETERMINANT OF A MATRIX

det(AB) = det(A)det(B)

det(A+ B) # det(A) + det(B)

(a,;, 0
0 a

diagonal matrix: If 4=
0 0

8/4/20 Dr. Yanjun Qi /
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. then det(A4) =[] a;
i=1
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HOW TO FIND INVERSE MATRIXES? An example,

 Jli _ _
4 A a b and |A| notO

A" =

det(A) |—c a



Matrix Inverse

* The inverse Al of a matrix A has the property:
AA1=ATA=]

e Al exists if only if det(A) # 0

* Terminology
e Singular matrix: A1 does not exist
* [[l-conditioned matrix: A is close to being singular



PROPERTIES OF INVERSE MATRICES

" (4B)' = B'A’

) - ()

(4') = 4

T



Inverse of special matrix

* For diagonal matrices D! = diag{d; ", .. ..
* For orthogonal matrices A-l — AT

* a square matrix with real entries whose columns and rows are
orthogonal unit vectors (i.e., orthonormal vectors)

8/4/20 Dr. Yanjun Qi /
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Pseudo-inverse

* The pseudo-inverse A* of a matrix A (could be non-square, e.g., m x n)
is given by:

.A+ :(:’ITA)_IAT

* |t can be shown that:

ATA4 =1 (provided that (AT ‘4)_1 ex1sts)

8/4/20 Dr. Yanjun Qi /
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MATRIX OPERATIONS

Transposition

Addition and Subtraction
Multiplication

Norm (of vector)

Matrix Inversion

Matrix Rank

Matrix calculus



(6) Rank: Linear independence

e Asetof vectorsis linearly independent if none of them can be
written as a linear combination of the others.

o[ [ [

X3 - _2 Xl + X2
=» NOT linearly independent

N —
—

V]
()|
_ o
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(6) Rank: Linear independence

* Alternative definition: Vectors vy,...,v, are linearly independent if
C1Vqt+...+C v = 0 implies ¢;=...=¢, =0

/| | IVCD (0)
v, v, vle =10
S | \e; ) \0)

e.g.
g10 0
u

" (Vj - (u,v)=(0,0), i.e. the columns are
L linearly independent.



(6) Rank of a Matrix

*rank(A) (the rank of a m-by-n matrix A) is

= The maximal number of linearly independent columns
=The maximal number of linearly independent rows

L1 2 1
e If Ais n by m, then 01 4 2
e rank(A)<= min(m,n) Rank=? Rank=?

* If n=rank(A), then A has full row rank
* I[f m=rank(A), then A has full column rank



(6) Rank of a Matrix

* Equal to the dimension of the largest square sub-matrix of A that has a

non-zero determinant.

i 5 2
3 9 6
8 10 7

1 2 9

det(A) = 0, but det(

8/4/20

14
21

=

28

e o LIS R
o i

10
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(6) Rank and singular matrices

rank(AB) <= min( rank(A), rank(B) )

It 4 1s nxn, rank(A4) = n 1tf A4 1s nonsingular (1.e., invertible).
It 4 1s nxn, rank(A4) = n itt det(A4) # 0 (full rank).

If 41s nxn, rank(A4) < n it 4 1s singular

We can use row reduction to calculating Rank of a matrix




The following complexity figures assume that arithmetic with individual elements has complexity O(1), as is the case with fixed-preci
operations on a finite field.

Operation Input Output Algorithm Complexity
T Schoolbook matrix multiplication m
From Wiki s e O(r)
Strassen algorithm O(r?-807)
Matrix multiplication Two nxn matrices | One nxn matrix
Coppersmith-Winograd algorithm O(r?-376)
Optimized CW-like algorithmsl'4I[151[16] | O(2-373)
One nxm matrix &
Matrix multiplication ) One nxp matrix Schoolbook matrix multiplication O(nmp)
one mxp matrix
Gauss—Jordan elimination o)
. Strassen algorithm O(n?-807)
Matrix inversion One nxn matrix One nxn matrix
Coppersmith-Winograd algorithm O(n?-376)
Optimized CW-like algorithms O(r?-373)
One mxm matrix,
. O(mr?)
one mxn matrix, &
: (m=n)
one nxn matrix
Singular value decomposition | One mxn matrix
One mxr matrix,
one rxr matrix, &
one nxr matrix
Laplace expansion o(n!)
Division-free algorithm!!7] o(n*)
Determinant One nxn matrix One number LU decomposition o(rd)
Bareiss algorithm o)
: nlicationl18] 373
. Fast matrix multiplication O(n?-373)
Back substitution Triangular matrix | n solutions Back substitution! ] od
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MATRIX OPERATIONS

Transposition

Addition and Subtraction
Multiplication

Norm (of vector)

Matrix Inversion

Matrix Rank

Matrix calculus



Review: Derivative of a Function

a+h)—1fla
limf( ) f( ) is called the derivative of fat U.
h—0

We write: f'(x)ZIimf(x+h)_f(x)

h—0 h

“The derivative of T with respect to X is ...”

There are many ways to write the derivativeof ) = f ()C)

=>» e.g. define the slope of the curve y=f(x) at the point x

8/4/20 Dr. Yanjun Qi /
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Review: Derivative of a Quadratic Function

y=x"-3
RN A y’:hm(x+h)2—3—(x2—3)
\/ h—0 h

- im/f+2xﬁ+l>9\—)(f
Y _£—>0 X

32-10 1 23 y':limZX‘F/ﬁ

h—0

N = O — N W N W O

— AN L BN b o

> NIRV VO e

y' =2x
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Single Var-Func to Multivariate

Single Var- Multivariate Calculus

Function

Derivative Partial Derivative

Second-order Gradient

derivative Directional Partial Derivative
Vector Field

Contour map of a function

Surface map of a function

Hessian matrix

Jacobian matrix (vector in / vector out)




Some important rules for taking
(partial) derivatives

Scalar multiplication: 0,[af(z)] = al0, f(x)]

Polynomials: 0,[z*] = kx*~1

Function addition: 0;[f(x) + g(x)] = [0 f(x)] + [0r9(x)]

Function multiplication: 0, [f(x)g(x)] = f(z)[0z9(x)] + [0 f(x)]g(x)

Function division: 8 [M] _ [0:f(@)]g(z) = f(2)[0z9(x)]
- Le(=) l9(2)]?

Function composition: 0.[f(g(x))] = [0:9(x)][0 f](g(x))
Exponentiation: 0,[e*] =e®* and 0;[a”] = log(a)e”®

1

x

Logarithms: 0, [log x| =

8/4/20 Dr. Yanjun Qi / 66



Review: Definitions of gradient
(Matrix_calculus / Scalar-by-matrix)

Suppose that f : R™*" — R is a function that takes as input a matrix A of size m x n and
returns a real value. Then the gradient of f (with respect to A € R™*™) is the matrix of

=» Denominator layout

of(A) of(A) ... Of(4)
Sfch St S
VAf(A) e R = | BAn oAm T oma
of(A) Of(A) ... 8f(A)
| 0Am1  O0Am2 9Amn |

In principle, gradients are a
natural extension of partial
derivatives to functions of

multiple variables.
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Review: Definitions of gradient
(Matrix_calculus / Scalar-by-vector)

e Size of gradient is always the same as
the size of variable

=» Denominator layout

af(-’lls) n o
@) |crr If rr €
V.fz)=| >

8/4/20 Dr. Yanjun Qi /
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For Examples

8/4/20

——————————————————————————————————

- 0xTa B Dalx _ .
SN S . dx _____ . :
Da’ Xb T
0X
T~T
da X'b bal
OX
DalXa B Dal X1 a ol
0X N 0X N
Ox! Bx
— (B+ B!
Ox (B+B)x
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Exercise: a simple example

( 1
f(w):wTa:[wl,Wz,wJ 2 |=w, +2w,+3w,
3
\
=» Denominator layout
o _,
awl o ; ( 1 A
of .y af_awa_a_ )
dws ow  Jdw 3
9f — 3 ./

Ows

8/4/20 Dr. Yanjun Qi /
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Even more general Matrix Calculus:
Types of Matrix Derivatives

Scalar Vector Matrix
Scalar Z—f dar — [E dF _ [ai
X dx ox dx dx
Vector g—f{ = [:)j;l ] Z)I; = [aa—)];’]
Matrix % = [%fu]

Adapted from Thomas Minka. Old and New Matrix Algebra Useful for Statistics




Review: Hessian Matrix / n=2 case

Singlevariate - multivariate f(X,Z)
[ af )
* 15t derivative to gradient, . | ax
g=Vf=|
\ 9z
» 2nd derivative to Hessian ( Eidd 2 f
H — aXZ ava
& f & f

\ 0x0z azz




Review: Hesslan Matrix

Suppose that f : R™ — R is a function that takes a vector in R™ and returns a real number.

Then the Hessian matrix with respect to z, written V2f(z) or simply as H is the n x n
matrix of partial derivatives,

- @) M@ ) T
61:% 8.’1313.'122 6m16xn
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Hessian PD/PSD (Extra)

Let f : D — R be a function on non-singular, convex domain D C R¢ and let us assume the
second-order derivatives of f exist. It is well known that f is convex if and only if its Hessian

V2 f(z) is positive semi-definite for all z € D. It is also known that if V2 f(z) is positive definite
for all z € D, we may conclude that f is strictly convex (for a reference, see Boyd and
Vandenberghe, 2004).

On the other hand, if f is strictly convex, we still merely know that V2 f(z) is positive semi-definite
for all z € D. That is, there may be z € D such that yT V2 f(z)y = 0 for some y # 0.

As an example, consider f(z) = z*. In this case, f is strictly convex, but f”(z) = 1222 and, hence,
yf"(z)y = 0forz = 0 and yf"(z)y > 0 forall z # 0.

http://people.seas.harvard.edu/~yaron/AM221/lecture_notes/AM221_lecturel0.pdf

Theorem 2. Let S CR" be a convez set and f: S — R be twice continuos differentiable on S.

1. If Hy(x) is positive semi-definite for any x € S then f is convez on S.
2. If Hy(x) is positive definite for any x € S then f is strongly convez on S.

3. If S is open and f is convex, then Hy(x) is positive semi-definite Vx € S.



Today Recap

O Linear Algebra and Matrix Calculus Review

0) Basic Calculus )

1) Transposition

2) Addition and Subtraction

3) Multiplication _

4) Norm (of vector) T

5) Matrix Inversion

6) Matrix Rank RS Good to KNOW
7)  Matrix calculus
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Extra

* The following topics are covered by handout, but not by this slide
(some will be covered ...)
* Trace()
 Eigenvalue / Eigenvectors
* Positive definite matrix , Gram matrix
e Quadratic form
* Projection (vector on a plane, or on a vector)
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Best Place to Review:
Khan Academy

Linear algebra

Vectors and spaces
0 of 45 complete

Let's get our feet wet by thinking in terms of vectors and spaces.

0 Matrix transformations
0 of 58 complete
Understanding how we can map one set of vectors to another set.
Matrices used to define linear transformations.

Alternate coordinate systems (bases)
0 of 39 complete

We explore creating and moving between various coordinate systems.

Vectors
Linear combinations and spans
Linear dependence and independence

Subspaces and the basis for a subspace

Functions and linear transformations
Linear transformation examples
Transformations and matrix multiplicati...

Inverse functions and transformations

Orthogonal complements
Orthogonal projections

Change of basis

8/4/20 Dr. Yanjun Qi /

Vector dot and cross products
Matrices for solving systems by elimina...

Null space and column space

Finding inverses and determinants
More determinant depth

Transpose of a matrix

Orthonormal bases and the Gram-Sch...

Eigen-everything
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Best Place to Review:
Khan Academy

Multivariable calculus

Thinking about multivariable functions
2 of 22 complete

The only thing separating multivariable calculus from ordinary calculus
is this newfangled word "multivariable". It means we will deal with
functions whose inputs or outputs live in two or more dimensions. Here
we lay the foundations for thinking about and visualizing multivariable
functions.

Derivatives of multivariable functions
6 of 72 complete

What does it mean to take the derivative of a function whose input lives
in multiple dimensions? What about when its output is a vector? Here
we go over many different ways to extend the idea of a derivative to
higher dimensions, including partial derivatives, directional derivatives,
the gradient, vector derivatives, divergence, curl, etc.

Applications of multivariable derivatives

1 of 37 complete

The tools of partial derivatives, the gradient, etc. can be used to
optimize and approximate multivariable functions. These are very useful
in practice, and to a large extent this is why people study multivariable
calculus.

Introduction to multivariable calculus
Visualizing scalar-valued functions

Visualizing vector-valued functions

Partial derivatives

Gradient and directional derivatives
Partial derivative and gradient (articles)
Differentiating parametric curves
Multivariable chain rule

Curvature

Partial derivatives of vector-valued fun...

Tangent planes and local linearization
Quadratic approximations

Optimizing multivariable functions

Transformations

Visualizing multivariable functions (artic...

Differentiating vector-valued functions (...
Divergence

Curl

Divergence and curl (articles)
Laplacian

Jacobian

Optimizing multivariable functions (artic...
Lagrange multipliers and constrained o...

Constrained optimization (articles)



From Khan Academy

e Matrix representing linear transformation of the basic space (each
column of the matrix is the new basis)

e Matrix determinant (therefore representing the transformed unit
square’s area, the bigger, means the bigger transformation)

* Jacobian matrix determinant therefore representing the speed/amount
of func change at each point

* Laplacian of a function is the trace of its Hessian

* Harmonic func means a function’s laplacian is 0 in every point = some
level of function stability / because curvature or hessian diag means on
average how the neighbor points are higher than me or NOT
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