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Complexity / Goodness of Fit / Generalization
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y
e e
e e o
e o ®
e
e
X
I\ A ?
4 1 v Too complex
I \
\ |
y o,
< ’\\Qﬂ({““’t 1 'l \ :. \‘ L‘. !
I ® 1
> e ?o A S N
I v
1 \ | 1 /
a (R \ “ /
h (I 7
VI >
(W X
\/

9/24/20 0 .
' High Variance

Too simple?

@ e_-~
’/

P und&r-ﬁt

-

® o_eo o A

High Bias

v

v

What ultimately matters: GENERALIZATION
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Complexity / Goodness of Fit / Generalization:
Decision boundaries in global vs. local models Y¢ ovinge,

K=15 K=1 b,“ ¢ J-
/ XZ

W‘M{‘:t ? —X

Linear classification 15-nearest neighbor 1-nearest neighbor

o Wﬁfﬁg

* K acts as a smoother

[ ]

global * |ocal
* stable | * accurate
[ ]

can be inaccurate e unstable

What ultimately matters: GENERALIZATION
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Lesson Learned : Training Error from KNN

* When k=1,

* No misclassifications
(on training): Overfit

* Minimizing training
error is not always
good (e.g., 1-NN)

9/24/20

1-nearest neighbor averaging




Roadmap

‘ *Bias-variance decomposition

*Bias-Variance Tradeoff / Model Selection

*Remedy when Overfit / Underfit
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Review: Mean and Variance of
Random Variable (RV)

X: random variables written in capital letter

-
S X =(></, YZ, XP] Yandolm \Ve(H{vy
> Y Yandvw varia &g

= 5(?5 r andow Varaplg
L= eq. 9'X
> 3 andom Vayiable
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Review: Mean and Variance of  Bepnalli +¢ ﬁ ,}
Random Variable (RV) ’

{,P/f‘-\\: 0.]
* Mean (Expectation): ’?/f: “.-aq
* Discrete RVs:
E(X):ZVivl. “P(X=v,) (.,37;00(7
Ctt)= 0140
e Continuous RVs: — ‘UL’
E(X):J._oox*p(x)dx T 0,)
NSRS
6K$\¢ L
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Adapt From Carols’ prob tutorial



Review: Mean and Variance of Random Variable (RV)

o
v, .

Bemwlhtéﬁ,:}{ | : 09

4(t) =2t
* Mean (Expectation): =

e Discrete RVs: E (§60))= ?Zyy(;:\): 3;-.‘: [,

Elo X]‘“E[X]/@(X» D, 80)P(X =v)

* Continuous RVs:

E(g(X)) = | g(x)* p(x)dx

9/24/20 . 8
Adapt From Carols’ prob tutorial



Review: Mean and Variance of RV
*Discrete RVs: -
'V(X)zZVi(vi —,u)zP(X:vl-)

*Continuous RVs:

(%)= (-a) e

9/24/20 . ?
Adapt From Carols’ prob tutorial



Statistical Decision Theory (Extra) H

el

*Random input vector: X Pét’ , T if;l
*Random output variable: Y T

9/2
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*Joint distribution: Pr(X,Y )=_>D: &%)
AT ,.

*Loss function L(Y, f(X)) < " ')
wHr» 9N

*Expected prediction error (EPE):

EPE(f) =E(L(Y,f (X)) = [ L(y,f (x))Pr(dx,dy)

eg.= [ (- f(x)l{Pr(dx,dy?
T

Consider

population
distribution

e.g. Squared error loss (also called L2 loss )




Extra EFé
Test Error to EPE: (Extra) iﬂz &— M

(Almost) the same definition:
e Expected Prediction Error:
* Expected Test Error:

* Expected Risk of a hypothesis =, 3‘\
=>» Empirical Risk Minimization le(m R seor
5% b
*Expected prediction error (EPE): 2, Z_(Yi,‘flxa,))
— - g____\':l )

EPE(f) =E(L(Y,f(X))) = ] L(y,f(x))Pr(dx,dy)

e.g.= [ (y - f(x))* Pr(dx,dy)
<TA7>

e.g. Squared error loss (also called L2 loss )

One way to define
generalization: by
considering the
joint population
distribution
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Extra

Decomposition of EPE

* When additive error model: Y = f(X) +e¢ e~ (0, 02)
* Notations —

e Output random variable: Y
* True function: f —> ~€ru@
e Prediction estimator: F A

EPE(zx ) = E[(Y - PD?|X ==z ]
= E((Y -+ -D)X==z]
= E[(Y-N3X =z |4+ E[(f-—DN)IX ==z
; (’L )< ‘])B%[éfwﬂl ]

= 0%+ Var(f) + Bias?(§)
L )

|

Irreducible / Bayes error

9/24/20



Bias-Variance Trade-off for EPE:

EPE (x) = noise? + bias? + variance

N

Unavoidable Error due to
error incorrect
assumptions

Error due to variance
of training samples
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e More so than just these intuitive descriptions, the expected test error mathematically decom-
poses into a sum of three corresponding parts. Begin by writing the model

Y=fX)+e

where € has mean zero, variance o2, and is independent of X. Note that the independence
condition is the an actual (nontrivial) assumption. Recall that (x;,v;), ¢ = 1,...n are inde-
pendent of each other and of (X, Y), all with the same distribution. We’ll look at the expected
test error, conditional on X = x for some arbitrary input z. It follows that

E[(Y — f()°’|X =2] =0 *+E[(f(= )—f(ac))2l. < :

Risk(f(z))

The first term o2 is the irreducible error, or sometimes referred to as the Bayes error, and the
second term is called the risk, or mean squared error (MSE). éﬁ risk further decomposes into

two parts, so that ‘f ‘F (x) ( ‘f ,F) J

Bl - f(z )|X—x]—3+(f()—E[f(>]) +E[(f(2) - E[f()))"], (2)

E\’E BayosE Bias?(f(z)) var(f(m))

the latter terms being the squared estimation bias or simply bias, and the estimation variance or
simply variance, respectively. The decomposition (2) is called the bias-variance decomposition
or bias-variance tradeoff

9/24/20

Extra http://www.stat.cmu.edu/~ryantibs/statml|/review/modelbasics.pdf



E [(Y - f(x))zl =E [(f(x) e f(x))zl

Assuming the Bayes error is independent off (x),

Ele(f(x) — f(x))] = E[|E[f(x) — f(x)] =0

El€?] = 0% + E[€])? = 0?

El(ro0-fw) | =k ’((f(X) - E[f@)]) + (E[f )] - f(x)))zl

http://alex.smola.org/teaching/10-701-15/homework/hw3_sol.pdf
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= E[(r0 - E[F@])* +2(F00 - E[f ) (E[f @] - F) + (E[F )] - £ ("))2]

= £[(re0 - EFCa))| + 26 [(r00 - Elf ] (Ef @] - F )] + £ | (Bl 0] - F60) |

We can show:

2E (0 = E[f)) (E[f 0] - F(0)| = 2(F ) = E[f]E[E[f )] - f )] = 0

Finally,
E|(fx0 - f) | = B[(ro0 - EF @) ] + B[ (EF0) - f) ]

= Bias(f (x), f(x))? + Var(f (x))

Putting it all together:

E [(Y - f(x))zl = Bias(f(x), f(x))? + Var (f(x)) +

- o200 http://alex.smola.org/teaching/10-701-15/homework/hw3_sol.pdf



Extra.
Another View: BIAS AND VARIANCE TRADE-OFF for

parameter estimation (Extra)

A 7\ \

D — 9 /92—9@ / 0T /DT_>©T
\ — 7 ~\
'\ = V)
MSE®) = E[@-0)?] N - tZ., ‘

= BI(O-DH+@-0) "~ = =~
= E[(0—0)%1+ E[(0 — 0)°] + 2E[(0 — 0)(F - 6)]
Var(d) +Bias*()+0- .

/ N

Error due to

Error due to variance

.. incorrect
of training samples

assumptions

MSE(0) = E[(0 — 0)?] = Bias*(0) + Var(6)

9/24/20



Extra, But VERY IMPORTANT

BIAS AND VARIANCE TRADE-OFF for Parameter Estimation (Extra)

0 : true value (normally unknown)

0 : estimator
0: = E[é] (mean, i.e. expectation of the estimator)

*Bias E[(8 — 60)?]
°* measures or of the estimator

* l[ow bias implies on average we will accurately estimate true
parameter from training data

*Variance E[(8 — §)?]
 Measures or of the estimator

* Low variance implies the estimator does not change much as
the training set varies

9/24/20



Model “bias”’ & Model “variance”
m\(ﬁ Rlae O”%B"’Q

s

O : red deét Hi / \le
e Middle RED: Q . UII\Q Ao-ts Lo @ High Variance —‘

« TRUE function 15

Q : Mmean
e
spread

. . it
Error due to bias: qu ﬁue
B[(9 - 9))

* How far off in general from the
9/24/20 21

e

Low Bias

middle red
E[(6 - 6)°]

)

&)

N =

9

e Error due to variance:
* How wildly the blue points

High Bias




Model “bias’ & Model “variance”

° M |d d |e R E D . Low Variance High Variance

e TRUE function
* Error due to bias: lh
* How far off in general from the
middle red

I—hg Bias

) 2
E[(6 —6)7]
* Error due to variance:
* How wildly the blue points
spread

E[(6 - 0)?)]

9/24/20 22




Model “bias’ & Model “variance”

/\

Low Variance High Variance

 Middle RED:
e TRUE function 9

[ pnedle ;,eﬂ

* Error due to bias:
* How far off in general from the

middle red
C AP
* Error due to variance®*

* How wildly the blue points

spread B Y)
-9
AN

9/24/20
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Low Bias




Model “bias’ & Model “variance”

 Middle RED:
e TRUE function

* Error due to bias:
* How far off in general from the

Low Bias

Low Variance

middle red o
- T <
E[(@ - 0)?] \Gfr")& (8

e Error due to variance:
* How wildly the blue points

spriad . R‘.sm\
B9 - 8)?) sodorkic

9/24/20

High Bias

twe

0
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need to make assumptions that
are able to generalize

* Underfitting: model is too “simple” to represent all the relevanﬂ
characteristics

* High bias and low variance

* High training error and high test error

* Qverfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
* Low bias and high variance
* Low training error and high test error
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Roadmap

*Bias-variance decomposition

» *Bias-Variance Tradeoff / Model Selection

*Remedy when Overfit / Underfit

9/24/20



Complexity / Goodness of Fit / Generalization

Training data

v

A

ok

N
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What ultimately matters: GENERALIZATION
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Bias-Variance Tradeoff / Model Selection

Prediction Error

/
underfit region

Y

Training Sample

High Bias Low Bias
Low Variance High Variance
Test Sam

AN

AN

overfit region

Low

9/24/20

High

Model Complexity
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(1) Randomness of Training Sets Pr(X, d )

1.2

High Bias Low Bias
Low Variance High Variance

B Em— ——

1.0

2
>
s
=
IR
0.8

EPE

Expected Test Error

S
>
~
Prediction Error
0.6
|

<
AU S ] \
Underd i ovefy
o
Expected Training Error

o |
o

| | | | | | | |

0 5 10 15 20 25 30 35

Model Complexity (df)

9/24/20 k) A, d 31



Randomness of Train Set
=> Variance of Models, e.g.,

Q% \ﬂ“\“\““@ -~ &v.tF“\ gowg\e_



Randomness of Train Set
=> Variance of Models, e.g.,

)
>
-
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V
>
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(2) Training error can always be reduced when
iIncreasing model comblexitv

N High Bias Low Bias

-~

k=l 2
TewW) =0,

Low Variance High Variance

- —

Prediction Error

© |
° Expected Test E
< a
o
N
o
Expected Training Error
2 |
[ [ [ I [ [ [ |
0 5 10 15 20 25 30 35

Model Complexity (df) (growing Ca pacity:
bias reduced,

9/24/20 5 .
variance increased)



Bias-Variance Tradeoff /

Model Selection

> (omplex

kd —
d/ -
R‘SLA Ay 2
High Bias Low Bias
Low Variance High Varia

Prediction Error

’

underfit region

Training Sample

-

Validation samples /

4 N

[1CE

| (growing capacity:
bias reduced,
variance increased)

N\

overfit region

Low

N Qoryp k¢ E\/Iodel Complexith7
N, W\M\ % > J@W A

9/24/20
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(3) Randomness in the Testing Error!!! Des ﬂ

ELD]

BA=26 | O | ¢ lambda hyparameter controls
"regularization” terms in RLR,
the smaller the lambda, is the
more complex the model (why?)

» Simple (highly regularized) models have
low variance but high bias.

* Complex models have low bias but high
variance.

* You are inspecting an empirical
average over 100 training set.

e.g. Regularized LR as an example.

(growing capacity:
bias reduced,
variance increased)

36



(4) Generalization Error as Bias”2+variance /
Model Selection? = Expected Testing Error

bias decrease
with model
capacity,
Variance
increase with
model capacity
Sum of
Bias"2+Variance
has a valley
shape

* Bias?+variance predicts (shape of) test error quite well.

0.15

0.121

(.09 +

0.06

0.03

0t

) —
bias™ o~ vj
variance @ -9

.
bias™ + variai
test error

e ——

V

1tiji.—-——ff”/”’//’::::,

—_— “)

2 F

-1
In A

() l

2

-

P(X,Y)

O true .
Unknown

* However, bias and variance cannot be computed since it relies on
knowing the true distribution of x and y

9/24/20
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Cross Validation Error as good approximation for
Expected Test error =2 good appx of generalization

See proof
proving

Cross Valid
error as good
approximates
for Expected
Test Error

Prediction Error

in Extra

Ctogs Ul
o e, EPE

N
-

o
-—

0.8

0.4 0.6
|

0.2

0.0

|

High Bias Low Bias

Low Variance High Variance

B — S ——_—

Expected Test Error

g

Expected Training Error

| | | | | | |

5 10 15 20 25 30 35

Model Complexity (df)




Bias-Variance Trade-off

* Models with too few parameters are
inaccurate because of a large bias (not
enough flexibility).

*Models with too many parameters are
inaccurate because of a large variance (too
much sensitivity to the sample randomness).



Regression: Complexity versus Goodness of Fit

y| oy S
) ' £
L ﬁ Low Bias
oW arla.nce/ / High Variance
High Bias
Highest Bias Medium Bias Smallest Bias
Lowest variance Medium Variance Highest variance

Model complexity = low Model complexity = medium  Model complexity = high

9/24/20



Classification, Decision boundaries in global vs. local models

A\

Low Variance /
High Bias

Highest Bias
Lowest variance
Model complexity = low

9/24/20

15-nearest neighbor

Medium Bias
Medium Variance

Model complexity = medium

\49\

1-nearest neighbor

A\

Low Bias
/ High Variance

Smallest Bias
Highest variance
Model complexity = high

41
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Roadmap

*Bias-variance decomposition

*Bias-Variance Tradeoff / Model Selection

» *Remedy when Overfit / Underfit

9/24/20



Machine Learning in a Nutshell

ML grew
out of
work in Al

Optimize a
performance
criterion
using
example data
or past
experience,

Aiming to

generalize to
unseen data

9/24/20

Data

1

Task

1

Representation

1

Score Function

1

Search/Optimization

Models, Parameters

Hyperparameter, Metrics

4
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Review:
Expected Test Error as Bias”™2+variance + Bayes Error

Pr(XT) T

EPE (x) = noise? + bias? + variance

\ Error due to variance

Unavoidable Error due to of training samples
error incorrect

assumptions

(ew, 5 (8.6,)

9/24/20
46



Why causes bad generalization?

*Components T

*Bias: how much the average model over all training
sets differ from the true model?

e Error due to inaccurate
assumptions/simplifications made by the model

*\ariance: how much models estimated from
different training sets differ from each other

9/24/20



Two Types of bad generalization

* Underfitting: model is too “simple” to represent all the relevant
characteristics

G-Iigh bia%)and low variance Bc‘i_s

 High training error and high test error

* Overfitting: model is too “complex” and fits irrelevant
characteristicﬁnoise) in the data

* Low bias andlhigh variance \/dr (am (-
* Low training error and high test error

9/24/20 48



Review:
One important Control of Bias Variance Tradeoftf
= Model Complexity

e

e bias decrease ETE
with model gets
more complex; -
VAran@Q
* \Variance
increase with
bigger model
capacity
2
 Sum of ) @/“5
Bias"2+Variance
>

9/24/20 49



Review:

One important Control of Bias Variance Tradeoff
=2 Model Complexity

bias decrease
with model
capacity,
Variance
increase with
model capacity
Sum of
Bias"2+Variance
has a valley
shape

0.15

0.121

(.09 +

0.06

0.03 ¢

ot

) —
bias™ o~ vj
variance @ -9

e ——

.
— bhias” + varnance
test error ’\/ ]

— “_\

* Bias?+variance predicts (shape of) test error quite well.

2

P(X,Y)
S0

O true .
Unknown

* However, bias and variance cannot be computed since it relies on knowing
the true distribution of x and y

50



Another important Control of Bias Variance Tradeo
=>» Training Size (Extra)

Typical learning curve for high variance: /QW'B/ (Ve

Test error

error

Desired performance

// Training error

m (training set size)

9/24/20 51




Another important Control of Bias Variance Tradeoff

=>» Training Size (Extra)

Typical learning curve for high bias:

error

52

Jor') bw\ A

o

A
5

Test error

Training error

/

/

Desired performance

m (training set size)

e Even training error is unacceptably high.

e Small gap between training and test error.

o0 High training error and high test error

52



s the bias-variance trade off dependent 77/
on the number of samples? (EXTRA) VAY(An 2 J

-

In the usual application of linear regression, your coefficient estimators are unbiased so
sample size is irrelevant. But more generally, you can have bias that is a function of
sample size as in the case of the variance estimator obtained from applying the
population variance formula to a sample (sum of squares divided by n).....

... the bias and variance for an estimator are generally a decreasing function of training size n.
Dealing with this is a core topic in nonparametric statistics. For nonparametric methods with
tuning parameters a very standard practice is to theoretically derive rates of convergence (as
sample size goes to infinity) of the bias and variance as a function of the tuning parameter, and
then you find the optimal (in terms of MSE) rate of convergence of the tuning parameter by
balancing the rates of the bias and variance. Then you get asymptotic results of your estimator
with the tuning parameter converging at that particular rate. Ideally you also provide a data-
based method of choosing the tuning parameter (since simply setting the tuning parameter to
some fixed function of sample size could have poor finite sample performance), and then show
that the tuning parameter chosen this way attains the optimal rate.

9/24/20 53
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https://www.reddit.com/r/statistics/comments/6uajyr/is_the_biasvariance_trade_off_dependent_on_the/

Underfitting

Just right

Overfitting

- High training error

- Training error

- Low training error

Symptoms - Training error close | slightly lower than - Training error much
to test error test error lower than test error
- High bias - High variance
@
)
@
- O
® ®
Regression ® G
Q909 ©O
()
Classification

Remedies

- Complexify model
- Add more features
- Train longer

- Regularize
- Get more data
- Feature selection

Credit: Stanford Machine Learning




(0) If your model complexity can be ordered as X-axis

kd —
d/ -

Rigid Ay = IS CamPIeX

—

o High Bias Low Bias

E Low Variance High Variapce

I -

O

<

% Validation samples /

= e

a¥ / '\

o / N

underfit region Training Sample overfit region

Low High
Model Complexity
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(1) Another Sanity Figure to tell you:
Underfitting / High bias / Model too Simple

Typical learning curve for high bias:

2

Jor') bw\ A

ﬂ/< Test error
%

error

Training error

o~
/

m (training set size)

Desired performance

/

e Even training error is unacceptably high.
e Small gap between training and test error.

o High training error and high test error %



How to reduce Model High Bias ?

* E.g.

- Get additional features

- Try more complex learner



(2) Another Sanity Figure to tell you: Overfitting /
High variance / Model too Complex

Typical learning curve for high variance:

OWA&

Test error

T&wﬁ@

Desired performance
/L/Tr'aining error

m (training set size)

error

e Tlest error still decreasing as m increases. Suggests larger training set will help.
e Large gap between training and test error.

0220 * Low training error and high test error



How to reduce Model High Variance?

* Choose a simpler classifier
* Regularize the parameters

* Get more training data

* Try smaller set of features ’{Qfm«& Sletim 1 < P

* Try feature engineering

* Try multiple models and then use all as ensemble

9/24/20
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Take Away : Three types of plots

* (1) Sanity check (S)GD type Optimization
* Train / Vali Loss vs. Epochs to help you

* https://scikit-learn.org/stable/auto examples/linear model/plot sgd early stopping.html#sphx-glr-auto-examples-
linear-model-plot-sgd-early-stopping-py

* (2) Sanity check hyperparameter tuning

* Train / Vali Loss vs. hyperparameter Values
from sklearn.model_selection import validation curve

* (3) Sanity check if your current model overfits or underfits
* Train / Vali Loss vs. Varying Size of Training

* https://scikit-learn.org/stable/auto examples/model selection/plot learning curve.html#sphx-glr-auto-examples-
model-selection-plot-learning-curve-py

9/24/20 60


https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_early_stopping.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html

| will Code run
https://colab.research.google.com/drive/1TvHQoJpYwc5XKz0QGOY3yulOTIjSY5gn?usp=sharing

score

“:LFO '\,’309
w e

7
0.8
06
04
02
- training score
- validation score
0.0

00 25 50 75 100 125 150 175 200
degree

(1) Validation curve

By scikitlearn Validation_curve function
(normalize all metrics to positive range

https://scikit-learn.org/stable/modules/model evaluation.html#the-scoring-
parameter-defining-model-evaluation-rules

9/24/20

poly order vs training_loss and validation_loss

I training_loss n=300 JRupe
4 -
10°1 — testing_loss n =300 PR rod
-==- training_loss n=40 e~
7
10°9 —-- testing_loss n=40 /
1
102+ /
!
10-1 4 \-\ e ,’, M
ST
10~ A !
\
_ 1
1077 - !
\ ~—=
10-10 - ! et
1 I\,I‘\/\/
10713 4 |I /,
v
0 5 10 15 20 25 30 35 40

(1) Validation curve

By our HW2 ( more close to
modern deep learning

library style )
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https://colab.research.google.com/drive/1TvHQoJpYwc5XKz0QGOY3yu1OTljSY5gn?usp=sharing
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html

score

degree = 1 degree = 9
1.0 10
= training score

- validation score

08 08

0.6
g
=]
b
04 04
02 0.2
= training score
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Review: Model Selection and Assessment

* Model Selection T

* Estimating performances of different models to choose the
best one

* Model Assessment

* Having chosen a model, estimating the prediction error on
new data




Model Selection and Assessment

 When Data Rich Scenario: Split the dataset T

Train Validation *

Model Selection Model assessment

*When Insufficient data to split into 3 parts

* Approximate validation step analytically
* AIC, BIC, MDL, SRM

e Efficient reuse of samples
* Cross validation, bootstrap
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Model Selection (Hyperparameter Tuning) &
Model Assessment Pipelines in HW?2

B

(1) train / Validation / test

*(2) k-CV on train to choose
hyperparameter / then test



The battle against overfitting (Extra) :

* Cross validation

* Regularization

e Feature selection

* Model selection --- Occam's razor

* Model averaging

* The Bayesian-frequentist debate
» Bayesian learning (weight models by their posterior probabilities)



For instance, if trying to solve “spam detection”

using (Extra)

L2 - logistic regression, implemented with gradient descent.

Fixes to try: If performance is not as desired

— Try getting more training examples.

— Try a smaller set of features.

— Try a larger set of features.

— Try email header features.

— Run gradient descent for more iterations.
— Try Newton’s method.

— Use a different value for A.

— Try using an SVM.

9/24/20

Fixes high variance.
Fixes high variance.
Fixes high bias.

Fixes high bias.

Fixes optimization algorithm.
Fixes optimization algorithm.
Fixes optimization objective.
Fixes optimization objective.
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KNN estimator and L2-EPE



Expected prediction error (EPE)

Consider joint
distribution

EPE(f) = B(L(Y, f(X))) = [ L(y, f(x))Pr(dx,dy)

eFor L2 loss: e.g.= [((v=f(x))* Pr(dx,dy)
under L2 loss, best estimator for EPE (Theoretically) is :

Conditional A

W e JOITEIE=D

NN methods are the direct implementation (approximation )

e.g. KNN
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KNN for minimizing EPE

* We know under L2 loss, best estimator for minimize
EPE (theoretically) is :

Conditional

mean  f(x)=E(Y| X =x)

* Nearest neighbours assumes that f(x) is well approximated by
a locally constant function.



Minimize EPE using L2

e Expected prediction error (EPE) for L2 Loss:

EPE(f)=E(Y - f(X))’ = [ (y= f(x))" Pr(dx.dy)
e Since Pr(X,Y )=Pr(Y | X )Pr(X ), EPE can also be written as
EPE(/f)=E By ([Y = f (X | X)
* Thus it suffices to minimize EPE pointwise

Best estimator under L2 loss: f(x)=argmin_ EY|X([Y_C]2 | X =x)
conditional expectation

Conditional ‘

mean | Solution for Regression: |
J(x)=E(Y|X =x)
|

9/24/2o| Solution for kNN:




Minimize EPE using L2 (another proof)

* Let t be the true (target) output and y(x) be our estimate. The

expected squared loss is

E(L)= | :L(t, y(x)) p(x,t)dxdt

e Out goal is to choose y(x) that minimize E(L):
 Calculus of variations:
OE(L) _,
y(x)

[ ¢ =y p(x1)dt =0

[y pCx,nydt = [1p(x,t)dt

y* ()= ”’;g;)” dt = [tp(t| x)dt = E, [1) = E[¢ | ]

9/24/20

= ] (¢ =()? p(x.r)da

e - ———————————— ]




Review : EPE with different loss

Loss Function Estimator f(=)
s+ L(e)
L \/ f(z) = EIY|X = a]
> €
s+ L(e)
L, f(z) = median(Y|X = z)
> €
s+ L(e)
01 —— f(z) = arg max P(Y|X = x)
—5 5 > € (Bayes classifier / MAP)




Expected prediction error (EPE)

Consider joint
distribution

EPE(f) = B(L(Y, f(X))) = [ L(y, f(x))Pr(dx,dy)
For O-1 loss: L(k, €) = 1-d

f(X)=C, if
Bayes Classifier Pr(Ck|X=X):maéxPr(g|X:x)
ge
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More for Overfitting



Bayesian and Frequentist (Extra)

* Frequentist interpretation of probability

* Probabilities are objective properties of the real world, and refer to limiting
relative frequencies (e.g., number of times | have observed heads). Hence one
cannot write P(Katrina could have been prevented/D), since the event will
never repeat.

* Parameters of models are fixed, unknown constants. Hence one cannot write
P(9/D) since ¥ does not have a probability distribution. Instead one can only
write P(D[9).

* One computes point estimates of parameters using various estimators, 9*=
f(D), which are designed to have various desirable qualities when averaged
over future data D (assumed to be drawn from the “true” distribution).

* Bayesian interpretation of probability
* Probability describes degrees of belief, not limiting frequencies.

* Parameters of models are hidden variables, so one can compute P(J/D) or
P(f(09)] D) for some function f.

* One estimates parameters by computing P(9/D) using Bayes rule:

p(D|0)p(0)
p(D)

p(0|D) =



Cross Validation and Variance Estimation

e Cross-validation (CV) is quite a general tool for estimating the expected test error (1), that
makes minimal assumptions—i.e., it doesn’t assume that Y = f(X) + € with ¢ independent of
X, it doesn’t assume that the training inputs x4, ...z, are fixed, all it really assumes is that
the training samples (z1,¥1), ... (Zn,yn) are i.i.d.

We split up our training set into K divisions or folds, for some number K; usually this is done
randomly. Write these as F1,... Fg,s0 F1U...UFg = {1,...n}. Nowforeachk=1,... K, we
fit our prediction function on all points but those in the kth fold, denoted f —() and evaluate
squared errors on the points in the kth fold,

CVA(F~8) = == 3 (s — W (a)™
1€ F

http://www.stat.cmu.edu/~ryantibs/statml/review/modelbasics.pdf
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e What is the difference between choosing say K = 5 (a common choice) versus K = n?

— When K = 5, the function f"(k) in each fold k is fit on about 4/5 - n samples, and so
we are looking at the errors incurred by a procedure that is trained on less data than the
full f in (1). Therefore the mean of the CV estimate (7) could be off. When K = n, this
is not really an issue, since each f~(*) is trained on n — 1 samples

— When K = n, the CV estimate (7) is an average of n extremely correlated quantities;
this is because each f —(k) and f —(®) are fit on n — 2 common training points. Hence the
CV estimate will likely have very high variance. When K = 5, the CV estimate will have
lower variance, since it the average of quantities that are less correlated, as the fits f —(k)
k =1,...5 do not share as much overlapping training data

This is tradeoff (the bias-variance tradeoff, in fact!). Usually, a choice like K =5 or K = 10
is more common in practice than K = n, but this is probably an issue of debate

e For K-fold CV, it’s can be helpful to assign a notion of variability to the CV error estimate.
We argue that

Var (CV(f)) :Var( chk (f~ <k>)) EVar(CVl(f my). 8)

Why is this an approximation? This would hold exactly if CV1(f~®),...CVg(f~&)) were
i.i.d., but they’re not. This approximation is valid for small K (e g., K =5or 10) but not
really for big K (e.g., K = n), because then the quantities CV(f~ (1)) .CVg(Ff~®) are
highly correlated



Extra: Practical issues for Cross Validation

e How to decide the values for K in K-CV:

e Also a bias-variance tradeoff issue

e Commonly used K =10

* when data sets are small relative to the number of models that are being
evaluated, we need to increase K

* K needs to be large for the variance to be small enough, but this makes it
time-consuming.

9/24/20
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Practical issues for CV

* How to decide the values for Kin KCV and a =1/K

e Commonly used K=10and a=0.1.

* when data sets are small relative to the number of models that are being
evaluated, we need to decrease a and increase K

* K needs to be large for the variance to be small enough, but this makes it
time-consuming.

e Bias-variance trade-off

* Small a usually lead to low bias. In principle, LOOCV provides an almost
unbiased estimate of the generalization ability of a classifier, especially when
the number of the available training samples is severely limited; but it can also
have high variance.

e Large a can reduce variance, but will lead to under-use of data, and causing
high-bias.
* One important point is that the test data D, is never used in CV,
because doing so would result in overly (indeed dishonest) optimistic
accuracy rates during the testing phase.
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