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Today Recap: Dimensionality Reduction (Two Ways)

Feature extraction: finds a set of new
features (i.e., through some mapping f()) 
from the existing features.
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Feature selection: chooses a 
subset of the original features.

The mapping f() 
could be linear or 
non-linear

K<<N K<<N

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Extra
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Roadmap

n Dimensionality Reduction (unsupervised) 
with Principal Components Analysis (PCA)
q Review of eigenvalue, eigenvector 
q How to project samples into a line capturing the variation of the 

whole dataset  è Eigenvector / Eigenvalue of covariance matrix
q PCA for dimension reduction 
q Eigenface è PCA for face recognition 
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Review: Mean and Variance

• Variance: 

• Discrete RVs:

• Continuous RVs: 

• Covariance:
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!!Var(X )= E((X − µ)
2)

!!Cov(X ,Y )= E((X − µx )(Y − µ y ))= E(XY )− µxµ y



Review: Covariance matrix
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Calculating eignevalues and eigenvectors

● The eigenvalues λi are found by 
solving the equation  

                det(C-λI)=0 

● Eigenvectors are columns of the 
matrix A such that 

                 C=A D AT 

● Where                       D=
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Review: Eigenvector / Eigenvalue

U UT 1

From Dr. S. Narasimhan

U

u≠0



An example

● Let us take two variables with covariance c>0 
!

● C=                  C-λI= 
!
!
!

                   det(C-λI)=(1- λ)²-c² 
!

● Solving this we find λ1 =1+c 

                                       λ2 =1-c < λ1 
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Review: Eigenvalue, e.g. 
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u≠0



and eigenvectors

● Any eigenvector A satisfies the condition  

                          CA=λA 

!
!
!
!
Solving we find
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and eigenvectors

● Any eigenvector A satisfies the condition  

                          CA=λA 

!
!
!
!
Solving we find
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Review: Eigenvector, e.g. 
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From Dr. S. NarasimhanIn practice, much more advance methods, e.g. power method 



Today

n Dimensionality Reduction (unsupervised) 
with Principal Components Analysis (PCA)
q Review of eigenvalue, eigenvector 
q How to project samples into a line capturing the variation of the 

whole dataset  è Eigenvector / Eigenvalue of covariance matrix
q PCA for dimension reduction 
q Eigenface è PCA for face recognition 
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An unlabeled 
Dataset X 

• Data/points/instances/examples/samples/records: [ rows ]
• Features/attributes/dimensions/independent 

variables/covariates/predictors/regressors: [ columns] 
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a data matrix of n observations on p
variables x1,x2,…xp



The Goal

We wish to explain/summarize the 
underlying variance-covariance structure of 
a large set of variables through a few linear 
combinations of these variables. 

PCA is introduced by Pearson (1901) 
and Hotelling (1933)
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This could be accomplished by rotating the axes (if data is centered).

Suppose we have a sample population measured on p random 
variables    X1,…,Xp. 

Our goal is to develop a new set of K (K<p) axes 
(linear combinations of the original p axes) in the directions of 

greatest variability:

X1

X2

Trick: Rotate Coordinate Axes
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Algebraic Interpretation 

• Given n points in a p dimensional space,

• for large p, how to  project on to a lower-dimensional (K<p) 
space while preserving broad trends in the data and allowing 
it to be visualized?
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FROM NOW we assume Data matrix is centered: è (we subtract the mean 
along each dimension, and center the original axis system at the centroid of 
all data points, for simplicity)



Algebraic Interpretation – (k=1)

• Given n points in a p dimensional space, how to project on to 
a 1 dimensional space?

• Choose a line that fits the data so the points are spread out 
well along the line

10/8/20 Dr. Yanjun Qi / UVA CS 15
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Let us see it on a figure
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Good Better



Algebraic Interpretation – (k=1)

• Formally, to find a line that è Maximizing the sum of squares 
of data samples’ projections on that line 
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Algebraic Interpretation – 1D

• Formally, to find a line (direction) that è Maximizing the sum 
of squares of data samples’ projections on that line 
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u=xTv x: p*1 vector
v: p*1 vector
u: 1*1 scalar   

subject to vTv = 1
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v: p*1 vector
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Algebraic Interpretation – 1D

• Formally, to find a line (direction) that è Maximizing the sum 
of squares of data samples’ projections on that line 

10/8/20 Dr. Yanjun Qi / UVA CS 21

u=xTv x: p*1 vector
v: p*1 vector
u: 1*1 scalar   

subject to vTv = 1

size of x’s projection on 
vector v è u=xTv = vTx



Algebraic Interpretation – 1D case

  

argmax
v

ui( )2
ui

∑
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Algebraic Interpretation – 1D

•How is the sum of squares of projection lengths 
expressed in algebraic terms?
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Point 1: x1
T

Point 2: x2
T

Point 3: x3
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Algebraic Interpretation – 1D

•How is the sum of squares of projection lengths 
expressed in algebraic terms?

max( vTXT Xv), subject to vTv = 1
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Algebraic Interpretation – 1D

•Rewriting this:

vTXTXv = λ = λ vTv = vT (λv)

<=> vT (XTXv – λv) = 0

• Show that the maximum value of vTXTXv is obtained for 
those vectors / directions satisfying  XTXv = λv
•So, find the largest λ and associated u such that the 

matrix XTX when applied to u, yields a new vector 
which is in the same direction as u, only scaled by a 
factor λ.10/8/20 Dr. Yanjun Qi / UVA CS 25

max( vTXT Xv), subject to vTv = 1
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max( vTXT Xv), subject to vTv = 1



Algebraic Interpretation – 1D

• (XTX)v points in some other direction (different from v) in 
general

è If v is an eigenvector and λ is corresponding eigenvalue
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v

(XTX)v

v
XTX v = λ v

So, find the largest λ and associated v such that the matrix XTX when applied to v, 
yields a new vector which is in the same direction as v, only scaled by a factor λ.



Algebraic Interpretation – beyond 1D

•For matrices of the form (symmetric) XTX
• All eigenvalues are non-negative
• See Handout-1 “linear algebra review” / Page 18,19,20

• λ1…λp are the eigenvalues, ordering from large to small, 
• i.e. Ordered by the PC’s importance 
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PCA Eigenvectors è Principal Components

4.0 4.5 5.0 5.5 6.0
2

3

4

5
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1st Principal 
Component, v1

2nd Principal 
Component, v2



PCA (k=1) : How the sum of squares of projection 
lengths relates to VARIANCE ? 

• In a new coordinate system with v as axis, u is the position of sample x on 
this axis
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size of one sample x’s projection on vector v 
è u=xTv = vTx
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PCA (k=1) : How the sum of squares of projection 
lengths relates to VARIANCE ? 
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convert x_i onto v coordinate
è u_i = (x_i)T V

Consider the variation along 
direction v considering all of the 
points   {x_1, x_2,…, x_n}:

èThe variance of all positions 
{u_1, u_2,…, u_n}

From Dr. S. Narasimhan



  
Var u( ) = ui − µ( )2 P u = ui( )

ui
∑ = ui( )2

ui
∑
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How the sum of squares of projection lengths 
relates to VARIANCE ? 

Assuming  
centered
data matrix 

This means the following two objectives 
are the same, for finding a line (direction 
v ) by

è Maximizing the sum of squares of 
data samples’ projections on that v 
line 

è Maximizing the variance of data 
samples’ projected representations 
on  the v axis  



Centered Vs. Not Centered Formulation
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u=xTv

subject to vTv = 1

Center Xn*p vs.
not-centered Xn*p

x: p*1 vector
v: p*1 vector
u: 1*1 scalar   



Today

n Dimensionality Reduction (unsupervised) 
with Principal Components Analysis (PCA)
q Review of eigenvalue, eigenvector 
q How to project samples into a line capturing the variation of the 

whole dataset  è Eigenvector / Eigenvalue of covariance matrix
q PCA for dimension reduction 
q Eigenface è PCA for face recognition 
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Applications

• Uses:
• Data Visualization
• Data Reduction
• Data Classification
• Trend Analysis
• Factor Analysis
• Noise Reduction

• Examples:
• How many unique “sub-sets” are in the 

sample?
• How are they similar / different?
• What are the underlying factors that 

influence the samples?
• How to best present what is “interesting”?
• Which “sub-set” does this new sample 

rightfully belong?
• ……. 

10/8/20 Dr. Yanjun Qi / UVA CS 36
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e.g. the new 
reduced  
representation 
is easier to 
visualize and 
interpret



Interpretation of PCA

From p original coordinates: x1,x2,...,xp:
Produce k new coordinates : v1,v2,...,vk:

v1 = a11x1 + a12x2 + ... + a1pxp

v2 = a21x1 + a22x2 + ... + a2pxp

…
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When p=2



such that:

vk are uncorrelated (orthogonal) from each other 
v1 explains as much as possible of original variance in data set
v2 explains as much as possible of remaining variance
etc.

vk : kth PC retains the kth greatest fraction of the variation in the samples

Interpretation of PCA

10/8/20 Dr. Yanjun Qi / UVA CS 39

vk's are Principal Components

From Dr. S. Narasimhan



• The new variables (PCs) have a variance equal to their corresponding
eigenvalue, since

Var(uk)= vkTXTXvk = vkT λk vk = λkvkT vk = λk
for all k=1…p

• Small λk ó small variance ó data change little in the direction of 
component vk
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PCA is useful for finding new, more informative, 
uncorrelated features; it reduces dimensionality 
by rejecting low variance features

  
Var uk( ) = uk

i( )2
i=1

n

∑ = vk
TXTXvk



PCA Eigenvalues

4.0 4.5 5.0 5.5 6.0
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λ1
λ2



PCA Summary until now

•Rotates multivariate dataset into a new 
configuration which is easier to interpret

•PCA is useful for finding new, more informative, 
uncorrelated features; it reduces dimensionality by 
rejecting low variance features
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ü PCA compresses (i.e. perform projection ) the data 
points by only using the top few eigenvectors. 

ü This corresponds to choosing a “linear subspace”
represent points on a line, plane, or “hyper-plane”



PCA for dimension reduction
e.g. p=3 è (pick top k=2 PCs) 
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corresponds to choosing a 
“2D linear plane”



How many components to keep?

• I. Variance: Enough PCs to have a cumulative  variance explained by 
the PCs that is >50-70%

• II. Scree plot: represents the ability of PCs to explain the variation in 
data, e.g. keep PCs with eigenvalues >1

10/8/20 Dr. Yanjun Qi / UVA CS 44
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e.g. check eigenvalue (I) 

10/8/20 Dr. Yanjun Qi / UVA CS 45



0

5

10

15

20

25

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Va
ria

nc
e 

(%
)

10/8/20 Dr. Yanjun Qi / UVA CS 46

e.g. check percentage of kept variance 

Can ignore the components of lesser significance. 

You do lose some information, but if the eigenvalues are small, you donʼt lose much
– p dimensions in original data 
– Calculate p eigenvectors and eigenvalues
– choose only the first k eigenvectors, by keep enough variance 
– final projected data set has only k dimensions

The relative variance explained by each PC is
given by λi/sumk(λk)
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Why to Reduce Dimension? 

• PCA as a general dimensionality reduction technique

• Preserves most of variance with a much more compact representation
– Lower storage requirements (eigenvectors + a few numbers (k) per sample)
– Faster matching (since matching within a lower-dim)



(1) Limitations of PCA

• PCA is not effective for some datasets.
• For example, if the data is a set of strings
• (1,0,0,0,…), (0,1,0,0…),…,(0,0,0,…,1) then the eigenvalues do not fall 

off as PCA requires.
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(2) PCA and Discrimination
• The direction of maximum variance is not always good for 

classification (Example 1)

10/8/20 Dr. Yanjun Qi / UVA CS 49First PC From Prof. Derek Hoiem

For this case: 

+ Ideal for 
capturing global 
variance ! 

+ Not ideal for 
discrimination



PCA and Discrimination

•PCA may not find the best directions for discriminating 
between two classes. (Example 2)
•Example: 
• suppose the two classes have 2D Gaussian densities as 

ellipsoids. 
• 1st eigenvector is best for representing the probabilities / 

overall data trend
• 2nd eigenvector is best for discrimination.

10/8/20 50

From Prof. Derek Hoiem



Algebraic Review

•How many eigenvectors are there?
•For Real Symmetric Matrices
• except in degenerate cases when eigenvalues repeat, there are p

eigenvectors
u1,…,up are the eigenvectors
λ1…λp are the eigenvalues, large to small, ordered by its value 

• all eigenvectors are mutually orthogonal and therefore form a new basis space
• Eigenvectors for distinct eigenvalues are mutually orthogonal
• Eigenvectors corresponding to the same eigenvalue have the property that any 

linear combination is also an eigenvector with the same eigenvalue; one can 
then find as many orthogonal eigenvectors as the number of repeats of the 
eigenvalue.

10/8/20 Dr. Yanjun Qi / UVA CS 51
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Today

n Dimensionality Reduction (unsupervised) 
with Principal Components Analysis (PCA)
q Review of eigenvalue, eigenvector 
q How to project samples into a line capturing the variation of the 

whole dataset  è Eigenvector / Eigenvalue of covariance matrix
q PCA for dimension reduction 
q Eigenface è PCA for face recognition 
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Example 1: Application to image,  e.g. a task 
of face recognition

1. Treat pixels as a vector

2. Recognize face by 1-nearest neighbor

x

			y1...yn

xy -= T
k

k
k argmin

From Prof. Derek Hoiem

A face-image 
database of totally n 
different people 



Example 1: the space of all face images
•When viewed as vectors of pixel values, face images are 

extremely high-dimensional
• 100x100 image = 10,000 dimensions
• Slow and lots of storage

•But very few 10,000-dimensional vectors are valid face 
images

•We want to effectively model the subspace of face images
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From Prof. Derek Hoiem



Example 1:The space of all face images
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•Eigenface idea: construct a low-dimensional linear 
subspace that best explains the variation in the set of 
face images

From Prof. Derek Hoiem



Example 1: Application to Faces, e.g. 
Eigenfaces (PCA on face images)

1. Compute covariance matrix of face images

2. Compute the principal components (“eigenfaces”)
• K eigenvectors with largest eigenvalues

3. Represent all face images in the dataset as linear combinations of 
eigenfaces

• Perform nearest neighbors on these projected low-d coefficients

10/8/20 Dr. Yanjun Qi / UVA CS 56M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
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Example 1: Application to Faces
Training 
images
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Example 1: Eigenfaces example
Top eigenvectors: u1,…uk

Mean: μ

å=
=

N

k
kxN 1

1µ

From Prof. Derek Hoiem



Example 1: Visualization of eigenfaces
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Principal component (eigenvector) uk

μ + 3σkuk

μ – 3σkuk

From Prof. Derek Hoiem



Example 1: Representation and 
reconstruction of original x

• Face x in “face space” coordinates:

10/8/20 Dr. Yanjun Qi / UVA CS 60

= New representation

è subtract the mean along each dimension, in order to center the 
original axis system at the centroid of all data points

Remarkably few eigenvector terms are needed 
to give a fair likeness of most people's faces. 



Representation and reconstruction

• Face x in “face space” coordinates:

• Reconstruction:
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= +

µ       +    w1u1+w2u2+w3u3+w4u4+ …

=

^
x =

New representation

A human face may be considered to be a linear 
combination of these standardized eigen faces From Prof. Derek Hoiem





New representation in the lower-dim PC space

4.0 4.5 5.0 5.5 6.0
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xi2

xi1

wi,1wi,2

From Prof. Derek Hoiem



Key Property of Eigenspace Representation
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Given 
• 2 images                 that are used to construct the Eigenspace

• is the eigenspace projection of image 

• is the eigenspace projection of image

Then,

That is, distance in Eigenspace is approximately equal to the 
distance between two original images.

21 ˆ,ˆ xx
1x̂

2x̂
1ĝ

2ĝ

||ˆˆ||||ˆˆ|| 1212 xxgg -»-



Classify / Recognition with eigenfaces

Step I: Process labeled training images
• Find mean µ and covariance matrix           

• Find k principal components (i.e. eigenvectors of Σ) è u1,…uk

• Project each training image xi onto subspace spanned by the top
principal components:
(wi1,…,wik) = (u1

T(xi – µ), … , uk
T(xi – µ))

10/8/20 Dr. Yanjun Qi / UVA CS 65M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf


Classify / Recognition with eigenfaces

Step 2:  Nearest neighbor based face classification

Given a novel image x
• Project onto k PC’s subspace:

(w1,…,wk) = (u1
T(x – µ), … , uk

T(x – µ))
• Optional: check reconstruction error x – x to determine whether the image is 

really a face
• Classify as closest training face(s) in the lower      k-dimensional subspace

10/8/20 Dr. Yanjun Qi / UVA CS 66

^

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf


Is this a face or not?
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Example 2: e.g. Handwritten Digits  

• 16 x 16 gray scale 
• Total 658 such 3’s
• 130 is shown 
• Image xi : R256

• Compute principal 
components

10/8/20 Dr. Yanjun Qi / UVA CS 68

w1 w2

e.g. From ESL book
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K=2 @ Figure

e.g.

e.g. From ESL book
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The new 
reduced  
representation 
is easier to 
visualize and 
interpret



Extra: A 2D Numerical Example
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PCA Example –STEP 1

•Subtract the mean from each of the data 
dimensions. 

• Subtracting the mean makes variance and 
covariance calculation easier by simplifying their 
equations. The variance and co-variance values are 
not affected by the mean value.

10/8/20 Dr. Yanjun Qi / UVA CS 72
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PCA Example –STEP 1

DATA: (p=2)
x1     x2
2.5 2.4
0.5 0.7
2.2 2.9
1.9 2.2
3.1 3.0
2.3 2.7
2 1.6
1 1.1
1.5 1.6
1.1 0.9

10/8/20 Dr. Yanjun Qi / UVA CS 73

ZERO MEAN DATA:
x1         x2    
.69 .49
-1.31 -1.21
.39 .99
.09 .29
1.29 1.09
.49 .79
.19 -.31
-.81 -.81
-.31 -.31
-.71 -1.01 From Dr. S. Narasimhan



PCA Example –STEP 2

•Calculate the covariance matrix
cov =       .616555556    .615444444

.615444444    .716555556

• since the non-diagonal elements in this covariance 
matrix are positive, we should expect that the x1 and 
x2 variable increase together.
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PCA Example –STEP 3

• Calculate the eigenvectors and eigenvalues of the covariance matrix
eigenvalues =               1.28402771

.0490833989

eigenvectors =       -.677873399    -.735178656 
-.735178656     .677873399  
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PCA Example –STEP 3

10/8/20 Dr. Yanjun Qi / UVA CS 76

•eigenvectors are plotted as 
diagonal dotted lines on the 
plot. 
•Note they are perpendicular 
to each other.
•Note one of the 
eigenvectors goes through 
the middle of the points, like 
drawing a line of best fit. 
•The second eigenvector 
gives us the other, less 
important, pattern in the 
data, that all the points 
follow the main line, but are 
off to the side of the main 
line by some amount.
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PCA Example –STEP 4

• Reduce dimensionality and form feature vector
the eigenvector with the highest eigenvalue is the principle 
component of the data set.

In our example, the eigenvector with the largest eigenvalue was 
the one that pointed down the middle of the data. 

Once eigenvectors are found from the covariance matrix, the 
next step is to order them by eigenvalue, highest to lowest. This 
gives you the components in order of significance. 
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PCA Example –STEP 4

•Feature Vector
FeatureVector = (eig1 eig2 eig3 … eign)

We can either form a feature vector with both of the 
eigenvectors:

-.677873399    -.735178656 
-.735178656     .677873399 

or, we can choose to leave out the smaller, less 
significant component and only have a single column:

- .677873399 
- .735178656

Now, if you like, you can decide to ignore the 
components of lesser significance. 

You do lose some information, but if 
the eigenvalues are small, you donʼt lose much



PCA Example –STEP 5

•Deriving the new data
FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the eigenvectors in the 
columns transposed so that the eigenvectors are now in the 
rows, with the most significant eigenvector at the top

RowZeroMeanData is the mean-adjusted data transposed, 
ie. the data items are in each column, with each row 
holding a separate dimension.
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PCA Example –STEP 5

FinalData transpose: dimensions 
along columns
w1 w2

-.827970186 -.175115307
1.77758033 .142857227
-.992197494 .384374989
-.274210416 .130417207
-1.67580142 -.209498461
-.912949103 .175282444
.0991094375 -.349824698
1.14457216 .0464172582
.438046137 .0177646297
1.22382056 -.162675287
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PCA Example –STEP 5

10/8/20 Dr. Yanjun Qi / UVA CS 81
From Dr. S. Narasimhan



Reconstruction of original Data

• If we reduced the dimensionality, obviously, when 
reconstructing the data we would lose those 
dimensions we chose to discard. 

• In our example let us assume that we considered only 
the w1 dimension…
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Reconstruction of original Data

w1
-.827970186 
1.77758033 
-.992197494 
-.274210416 
-1.67580142 
-.912949103 
.0991094375 
1.14457216 
.438046137 
1.22382056
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