UVA CS 4774:
Machine Learning

S4: Lecture 23:
More and Extra on Boosting

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

Boosting:

* Learners are ordered: Each learner tries to reduce error (residual)
on “hard” examples (those misclassified by earlier learners).

 ADABOOST: weight hard samples more;

 GRADIENT BOOST: use residual to train later models. Reduces bias
and possibly variance compared to base learners.

e Gradient-boosted decision trees (GBDT) often gives state-of-the-
art performance on simple classification tasks, e.g. XGBOOST.

* Neural networks are used fairly often with bagging, but rarely
with boosting.

* Decision trees work well in both bagging and boosting. From Stanford CV class

Boosting

* Sequential algorithm where at each step, a weak learner is trained
based on the results of the previous learner.

* Two main types:

 Adaptive Boosting: Reweight datapoints based on performance of last
weak learner. Focuses on points where previous learner had trouble.
Example: AdaBoost.

* Gradient Boosting: Train new learner on residuals of overall model.
Constitutes gradient boosting because approximating the residual and

adding to the previous result is essentially a form of gradient descent.
Example: XGBoost.

credit: Camilo Fosco

Gradient Boosting

XGBoost

* XGBoost is a very efficient Gradient Boosting Decision Tree implementation
with some interesting features:

* Regularization: Can use L1 or L2 regularization.

 Handling sparse data: Incorporates a sparsity-aware split finding algorithm to handle different types of
sparsity patterns in the data.

 Weighted quantile sketch: Uses distributed weighted quantile sketch algorithm to effectively handle
weighted data.

* Block structure for parallel learning: Makes use of multiple cores on the CPU, possible because of a
block structure in its system design. Block structure enables the data layout to be reused.

 Cache awareness: Allocates internal buffers in each thread, where the gradient statistics can be stored.

* OQut-of-core computing: Optimizes the available disk space and maximizes its usage when handling
huge datasets that do not fit into memory.

credit: Camilo Fosco

XGBoost (an example performance figure)

Error rate Vs. Trees

0 O
N
< = Test Set
= %
(\! -
o o~
2 o |
@ - 79
— o =
o
L o
= -
S .
o Train Set
o
o
o T] | | |
0 100 200 300 400 500

11/20/19 Dr. Qi / UVA CS Number of trees

Gradient Boosting

* Task is to estimate target continuous function F(x). We measure
goodness of estimation with loss function L(y, F(x)).

 Gradient boosting assumes that:
 F(x) =ay+ah (x) + -+ aphy (%)

* Basic Gradient boosting workflow:
1. Initialize Fy(x) = ay
2. Estimate a;,; and h,,(y) such that:

L(y' Fm—l(x) + amhm(x)) < L(y, F(m—l)(x))

3. Update E,,(x) = F;,_1(x) + ahy (x)
4. Repeat from 2, M times.

credit: Camilo Fosco

Gradient Boosting

L(y, Frp-1(x) + amhy, (%)) < Ly, Fan-1)(x))

If we can find a vector r;,, that we can plug in here
to make this equation true, we can train a basic
learner h,,,(x) to predict r;,, from x!

We are basically searching for a vector that points to the direction that
reduces our loss... does that sound familiar?

Gradient descent!

credit: Camilo Fosco

Gradient Boosting

* By solving a simple 1D optimization problem, we could also find the
optimal a,,, for each step, by computing:

* ay = argmin, L(y, Fp—1(x) + yhy(x))
* This gives us an updated Gradient Boosting algorithm:

ouhkw N BE

Initialize Fy(x) = ay

_ 0Ly Fn—1(x)
OFm—1(x;)

Train base learner h,,,(x) on predicting the gradients m,

Compute a,, with line search strategy

Update E,,(x) = F,,,_1(x) + a,,, i, (X)

Repeat from 2, M times.

Compute negative gradient per observation: 3, =

credit: Camilo Fosco

Gradient Boosting

e Where do the residuals come in?

* If we consider Mean Squared Error as our loss function, the per-
observation gradient is:

OL(yi,Fm(x) _ 5‘(%1 Zi(Yi—Fm(Xi))z) B a(%(Yi_Fm(xi))z) _

DT 9Fn() 3 Fm (x1) T 0Fm(x) Vi = Fn (x1)

* The derivation we found before works with any loss function.

credit: Camilo Fosco

Gradient Tree Boosting

* When dealing with decision trees, we can take the concept further
by selecting a specific a,,, for each of the tree’s regions. The output

Of atreels: J,: Disjoint regions
—_ partitioned by the tree
b (X) = T/ b1, ()
* The model update rule becomes: Rim: Number

of leaves

¢ B () = Fopo1 (0) + 207 @i g, (0
*Ujm = arg‘mlny inEijL(yi' m—l(xi) T y)

credit: Camilo Fosco

XGBoost

* Three main forms of gradient boosting are supported:
* Gradient Boosting algorithm, as we defined above.

* Stochastic Gradient Boosting with sub-sampling at the row, column and
column per split levels.
* Random procedure where we subsample observations and features

* Regularized Gradient Boosting with both L1 and L2 regularization.
. add a regularization term to the loss function that we are optimizing:
Lr(y, F(x)) = L(y, F(x)) + Q(F)
Where Q(F) = yT +3 Allwl|?

T: Number of leaves

W: Leaf weights: prediction of each leaf
credit: Camilo Fosco

XGBoost

e Remember, we still want to find the tree structure that minimizes
our loss, which means best score structure. Doing this for all

possible tree structures is unfeasible.

* A greedy algorithm that starts from a single leaf and iteratively adds
branches to the tree is used instead.

credit: Camilo Fosco

XGBoost

* XGBoost adds multiple other important advancements that make it
state of the art in several industrial applications.

* |In practice:

- Can take a while to run if you don’t set the n_jobs parameter
correctly

- Defining the eta parameter (analogous to learning rate) and
max_depth is crucial to obtain good performance.

- Alpha parameter controls L1 regularization, can be increased on
high dimensionality problems to increase run time.

credit: Camilo Fosco

XGBoost

* General approach to parameter tuning:

* Cross-validate learning rate.

* Determine the optimum number of trees for this learning rate. XGBoost can
perform cross-validation at each boosting iteration for this, with the “cv”
function.

* Tune tree-specific parameters (max_depth, min_child_weight, gamma,
subsample, colsample_bytree) for chosen learning rate and number of trees.

 Tune regularization parameters (lambda, alpha).

credit: Camilo Fosco

LGBM

Stands for Light Gradient Boosted
Machines. It is a library for training GBMs
developed by Microsoft, and it competes
with XGBoost.

Extremely efficient implementation.

Usually much faster than XGBoost with low
hit on accuracy.

Main contributions are two novel
techniques to speed up split analysis:
Gradient based one-side sampling and
Exclusive Feature Building.

Leaf-wise tree growth vs level-wise tree
growth of XGBoost.

oo = o o ™

Level-wise tree growth

® El ®
oom)eo o) 0o o

C L

I

Leaf-wise tree growth

16
credit: Camilo Fosco

oooooo

