UVA CS 4774: Machine Learning

Lecture 6: Model Selection

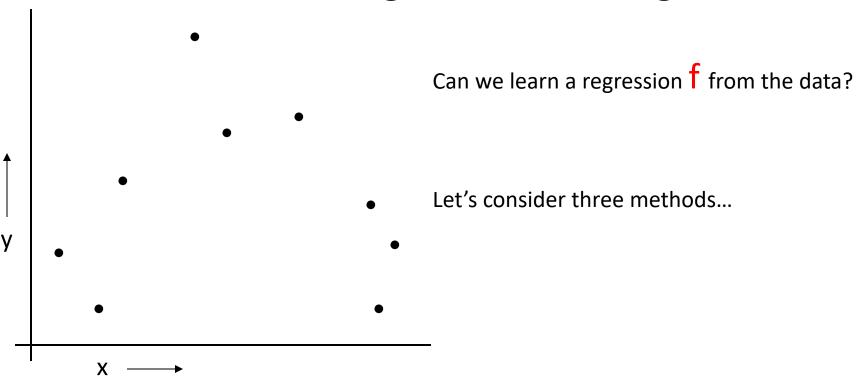
Dr. Yanjun Qi

University of Virginia
Department of Computer Science

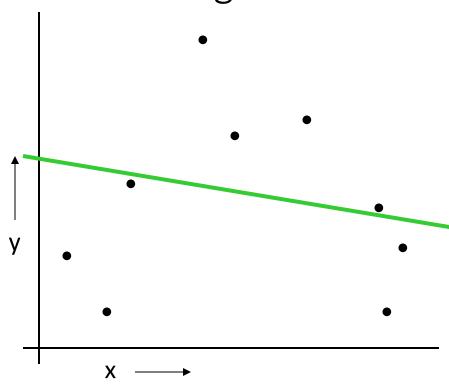
Main issues: Model Selection

- How to select the right model type? How to select hyperparameter for a model type?
 - E.g. what polynomial degree d for polynomial regression
 - E.g., where to put the centers for the RBF kernels? How wide?
 - E.g. which basis type? Polynomial or RBF?

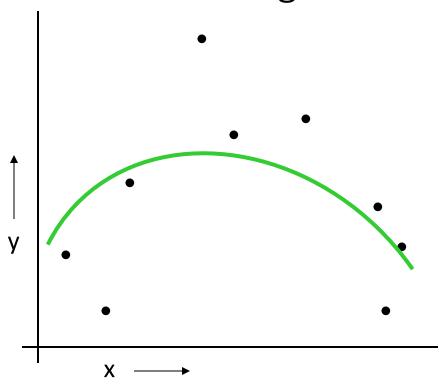
To Avoid: Overfitting or Underfitting



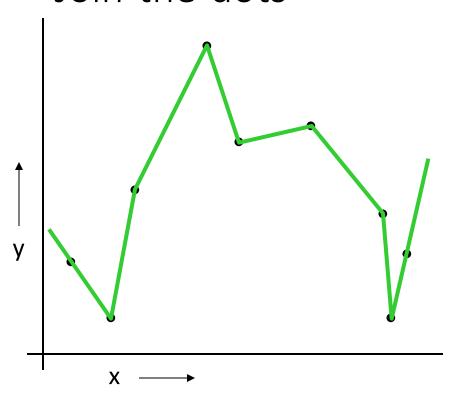
Linear Regression



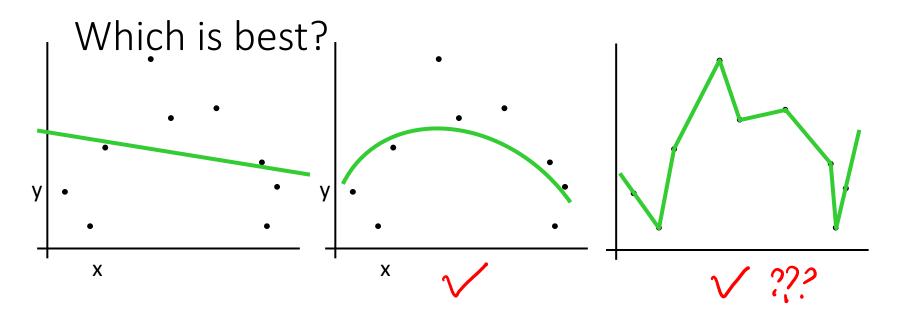
Quadratic Regression



Join-the-dots

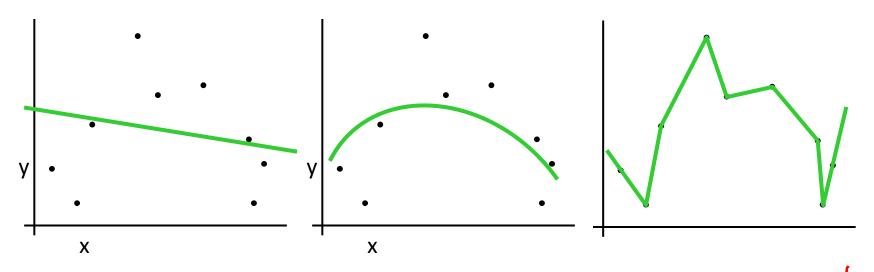


Also known as piecewise linear nonparametric regression if that makes you feel better



Why not choose the method with the best fit to the training data?

What do we really want?

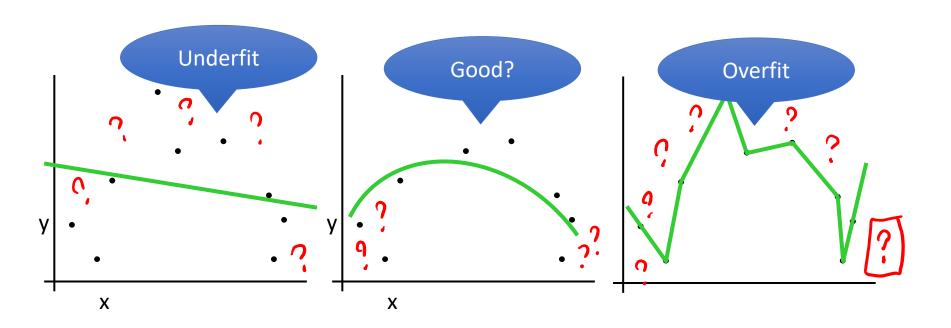


Why not choose the method with the best fit to the data?

IID { test

"How well are you going to predict future data drawn from the same distribution?"

What Model Type / Model Order to Select?

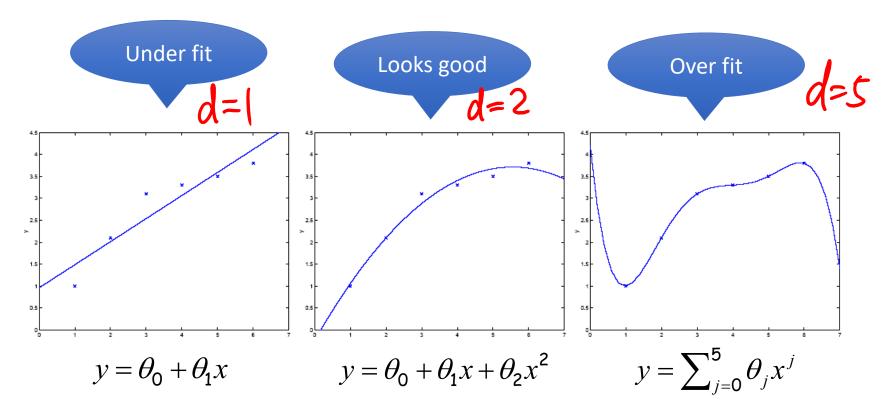


Why not choose the method with the best fit to the data?

Generalisation: learn function /
hypothesis from past data in order
to "explain", "predict", "model" or
"control" new data examples

What Model Order to Select?

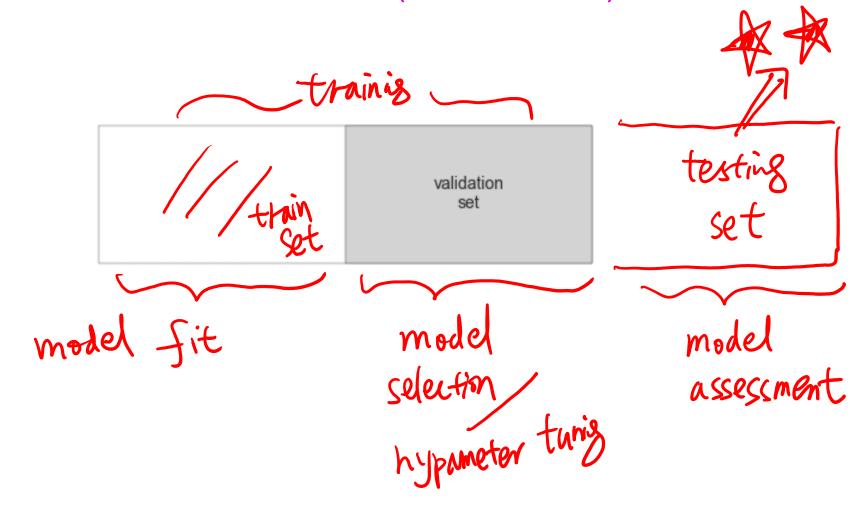
hyperparameter d

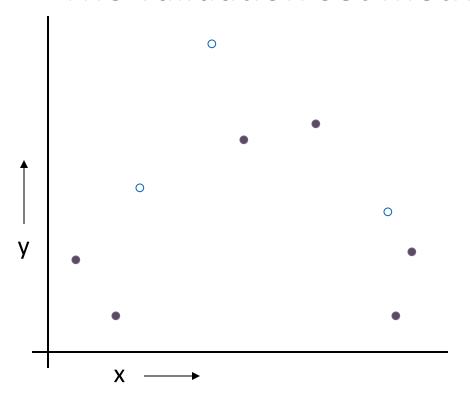


Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

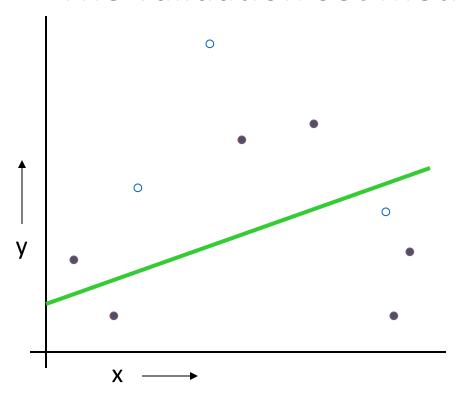
(a) Train-validation /(b) K-fold CrossValidation /

Choice-I: Train-Validation (Hold m out)



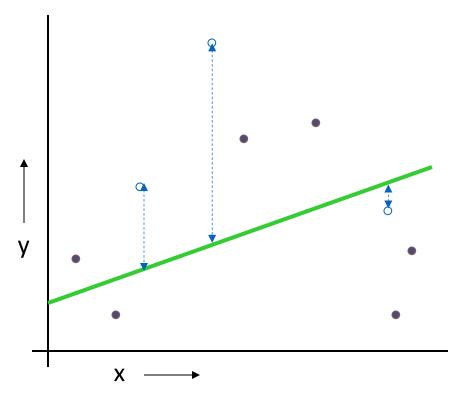


- Randomly choose some percentage like
 of the labeled data to be in a
 validation set
- 2. The remainder is a training set



Randomly choose some percentage like 30% of the labeled data to be in a validation set
 The remainder is a training set
 Perform your regression on the training set

(Linear regression example)



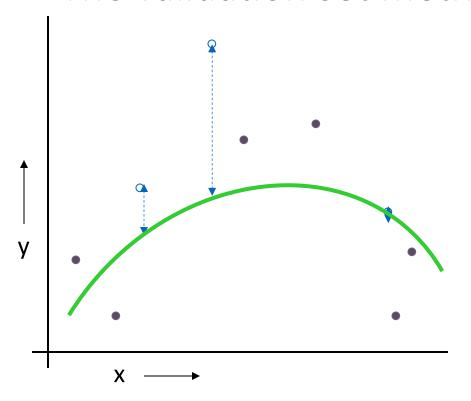
- 1. Randomly choose 30% of the data to be in a validation set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the validation set

(Linear regression example) Mean Squared Error = 2.4

e.g. for Regression Models

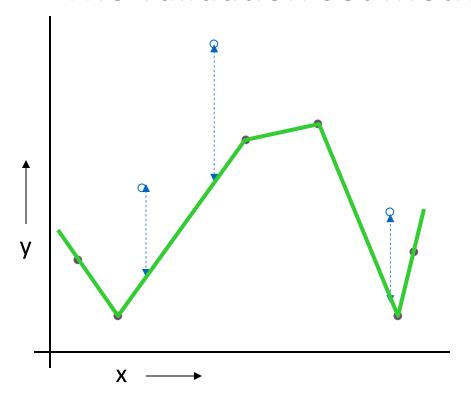
Mean Squared Error - MSE to report:

$$J_{test} = \frac{1}{m} \sum_{i=n+1}^{n+m} (\mathbf{x}_i^T \boldsymbol{\theta}^* - y_i)^2 = \frac{1}{m} \sum_{i=n+1}^{n+m} \varepsilon_i^2$$



- 1. Randomly choose 30% of the data to be in a validation set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the validation set

(Quadratic regression example) Mean Squared Error = 0.9



- 1. Randomly choose 30% of the data to be in a validation set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the validation set

(Join the dots example)
Mean Squared Error = 2.2

<u>L</u> :

Q

D

Good news:

2.4

0.9

2.2

- Very very simple
- Can then simply choose the method with the best validation-set score

Bad news:

- Wastes data: we get an estimate of the best method to apply to 30% less data
- If we don't have much data, our validationset might just be lucky or unlucky

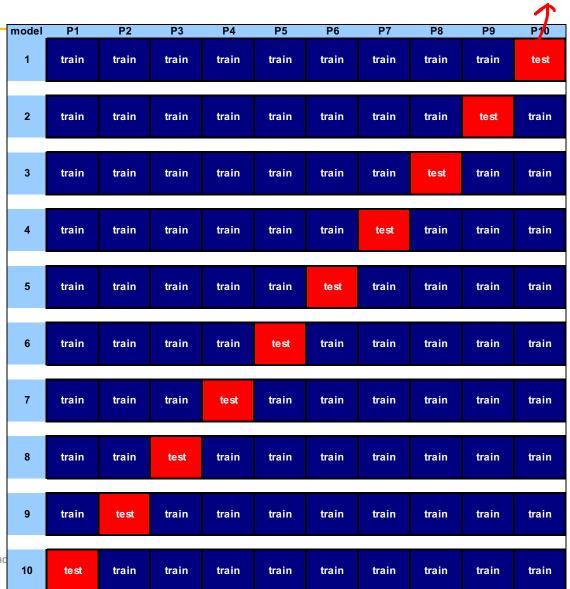
We say the "validation-set estimator of performance has high variance"

Choice-II: k-Fold Cross Validation

- Problem of train-validation: in many cases we don't have enough data to set aside a validation set
- Solution: Each data point is used both as train and validation
- •Common types:
 - K-fold cross-validation (e.g. K=5, K=10)
 - Leave-one-out cross-validation (LOOCV, i.e., k=n)

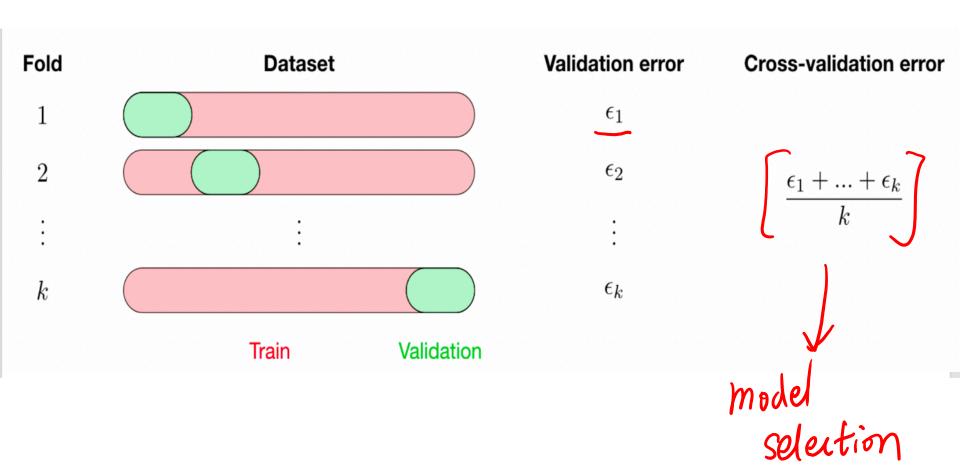
e.g. k=10 folds Cross Validation

- Divide data into 10 equal pieces
- 9 pieces as training set, the rest 1 as validation set
- Collect the scores from each validation
- We normally use the mean of the scores



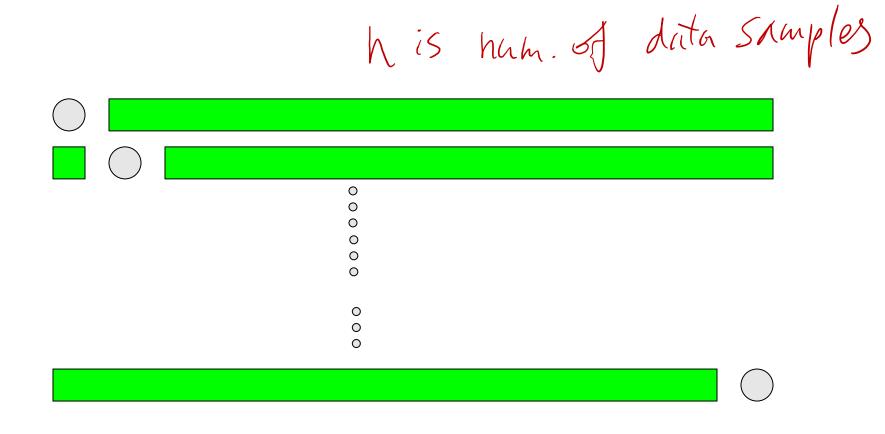
e.g. k=2 folds Cross Validation

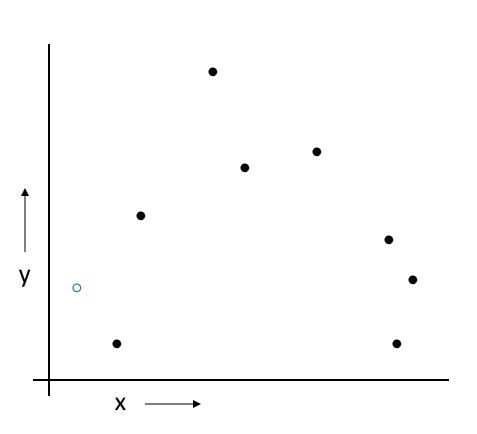
validation set validation set



Leave-one-out / LOOCV:

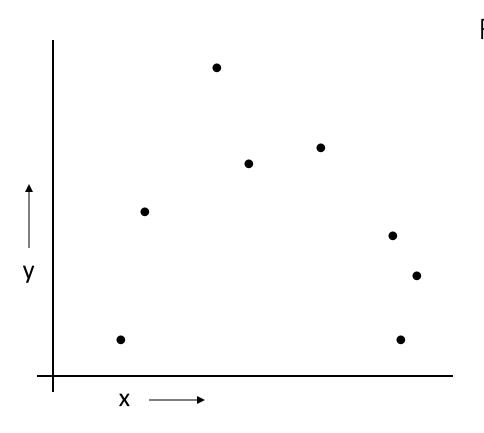
(k=n-fold cross validation)





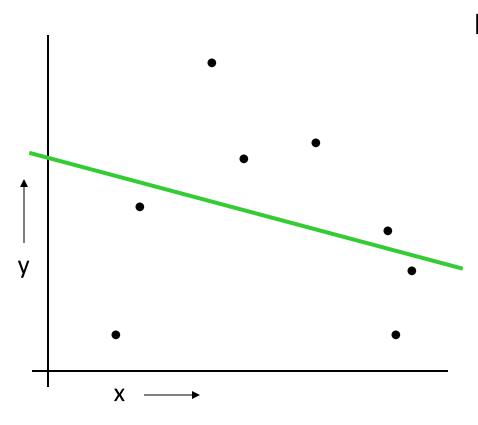
For k=1 to n

1. Let (x_k, y_k) be the k^{th} record



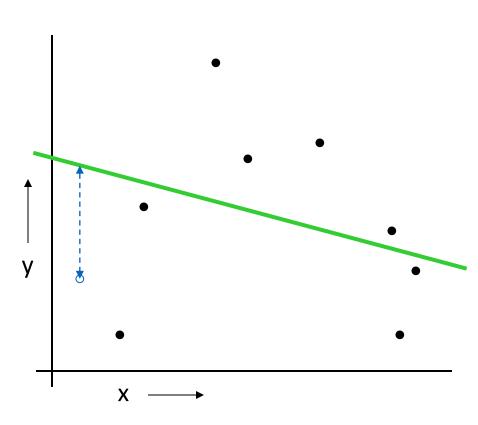
For k=1 to n

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset



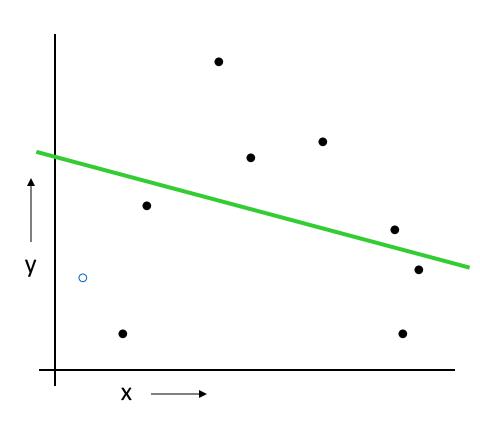
For k=1 to n

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining n-1 datapoints



For k=1 to n

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

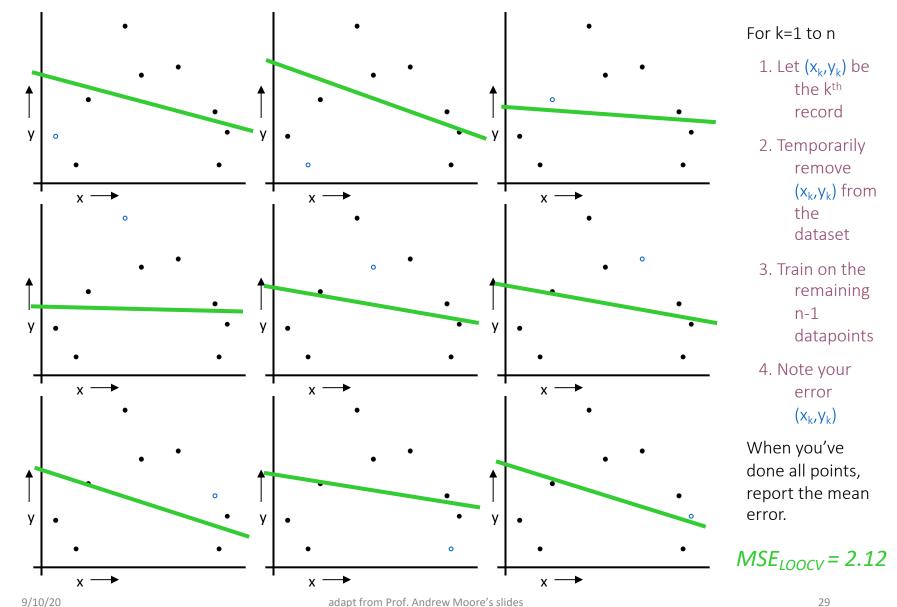


For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

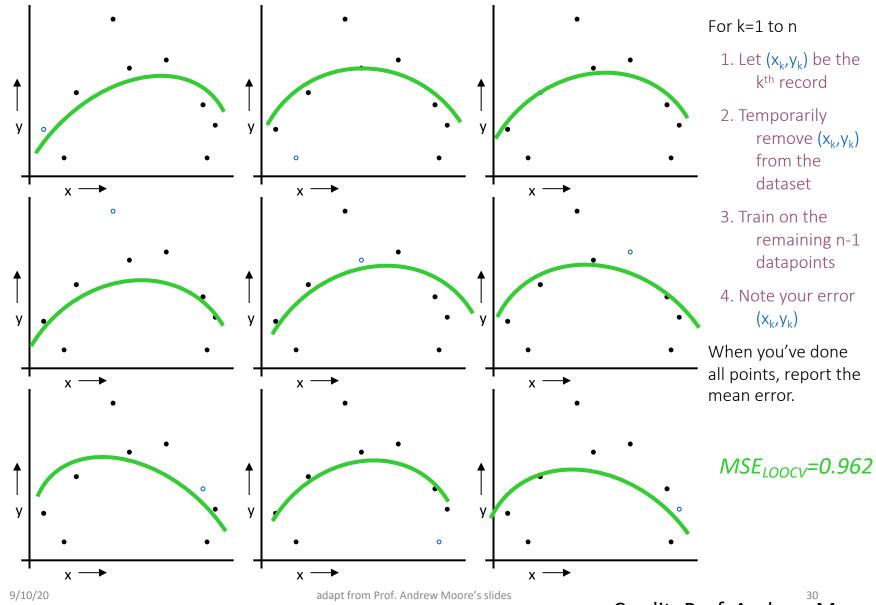
When you've done all points, report the mean error.

LOOCV for Linear Regression



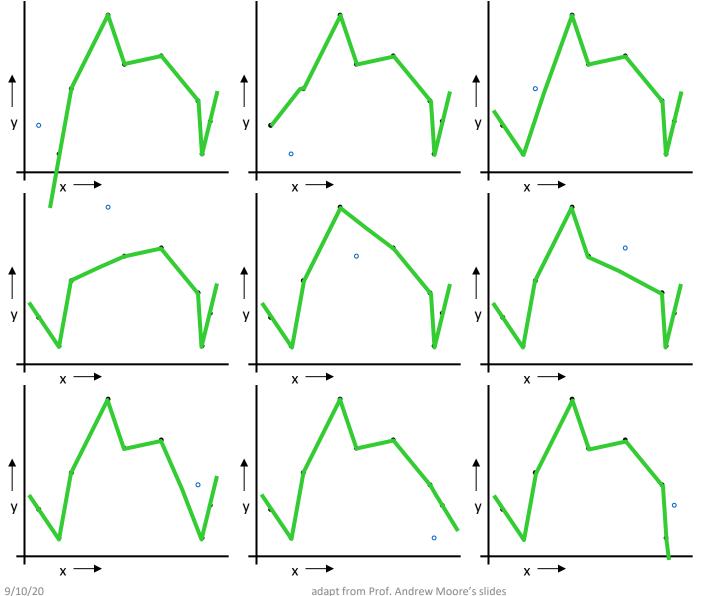
Credit: Prof. Andrew Moore

LOOCV for Quadratic Regression



Credit: Prof. Andrew Moore

LOOCV for Join The Dots



For k=1 to n

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining n-1 datapoints
- 4. Note your error (x_k, y_k)

When you've done all points, report the mean error.

 $MSE_{LOOCV}=3.33$

31

Credit: Prof. Andrew Moore

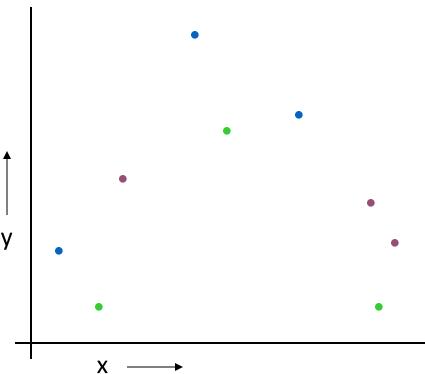
Which kind of Cross Validation?

	Downside	Upside
validation-set	Variance: unreliable estimate of future performance	Cheap
Leave-one-out	Expensive. Has some weird behavior	Doesn't waste data

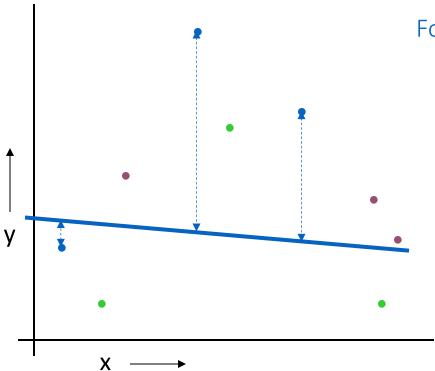
..can we get the best of both worlds?

k-fold Cross Validation

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

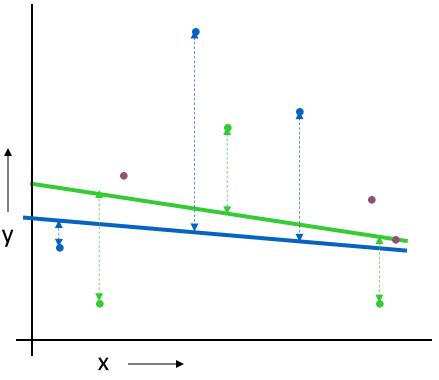


Randomly break the dataset into k partitions k-fold Cross Validation (in our example we'll have k=3 partitions colored Purple Green and Blue)



For the blue partition: Train on all the points not in the blue partition. Find the validation-set sum of errors on the blue points.

k-fold Cross Validation

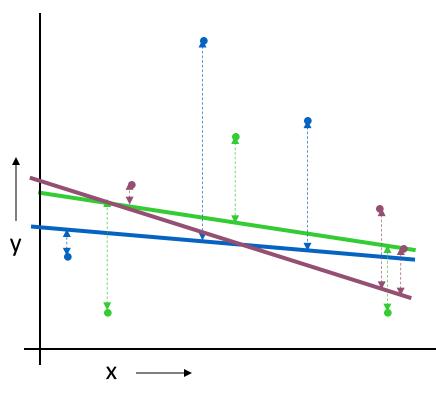


Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the blue partition: Train on all the points not in the red partition. Find the validation-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the validation-set sum of errors on the green points.

k-fold Cross Validation



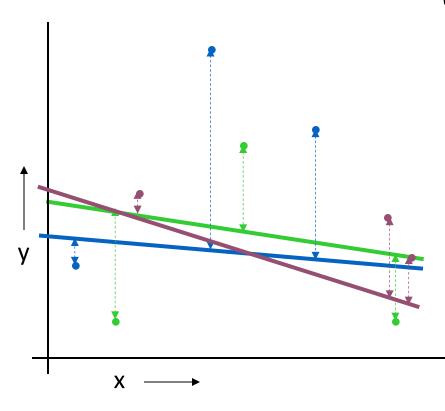
Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the validation-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the validation-set sum of errors on the green points.

For the purple partition: Train on all the points not in the purple partition. Find the validation-set sum of errors on the purple points.

k-fold Cross Validation



Linear Regression MSE_{3FOLD}=2.05

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

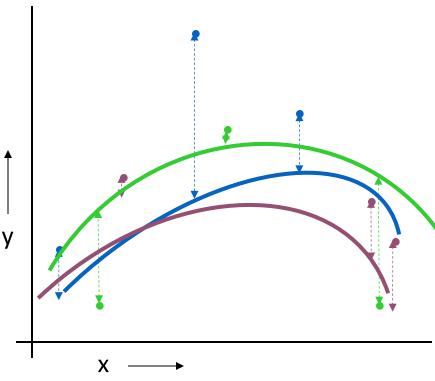
For the red partition: Train on all the points not in the red partition. Find the validation-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the validation-set sum of errors on the green points.

For the purple partition: Train on all the points not in the purple partition. Find the validation-set sum of errors on the purple points.

Then report the mean error

k-fold Cross Validation



Quadratic Regression MSE_{3FOLD}=1.11

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

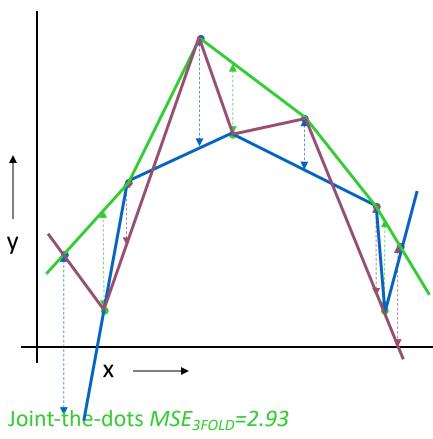
For the red partition: Train on all the points not in the red partition. Find the validation-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the validation-set sum of errors on the green points.

For the purple partition: Train on all the points not in the purple partition. Find the validation-set sum of errors on the purple points.

Then report the mean error

k-fold Cross Validation



Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Purple Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the validation-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the validation-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the validation-set sum of errors on the blue points.

Then report the mean error

Which kind of Cross Validation?

	Downside	Upside
validation -set	Variance: unreliable estimate of future performance	Cheap
Leave-	Expensive.	Doesn't waste data
one-out	Has some weird behavior	
10-fold	Wastes 10% of the data. 10 times more expensive than validation set	Only wastes 10%. Only 10 times more expensive instead of n times.
3-fold	Wastier than 10-fold. More Expensive than validation set style	better than validation-set
n-fold ^{//20}	Identical to Leave one out Moore's slides	40

CV-based Model Selection

- We're trying to decide which algorithm/model/ hyperpara to use.
- We train/learn/fit each model and make a table...

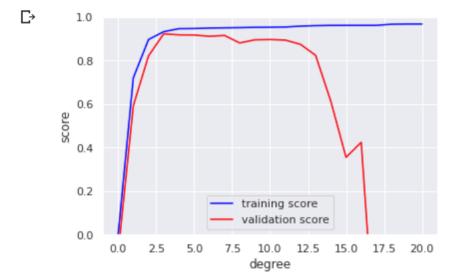
i	fi	TRAINERR	k-FOLD-CV-ERR	Choice
1	f_1			
2	f_2			
3	f_3			YEAH!!!!
4	f_4			
5	f_5			
6	f_6			

I will code-run: https://colab.research.google.com/drive/1MFy 6da9zL4yqGXTZg80My 2KACo0pY8#scrollTo=T-a0H80OQgHD

Adapted from:

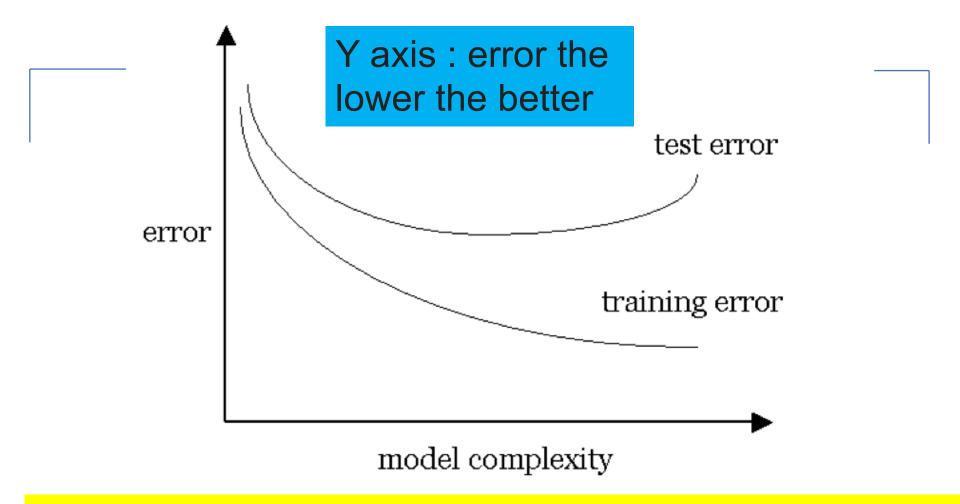
 $\frac{https://colab.research.google.com/github/jakevdp/PythonDataScience Handbook/blob/master/notebooks/05.03-Hyperparameters-and-Model-Validation.ipynb}{}$

https://scikit-learn.org/stable/modules/learning_curve.html



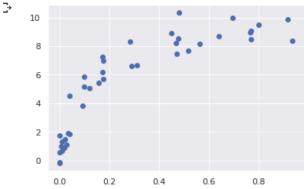
Y axis: score the higher the better

A Plot for Model Selection

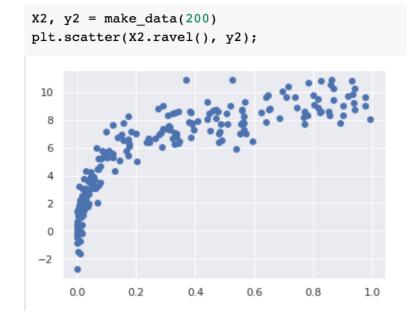


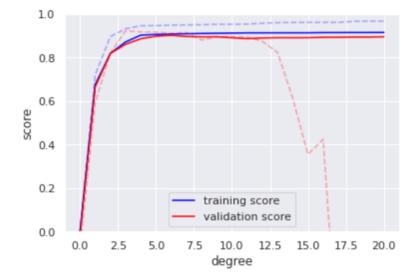
k-CV on train to choose model and hyperparameter / then a separate test set to assess future performance

```
X, y = make_data(40)
plt.scatter(X, y);
```



```
plt.plot(degree, np.median(train_score2, 1), color='blue'
plt.plot(degree, np.median(val_score2, 1), color='red', 1
plt.plot(degree, np.median(train_score, 1), color='blue',
plt.plot(degree, np.median(val_score, 1), color='red', al
plt.legend(loc='lower center')
plt.ylim(0, 1)
plt.xlabel('degree')
plt.ylabel('score');
```





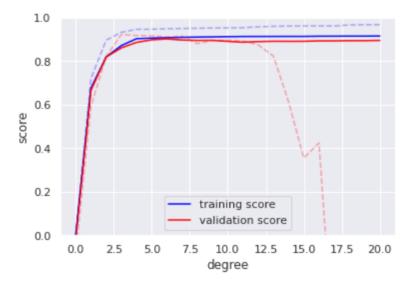
Behavior of the validation curve:

- the model complexity
- the number of training points

Vloore's slides

```
X2, y2 = make data(200)
degree = np.arange(200)
train score2, val score2 = validation curve(PolynomialR
                                                'polynomial
plt.plot(degree, np.median(train score2, 1), color='blu
plt.plot(degree, np.median(val score2, 1), color='red',
plt.legend(loc='lower center')
plt.ylim(0, 1)
plt.xlabel('degree')
plt.ylabel('score');
   1.0
   0.8
                                                            С→
   0.6
 score
   0.2
                        training score
                         validation score
   0.0
```

25



Interesting Relation between

- the right range of model complexity
- the number of training points

150

125

degree

175

Another plot of the training/validation score (the higher the better) with respect to the size of the training set is known as a *learning curve*.

The general behavior we would expect from a learning curve is this:

- A model of a given complexity will overfit a small dataset: this means the training score (the higher the better), will be relatively high, while the validation score will be relatively low.
- A model of a given complexity will *underfit* a large dataset: this means that the training score will decrease, but the validation score will increase.
- A model will never, except by chance, give a better score to the validation set than the training set: this means the curves should keep getting closer together but never cross.

Y axis: score the higher the better

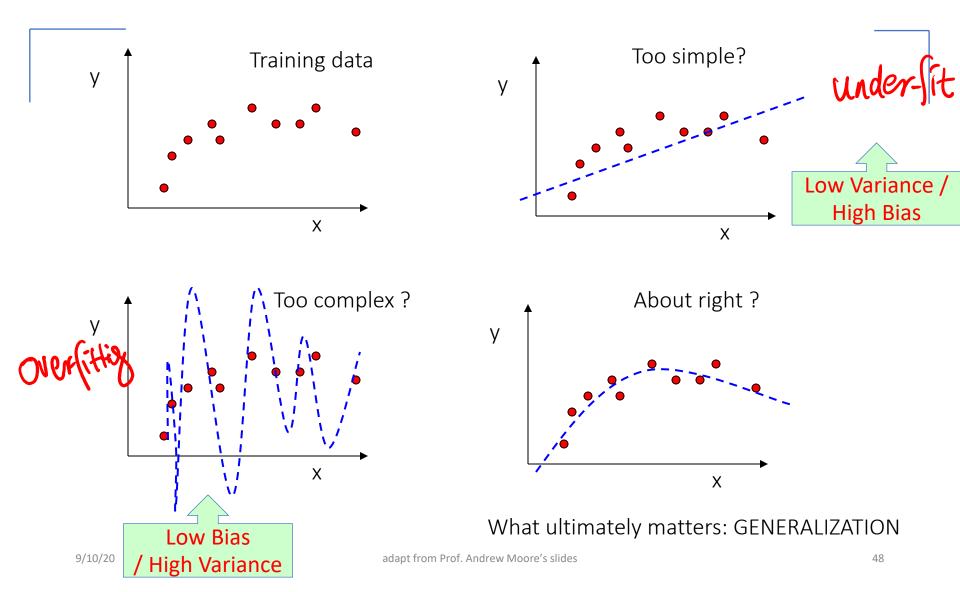
https://colab.research.google .com/github/jakevdp/Python DataScienceHandbook/blob/ master/notebooks/05.03-Hyperparameters-and-Model-Validation.ipynb

slides 46

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- ☐ Prof. Nando de Freitas's tutorial slide
- ☐ Prof. Andrew Moore's slides @ CMU

Later: Complexity versus Goodness of Fit

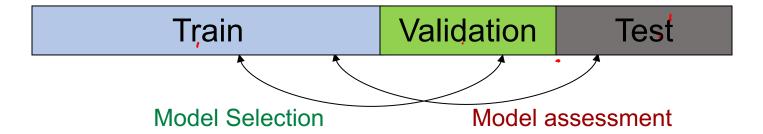


Later: Model Selection and Assessment

- Model Selection
 - Estimating performances of different models to choose the best one
- Model Assessment
 - Having chosen a model, estimating the <u>prediction error</u> on new data

Model Selection and Assessment

When Data Rich Scenario: Split the dataset



- When Insufficient data to split into 3 parts
 - Approximate validation step analytically
 - AIC, BIC, MDL, SRM
 - Efficient reuse of samples
 - Cross validation, bootstrap

Model Selection (Hyperparameter Tuning) Model Assessment Pipelines in HW2

•(1) train / Validation / test

•(2) k-CV on train to choose hyperparameter / then test

need to make assumptions that are able to generalize

- Underfitting: model is too "simple" to represent all the relevant characteristics
 - High bias and low variance
 - High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

A Gentle Touch of Bias - Variance Tradeoff

(More details ... Later)

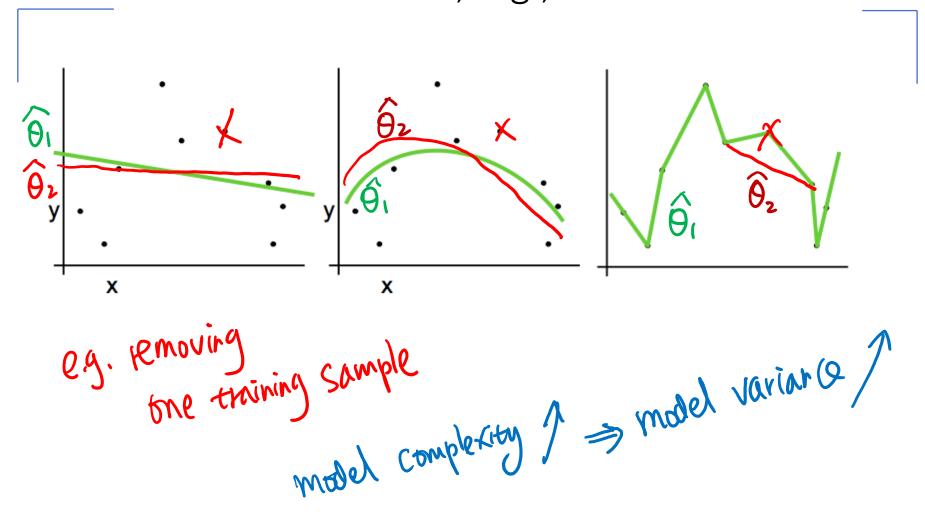
	Underfitting	Just right	Overfitting
Symptoms	High training errorTraining error closeto test errorHigh bias	- Training error slightly lower than test error	Low training errorTraining error muchlower than test errorHigh variance
Regression			
Classification			
Remedies	Complexify modelAdd more featuresTrain longer		RegularizeGet more dataFeature selection
Credit: Stanford Machine Learning			

Credit: Stanford Machine Learning

need to make assumptions that are able to generalize

- Components
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other

Randomness of Train Set => Variance of Models, e.g.,



(1) Overfitting / High variance / Model too Complex

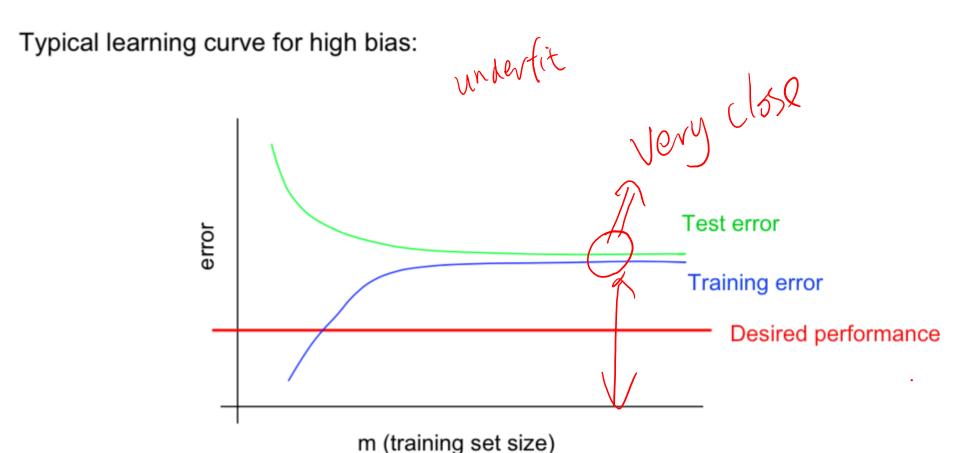
- Test error still decreasing as m increases. Suggests larger training set will help.
- Large gap between training and test error.
- Low training error and high test error

How to reduce Model High Variance?

- Choose a simpler classifier
 - More Bias
- Regularize the parameters
 - More Bias
- Get more training data
- Try smaller set of features
 - More Bias

9/10/20

(2) Underfitting / High bias / Model too Simple



- Even training error is unacceptably high.
- Small gap between training and test error.

High training error and high test error

How to reduce Model High Bias?

• E.g.

- Get additional features

- Try more complex learner