
UVA CS 4774:
Machine Learning 

Lecture 9: Bias-Variance Tradeoff

Dr. Yanjun Qi

University of Virginia
Department of Computer Science 

2/17/22 1



Complexity / Goodness of Fit / Generalization
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Too simple?

Too complex ? About right ?

Training data

What ultimately matters: GENERALIZATION

High Bias

High Variance



Complexity / Goodness of Fit / Generalization: 
Decision boundaries in global vs. local models
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Linear classification 

• global
• stable
• can be inaccurate

15-nearest neighbor 1-nearest neighbor

• local
• accurate
• unstable

What ultimately matters: GENERALIZATION

K=15 K=1

• K acts as a smoother



Lesson Learned : Training Error from KNN

• When k = 1, 
• No misclassifications 

(on training): Overfit

• Minimizing training 
error is not always 
good (e.g., 1-NN)
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X2

1-nearest neighbor averaging
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Roadmap

•Bias-variance decomposition

•Bias-Variance Tradeoff / Model Selection 

•Remedy when Overfit / Underfit 
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Review: Mean and Variance of 
Random Variable (RV)
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X: random variables written in capital letter 



Review: Mean and Variance of 
Random Variable (RV)

•Mean (Expectation): 
• Discrete RVs: 

• Continuous RVs:
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E X( ) = vi *P X = vi( )vi
∑

E X( ) = x* p x( )dx
−∞

+∞

∫

Adapt From Carols’ prob tutorial 



Review: Mean and Variance of Random Variable (RV)

•Mean (Expectation): 
• Discrete RVs: 

• Continuous RVs:
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€ 

E(g(X)) = g(vi)P(X = vi)vi
∑

E(g(X)) = g(x)* p(x)dx
−∞

+∞

∫
Adapt From Carols’ prob tutorial 
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Review: Mean and Variance of RV

•Variance: 

•Discrete RVs: 

•Continuous RVs:

( ) ( ) ( )2X P X
i

i iv
V v vµ= - =å

V X( ) = x − µ( )2 p x( )
−∞

+∞

∫ dx

Var(X) = E((X −µ)2 )

Adapt From Carols’ prob tutorial 

( )XEµ =
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Statistical Decision Theory (Extra)

•Random input vector: X
•Random output variable: Y
•Joint distribution: Pr(X,Y )
•Loss function L(Y, f(X))

•Expected prediction error (EPE):

€ 

EPE( f ) = E(L(Y, f (X))) = L(y, f (x))∫ Pr(dx,dy)

               e.g. = (y − f (x))2∫ Pr(dx,dy)
Consider 

population 
distribution e.g. Squared error loss (also called L2 loss )



2/17/22 11

Test Error to EPE: (Extra)

•Expected prediction error (EPE): 

€ 

EPE( f ) = E(L(Y, f (X))) = L(y, f (x))∫ Pr(dx,dy)

               e.g. = (y − f (x))2∫ Pr(dx,dy) One way to define 
generalization: by 
considering the 
joint population 

distribution 
e.g. Squared error loss (also called L2 loss )

Extra

(Almost) the same definition: 
• Expected Prediction Error: 
• Expected Test Error: 
• Expected Risk of a hypothesis 
è Empirical Risk Minimization
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Decomposition of EPE

• When additive error model: 
• Notations
• Output random variable:
• True function: 
• Prediction estimator: 

Irreducible / Bayes error

Extra



Bias-Variance Trade-off for EPE: 
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EPE (x) = noise2  + bias2 + variance

Unavoidable 
error

Error due to 
incorrect 

assumptions

Error due to variance 
of training samples

Slide credit: D. Hoiem
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Extra
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Extra
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http://www.stat.cmu.edu/~ryantibs/statml/review/modelbasics.pdfExtra
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http://alex.smola.org/teaching/10-701-15/homework/hw3_sol.pdf

Extra
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Another View: BIAS AND VARIANCE TRADE-OFF for
parameter estimation (Extra)

Error due to 
incorrect 

assumptions

Error due to variance 
of training samples

E(    )=

Extra



BIAS AND VARIANCE TRADE-OFF for Parameter Estimation (Extra)

•Bias
•measures accuracy or quality of the estimator
• low bias implies on average we will accurately estimate true 

parameter from training data

•Variance
•Measures precision or specificity of the estimator
• Low variance implies the estimator does not change much as 

the training set varies
2/17/22 20

Extra, But VERY IMPORTANT



Model “bias” & Model  “variance”

•Middle RED: 
• TRUE function

• Error due to bias:
• How far off in general  from the 

middle red

• Error due to variance:
• How wildly the blue points 

spread 
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Model “bias” & Model  “variance”

•Middle RED: 
• TRUE function

• Error due to bias:
• How far off in general  from the 

middle red

• Error due to variance:
• How wildly the blue points 

spread 
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Model “bias” & Model  “variance”

•Middle RED: 
• TRUE function

• Error due to bias:
• How far off in general  from the 

middle red

• Error due to variance:
• How wildly the blue points 

spread 
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Model “bias” & Model  “variance”

•Middle RED: 
• TRUE function

• Error due to bias:
• How far off in general  from the 

middle red

• Error due to variance:
• How wildly the blue points 

spread 
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need to make assumptions that 
are able to generalize 
• Underfitting: model is too “simple” to represent all the relevant 

characteristics
• High bias and low variance
• High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data
• Low bias and high variance
• Low training error and high test error
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Slide credit: L. Lazebnik



Thank you
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Thank You

2/17/22
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Module II 



Roadmap

•Bias-variance decomposition

•Bias-Variance Tradeoff / Model Selection 

•Remedy when Overfit / Underfit 
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Complexity / Goodness of Fit / Generalization

2/17/22 29

x

y

x

y

x

y

x

y

Too simple?

Too complex ? About right ?

Training data

What ultimately matters: GENERALIZATION

High Bias

High Variance
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Bias-Variance Tradeoff / Model Selection

underfit region overfit region



(1) Randomness of Training Sets 
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Expected Test Error

Expected Training Error
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Randomness of Train Set 
=> Variance of Models, e.g., 



Randomness of Train Set 
=> Variance of Models, e.g., 
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(2) Training error can always be reduced when 
increasing model complexity
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Expected Test Error

Expected Training Error

(growing capacity: 
bias reduced, 
variance increased)



Bias-Variance Tradeoff / Model Selection
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underfit region overfit region

(growing capacity: 
bias reduced, 
variance increased)Validation samples
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(3) Randomness in the Testing Error!!! 

• lambda hyparameter controls  
"regularization” terms in RLR, 
the smaller the lambda, is the 
more complex the model (why?)
• Simple (highly regularized) models have 

low variance but high bias.
• Complex models have low bias but high 

variance.

• You are inspecting an empirical 
average over 100 training set. 

e.g. Regularized LR as an example.

2/17/22

(growing capacity: 
bias reduced, 
variance increased)
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(4) Generalization Error as Bias^2+variance / 
Model Selection? à Expected Testing Error

• Bias2+variance predicts (shape of) test error quite well.
• However, bias and variance cannot be computed since it relies on 

knowing the true distribution of x and y
2/17/22

• bias decrease 
with model 
capacity,

• Variance 
increase with 
model capacity

• Sum of 
Bias^2+Variance 
has a valley 
shape 
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Cross Validation Error as good approximation for 
Expected Test error è good appx of generalization

Expected Test Error

Expected Training Error

See proof 
proving 
Cross Valid 
error as good 
approximates 
for Expected 
Test Error 

in Extra 



Bias-Variance Trade-off

•Models with too few parameters are 
inaccurate because of a large bias (not 
enough flexibility).

•Models with too many parameters are 
inaccurate because of a large variance (too 
much sensitivity to the sample randomness).
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Slide credit: D. Hoiem



Regression:  Complexity versus Goodness of Fit
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Highest Bias
Lowest  variance
Model complexity = low

Medium Bias
Medium Variance

Model complexity = medium

Smallest Bias
Highest variance
Model complexity = high

Low Variance / 
High Bias

Low Bias 
/ High Variance



Classification,  Decision boundaries in global vs. local models
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15-nearest neighbor 1-nearest neighbor

Low Bias 
/ High Variance

Low Variance / 
High Bias

Highest Bias
Lowest  variance
Model complexity = low

Medium Bias
Medium Variance

Model complexity = medium

Smallest Bias
Highest variance
Model complexity = high



Thank you
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Thank You

2/17/22
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Module III 



Roadmap

•Bias-variance decomposition

•Bias-Variance Tradeoff / Model Selection 

•Remedy when Overfit / Underfit 
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Task 

Machine Learning in a Nutshell

Representation 

Score Function 

Search/Optimization 

Models, Parameters

Hyperparameter, Metrics 
45

ML grew 
out of 
work in AI

Optimize a 
performance 
criterion 
using 
example data 
or past 
experience, 

Aiming to 
generalize to 
unseen data 

Data  

2/17/22
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Review: 
Expected Test Error as Bias^2+variance + Bayes Error

2/17/22

EPE (x) = noise2  + bias2 + variance

Unavoidable 
error

Error due to 
incorrect 

assumptions

Error due to variance 
of training samples



Why causes bad generalization? 

•Components
•Bias: how much the average model over all training 

sets differ from the true model?
•Error due to inaccurate 

assumptions/simplifications made by the model

•Variance: how much models estimated from 
different training sets differ from each other
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Slide credit: L. Lazebnik



Two Types of bad generalization 

• Underfitting: model is too “simple” to represent all the relevant 
characteristics
• High bias and low variance
• High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data
• Low bias and high variance
• Low training error and high test error
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Slide credit: L. Lazebnik
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• bias decrease 
with model gets 
more complex; 

• Variance 
increase with 
bigger model 
capacity

• Sum of 
Bias^2+Variance

Review: 
One important Control of Bias Variance Tradeoff
è Model Complexity



50

Review: 
One important Control of Bias Variance Tradeoff
è Model Complexity

• Bias2+variance predicts (shape of) test error quite well.
• However, bias and variance cannot be computed since it relies on knowing 

the true distribution of x and y

• bias decrease 
with model 
capacity,

• Variance 
increase with 
model capacity

• Sum of 
Bias^2+Variance 
has a valley 
shape 



Another important Control of Bias Variance Tradeoff
è Training Size (Extra)
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• Even training error is unacceptably high.
• Small gap between training and test error.

High training error and high test error
Slide credit: A. Ng



Another important Control of Bias Variance Tradeoff
è Training Size (Extra)
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Slide credit: A. Ng
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https://www.reddit.com/r/statistics/comments/6uajyr/is_the_biasvariance_trade_off_dependent_on_the/

Is the bias-variance trade off dependent 
on the number of samples? (EXTRA)

In the usual application of linear regression, your coefficient estimators are unbiased so 
sample size is irrelevant. But more generally, you can have bias that is a function of 
sample size as in the case of the variance estimator obtained from applying the 
population variance formula to a sample (sum of squares divided by n)….. 

… the bias and variance for an estimator are generally a decreasing function of training size n. 
Dealing with this is a core topic in nonparametric statistics. For nonparametric methods with 
tuning parameters a very standard practice is to theoretically derive rates of convergence (as 
sample size goes to infinity) of the bias and variance as a function of the tuning parameter, and 
then you find the optimal (in terms of MSE) rate of convergence of the tuning parameter by 
balancing the rates of the bias and variance. Then you get asymptotic results of your estimator 
with the tuning parameter converging at that particular rate. Ideally you also provide a data-
based method of choosing the tuning parameter (since simply setting the tuning parameter to 
some fixed function of sample size could have poor finite sample performance), and then show 
that the tuning parameter chosen this way attains the optimal rate.

https://www.reddit.com/r/statistics/comments/6uajyr/is_the_biasvariance_trade_off_dependent_on_the/
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underfit region overfit region

(0) If your model complexity can be ordered as X-axis 

Validation samples



(1) If you use learning curve find: Underfitting / 
High bias / Model too Simple
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• Even training error is unacceptably high.
• Small gap between training and test error.

High training error and high test error
Slide credit: A. Ng



How to reduce Model High Bias ? 

2/17/22 56

• E.g. 

- Get additional features

- Try more complex learner  



(2) If you use learning curve find: Overfitting / High 
variance / Model too Complex
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• Test error still decreasing as m increases. Suggests larger training set will help.

• Large gap between training and test error. 

• Low training error and high test error
Slide credit: A. Ng



How to reduce Model High Variance?

• Choose a simpler classifier 

• Regularize the parameters

•Get more training data

• Try smaller set of features

• Try feature engineering 

• Try multiple models and then use all as ensemble
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Slide credit: D. Hoiem



Take Away : Three types of plots 

• (1) Sanity check (S)GD type Optimization 
• Train / Vali Loss vs. Epochs to help you
• https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_early_stopping.html#sphx-glr-auto-examples-

linear-model-plot-sgd-early-stopping-py

• (2) Sanity check hyperparameter tuning 
• Train / Vali Loss vs. hyperparameter Values 

• (3) Sanity check if your current model overfits or underfits
• Train / Vali Loss vs. Varying Size of Training
• https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html#sphx-glr-auto-examples-

model-selection-plot-learning-curve-py
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from sklearn.model_selection import validation_curve

https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_early_stopping.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html
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I will Code run 
https://colab.research.google.com/drive/1TvHQoJpYwc5XKz0QGOY3yu1OTljSY5gn?usp=sharing

(1) Validation_curve

By scikitlearn Validation_curve function 
(normalize all metrics to positive range 

https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-
parameter-defining-model-evaluation-rules

(1) Validation_curve

By our HW2 ( more close to 
modern deep learning 
library style ) 

https://colab.research.google.com/drive/1TvHQoJpYwc5XKz0QGOY3yu1OTljSY5gn?usp=sharing
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html
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(1) Learning Curves for polynomial regression (up) and classification (down) 
/ by scikitlearn

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html


References 

q Prof. Tan, Steinbach, Kumar’s “Introduction to Data Mining” slide
q Prof. Andrew Moore’s slides
q Prof. Eric Xing’s slides
q Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. 

New York: Springer, 2009.
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Credit: Stanford Machine Learning

- Feature selection



Review:  Model Selection and Assessment

•Model Selection
• Estimating performances of different models to choose the 

best one 

•Model Assessment
• Having chosen a model, estimating the prediction error on 

new data
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Model Selection and Assessment

• When Data Rich Scenario: Split the dataset

•When Insufficient data to split into 3 parts
•Approximate validation step analytically
• AIC, BIC, MDL, SRM

•Efficient reuse of samples
• Cross validation, bootstrap
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Model Selection Model assessment

Train Validation Test



Model Selection (Hyperparameter Tuning) & 
Model Assessment Pipelines in HW2

•(1) train / Validation / test 

•(2) k-CV on train to choose  
hyperparameter /  then test 
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The battle against overfitting (Extra) : 

• Cross validation
• Regularization
• Feature selection
•Model selection --- Occam's razor
•Model averaging 
• The Bayesian-frequentist debate
• Bayesian learning (weight models by their posterior probabilities)

2/17/22



For instance, if trying to solve “spam detection” 
using (Extra)
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L2  -

Slide credit: A. Ng

If performance is not as desired 



kNN estimator and L2-EPE 
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Expected prediction error (EPE)

•For L2 loss: 
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EPE( f ) = E(L(Y, f (X))) = L(y, f (x))∫ Pr(dx,dy)

Consider joint 
distribution 

 e.g. = (y− f (x))2∫ Pr(dx,dy)

Conditional 
mean !! f̂ (x)=E(Y |X = x)

under L2 loss, best estimator for EPE (Theoretically) is :  

e.g. KNN NN methods are the direct implementation (approximation )



kNN for minimizing EPE

•We know under L2 loss, best estimator for minimize 
EPE (theoretically) is :  

• Nearest neighbours assumes that f(x) is well approximated by 
a locally constant function.
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Conditional 
mean )|(E)( xXYxf ==



Minimize EPE using L2

• Expected prediction error (EPE) for L2 Loss:

• Since Pr(X,Y )=Pr(Y |X )Pr(X ), EPE can also be written as

• Thus it suffices to minimize EPE pointwise

72

EPE( f ) = E(Y − f (X))2 = (y− f (x))2∫ Pr(dx,dy)

)|)](([EE)(EPE 2
| XXfYf XYX -=

)|]([Eminarg)( 2
| xXcYxf XYc =-=

)|(E)( xXYxf ==Solution for Regression: 

Best estimator under L2 loss:  
conditional expectation 

Conditional 
mean 

Solution for kNN: 2/17/22



73

Minimize EPE using L2 (another proof)

• Let t be the true (target) output and y(x) be our estimate. The 
expected squared loss is

• Out goal is to choose y(x) that minimize E(L):
• Calculus of variations:

òò= dxdttxpxytLLE ),())(,()(

òò -= dxdttxpxyt ),())(( 2

02 =-=
¶
¶

ò dttxpxyt
xy
LE ),())((
)(
)(

òò = dttxtpdttxpxy ),(),()(

[ ] [ ]xtEtEdtxttpdt
xp
txtpxy xt |)|(
)(
),()(* | ==== òò
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Review : EPE with different loss

Loss Function Estimator

L2

L1

0-1
(Bayes classifier / MAP)
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Expected prediction error (EPE)
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EPE( f ) = E(L(Y, f (X))) = L(y, f (x))∫ Pr(dx,dy)

Consider joint 
distribution 

!! 

f̂ (X )=C k !if!
Pr(C k |X = x)=max

g∈C
Pr(g|X = x)Bayes Classifier

For 0-1 loss: L(k, ℓ) = 1-dkl



More for Overfitting 
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Bayesian and Frequentist (Extra) 

• Frequentist interpretation of probability
• Probabilities are objective properties of the real world, and refer to limiting 

relative frequencies (e.g., number of times I have observed heads). Hence one 
cannot write P(Katrina could have been prevented|D), since the event will 
never repeat.
• Parameters of models are fixed, unknown constants. Hence one cannot write 

P(θ|D) since θ does not have a probability distribution. Instead one can only 
write P(D|θ).
• One computes point estimates of parameters using various estimators, θ*= 

f(D), which are designed to have various desirable qualities when averaged 
over future data D (assumed to be drawn from the “true” distribution).

• Bayesian interpretation of probability
• Probability describes degrees of belief, not limiting frequencies.
• Parameters of models are hidden variables, so one can compute P(θ|D) or 

P(f(θ)|D) for some function f.
• One estimates parameters by computing P(θ|D) using Bayes rule:

)(
)()|()(

Dp
pDpDθp qq

=
2/17/22



Cross Validation and Variance Estimation 
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http://www.stat.cmu.edu/~ryantibs/statml/review/modelbasics.pdf
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http://www.stat.cmu.edu/~ryantibs/statml/review/modelbasics.pdf
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Extra: Practical issues for Cross Validation

• How to decide the values for K in K-CV: 
• Also a bias-variance tradeoff issue
• Commonly used K = 10 
• when data sets are small relative to the number of models that are being 

evaluated, we need to increase K
• K needs to be large for the variance to be small enough, but this makes it 

time-consuming.

2/17/22
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Practical issues for CV

• How to decide the values for K in KCV and a =1/K
• Commonly used K = 10 and  a = 0.1.
• when data sets are small relative to the number of models that are being 

evaluated, we need to decrease a and increase K
• K needs to be large for the variance to be small enough, but this makes it 

time-consuming.

• Bias-variance trade-off
• Small a usually lead to low bias. In principle, LOOCV provides an almost 

unbiased estimate of the generalization ability of a classifier, especially when 
the number of the available training samples is severely limited; but it can also 
have high variance.
• Large a can reduce variance, but will lead to under-use of data, and causing 

high-bias.

• One important point is that the test data Dtest is never used in CV, 
because doing so would result in overly (indeed dishonest) optimistic 
accuracy rates during the testing phase.
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