UVA CS 4774: Machine Learning

Lecture 2: Machine Learning in a Nutshell

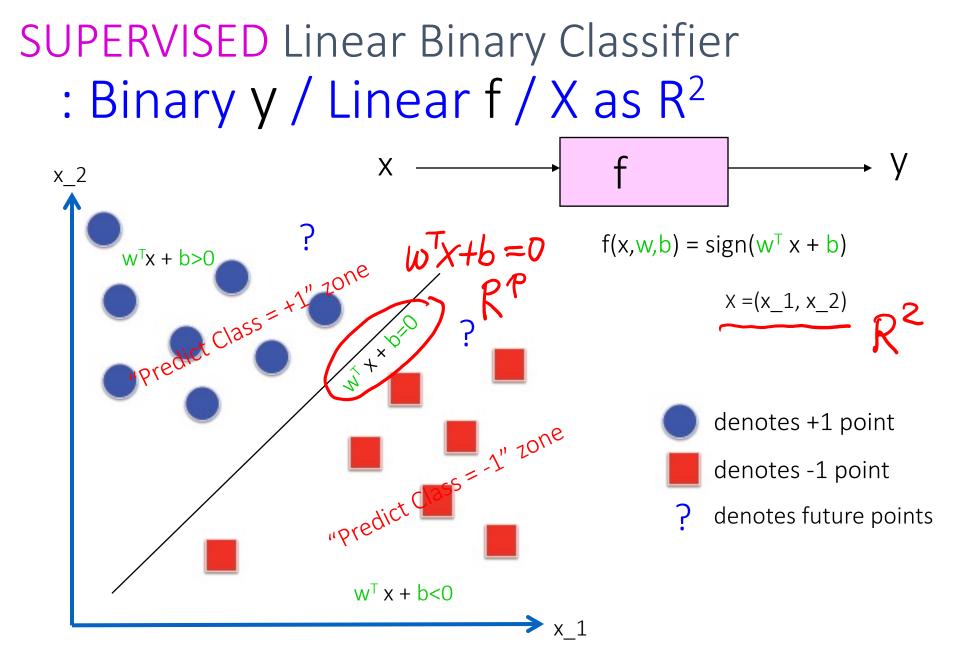
Dr. Yanjun Qi

University of Virginia Department of Computer Science

UVA CS 4774: Machine Learning L2

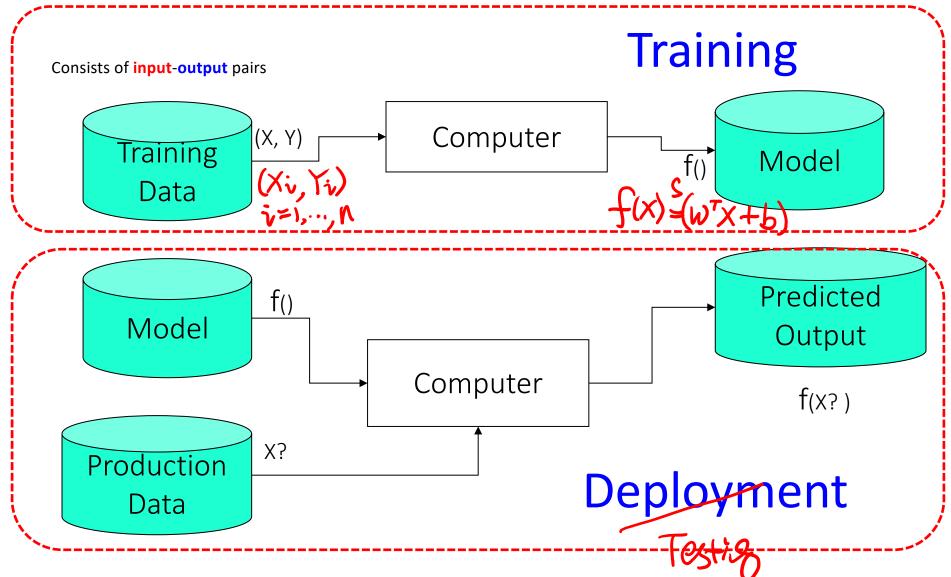
Roadmap

- Machine Learning in a Nutshell
- Examples of Different Data Types
- Examples of Different Tasks
- Examples of Different Representation Types
- Examples of Different Loss/Cost Types
- Examples of Different Model Properties



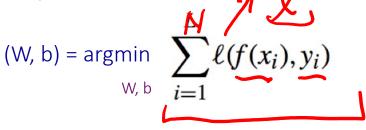
Courtesy slide from Prof. Andrew Moore's tutorial

Two Modes of Machine Learning



Basic Concepts

- Training (i.e. learning parameters w,b)
 - Training set includes
 - available examples x₁,...,x_L
 - available corresponding labels y₁,...,y_L
 - Find (w,b) by minimizing loss / Cost function L()
 - (i.e. difference between y and f(x) on available examples in training set)

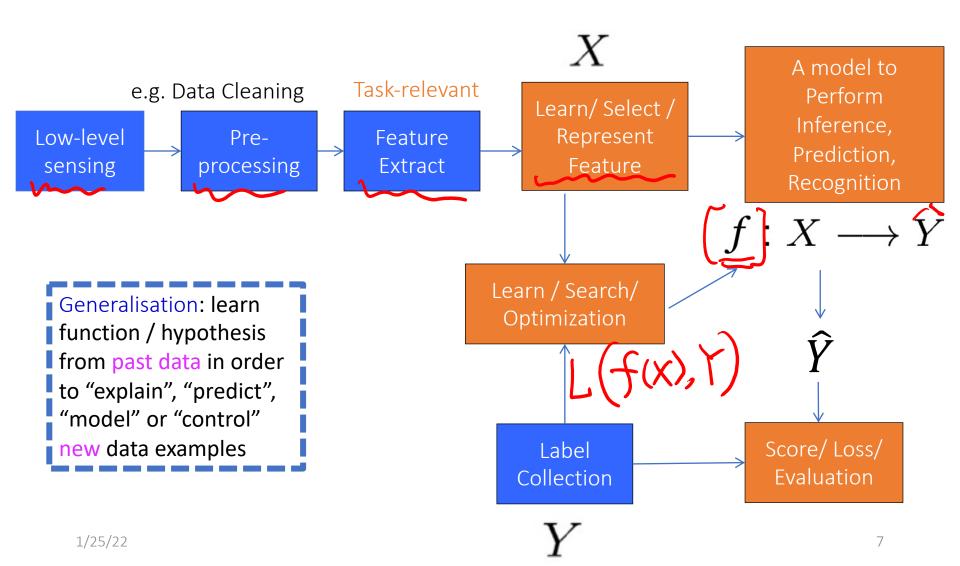


Basic Concepts

- Testing (i.e. evaluating performance on "future" points)
 - Difference between true Y_? and the predicted f(x_?) on a set of testing examples (i.e. testing set)
 - Key: example X_? not in the training set

 Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

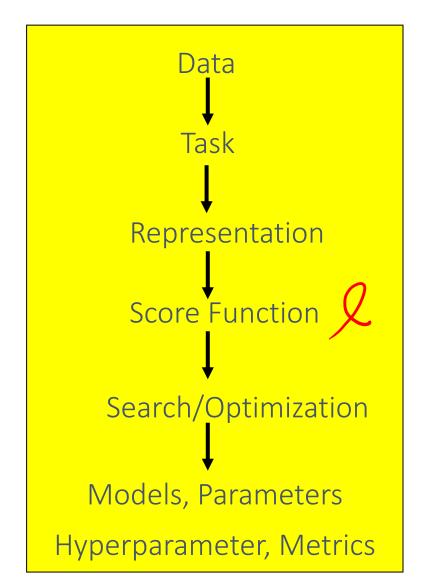
A Typical Machine Learning Application's Pipeline



When to use Machine Learning (Adapt to / learn from data) ?

- 1. Extract knowledge from data
 - Relationships and correlations can be hidden within large amounts of data
 - The amount of knowledge available about certain tasks is simply too large for explicit encoding (e.g. rules) by humans
- 2. Learn tasks that are difficult to formalise
 - Hard to be defined well, except by examples, e.g., face recognition
- 3. Create software that improves over time
 - New knowledge is constantly being discovered.
 - Rule or human encoding-based system is difficult to continuously redesign "by hand".

Machine Learning in a Nutshell

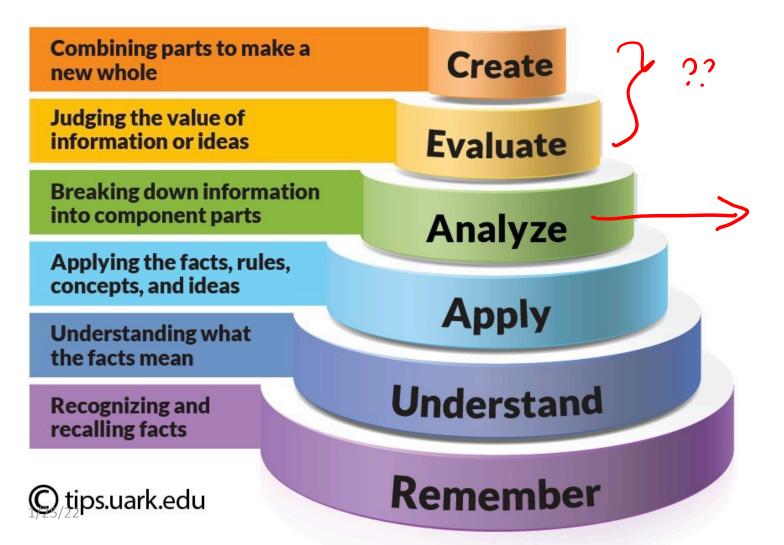


ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

My Teaching Guide: Bloom's Taxonomy on Cognitive Learning

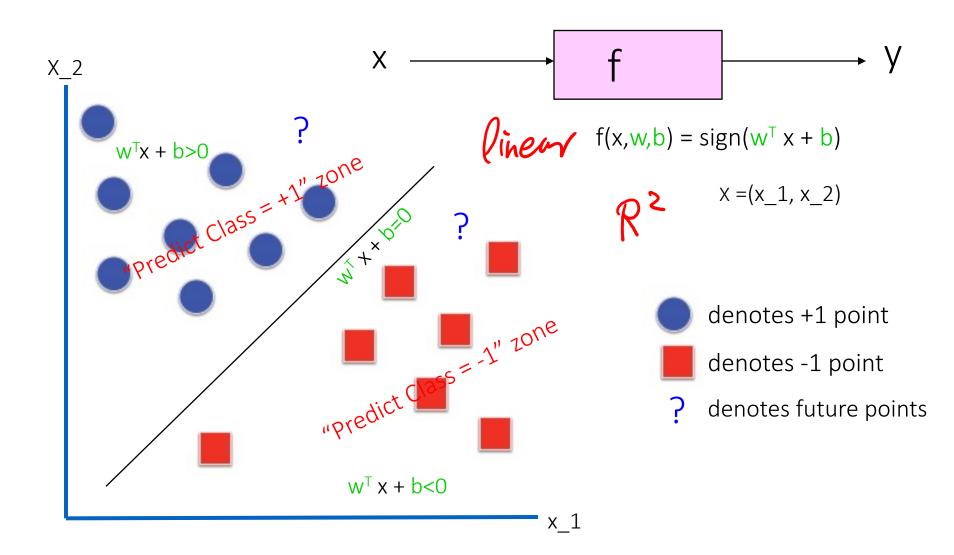


What we have covered

What we will cover

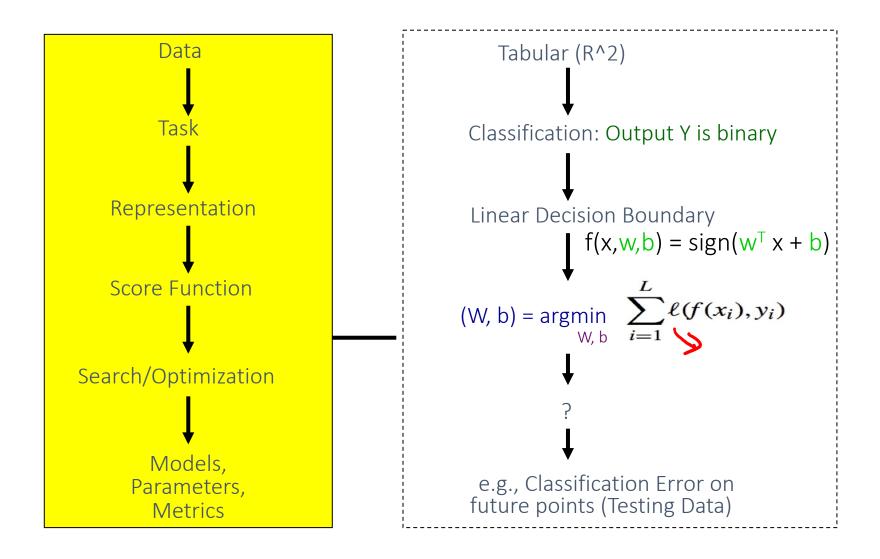
Data	Tabular, 1-D sequential, 2-D Grid like Imaging, 3-D VR, Graph, Set		
Task	Regression, classification, clustering, dimen-reduction		
Representation	Linear func, nonlinear function (e.g. polynomial expansion), local linear, logistic function (e.g. $p(c x)$), tree, multi-layer, prob-density family (e.g. Bernoulli, multinomial, Gaussian, mixture of Gaussians), local func smoothness, kernel matrix, local smoothness, partition of feature space,		
Score Function	MSE, Margin, log-likelihood, EPE (e.g. L2 loss for KNN, 0-1 loss for Bayes classifier), cross-entropy, cluster points distance to centers, variance, conditional log-likelihood, complete data-likelihood, regularized loss func (e.g. L1, L2) , goodness of inter-cluster similar		
Search/ Optimization	Normal equation, gradient descent, stochastic GD, Newton, Linear programming, Quadratic programming (quadratic objective with linear constraints), greedy, EM, asyn-SGD, eigenDecomp, backprop		
Models, Parameters	Ers Linear weight vector, basis weight vector, local weight vector, dual weights, training samples, tree-dendrogram, multi-layer weights, principle components, member (soft/hard) assignment, cluster centroid, cluster covariance (shape),		

SUPERVISED Linear Binary Classifier



Courtesy slide from Prof. Andrew Moore's tutorial

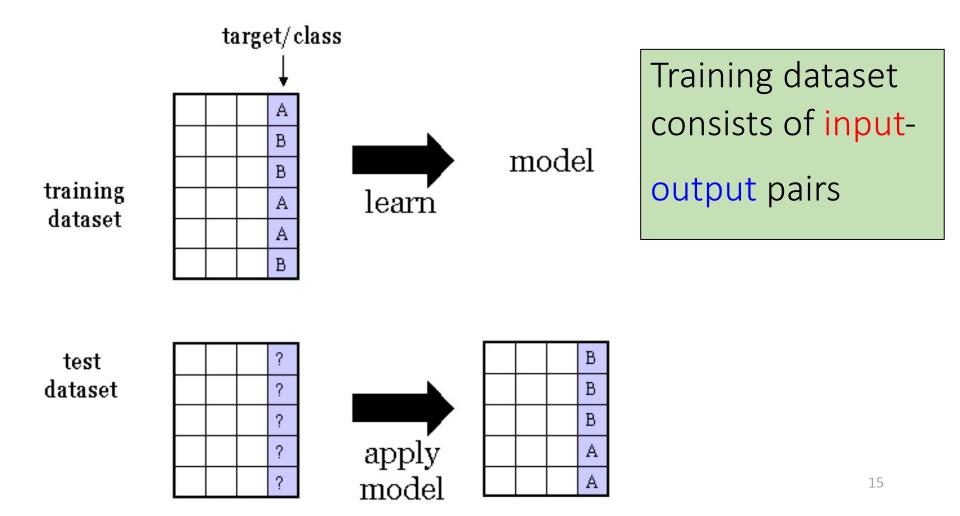
Nutshell for the simple Linear Supervised Classifier



https://scikit-learn.org/stable/tutorial/basic/tutorial.html

https://colab.research.google.com/drive/1oEGNhQ55iBNElYqfZpueSE2l_g3tQxSD?usp=sharing

I will code-run through: Recognizing hand-written digits with L2.ipynb Adapted from: ScikitLearn Tutorial plot_digits_classification.ipynb

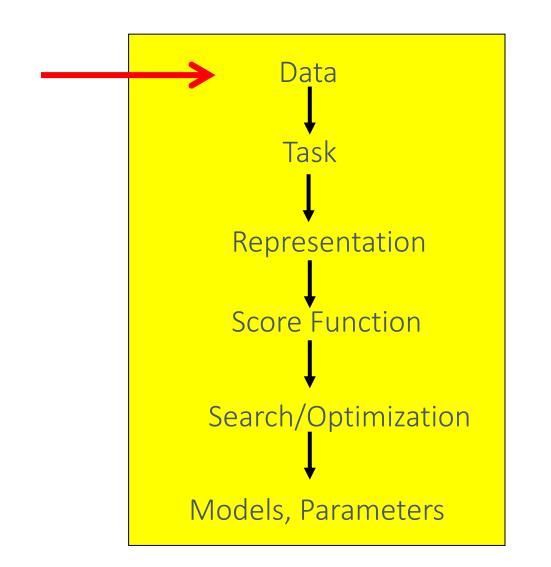


UVA CS 4774: Machine Learning L2

Roadmap

- Machine Learning in a Nutshell
- Examples of Different Data Types
- Examples of Different Tasks
- Examples of Different Representation Types
- Examples of Different Loss/Cost Types
- Examples of Different Model Properties

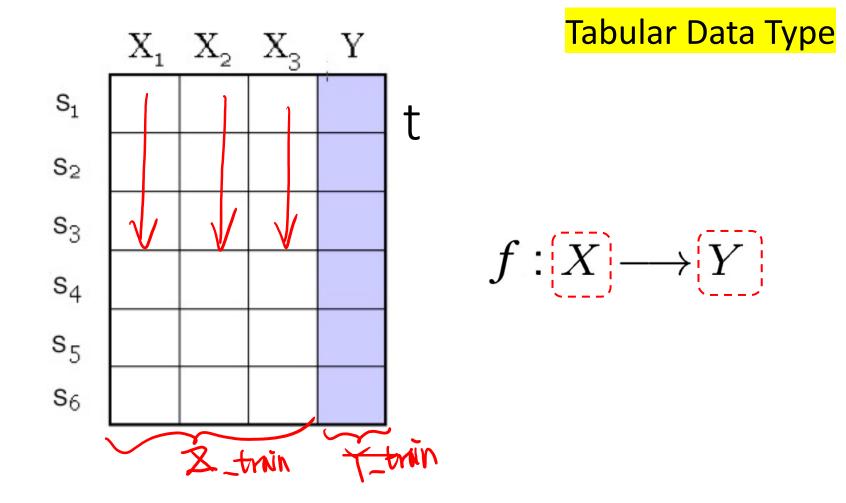
Machine Learning in a Nutshell



ML grew out of work in Al

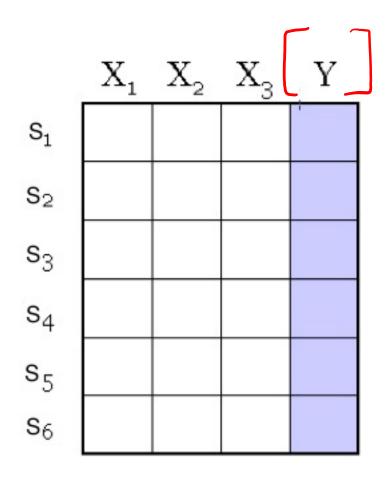
Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

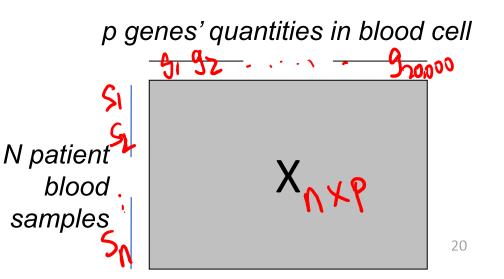


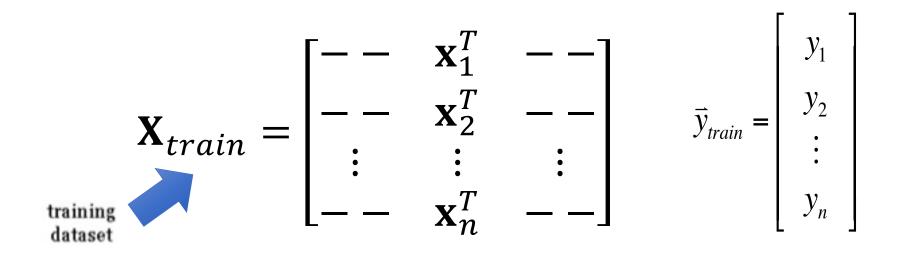
- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

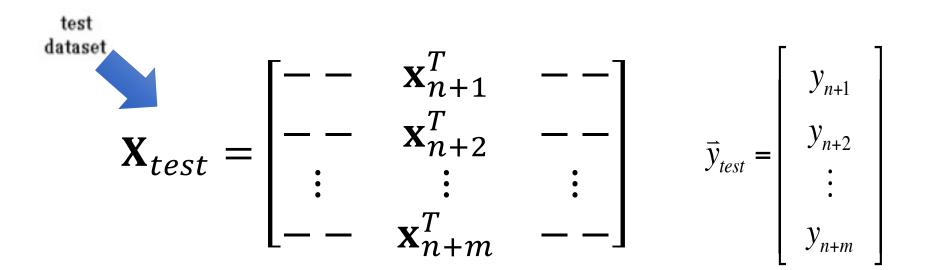
Main Types of Columns



- *Continuous*: a real number, for example, weight
- Discrete: a symbol, like "Good" or "Bad"

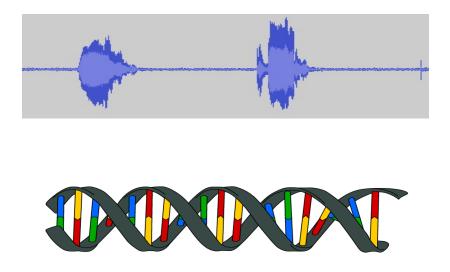


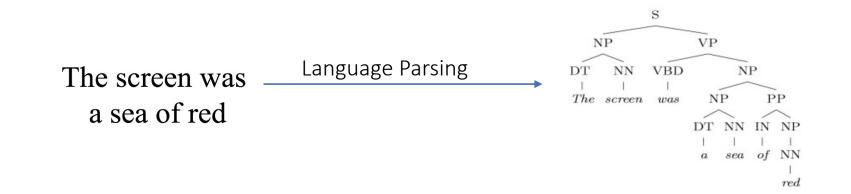




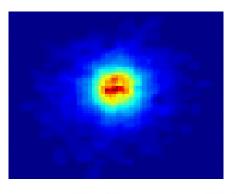
Sequence Data Type (eg. Language, Genome, Audio)

I believe that this book is not at all helpful since it does not explain thoroughly the material . it just provides the reader with tables and calculations that sometimes are not easily understood ...





2D Grid Data Type (eg. Images)



e.g.,

- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

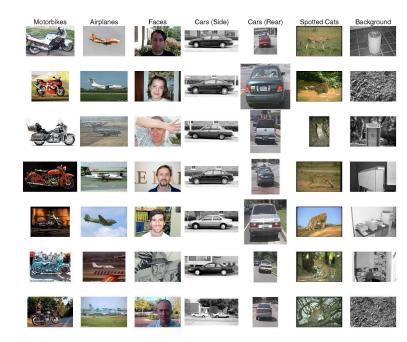
Normal

Bacterial Pneumonia

Viral Pneumonia

Figure S6 Illustrative Examples of Chest X-Rays in Patients with Pneumonia,

Kaggle: 5,232 chest X-ray images from children, including 3,883 characterized as depicting pneumonia (2,538 bacterial and 1,345 viral) and 1,349 normal, from a total of 5,856 patients

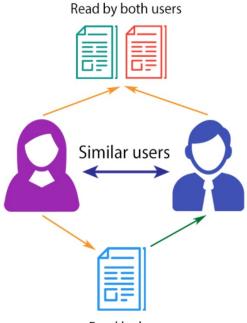


ImageNet Competition:

[Training on 1.2 million images [X] vs. 1000 different word labels [Y]]

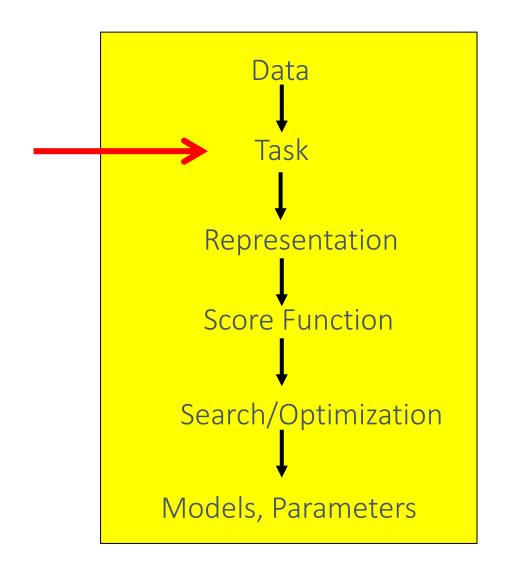
Graph Data Type (eg. Social Network)

COLLABORATIVE FILTERING



Read by her, recommended to him!

Machine Learning in a Nutshell

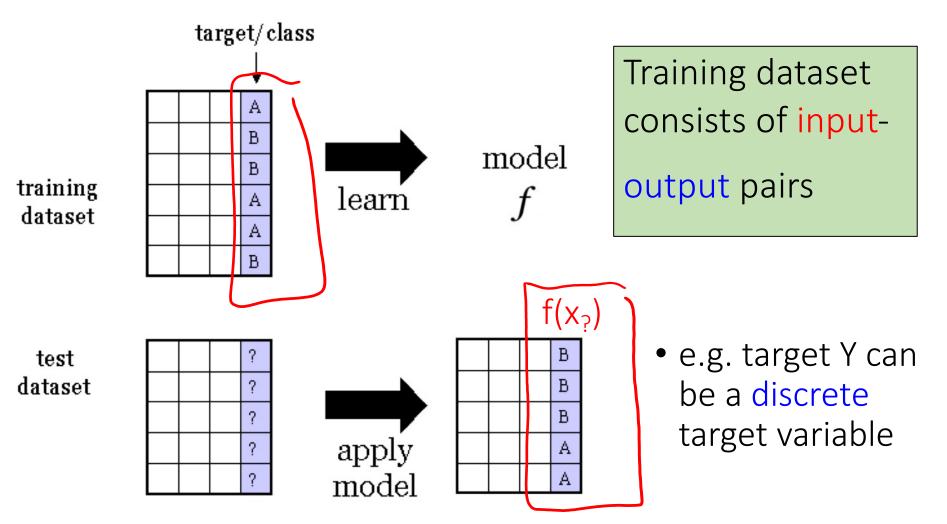


ML grew out of work in Al

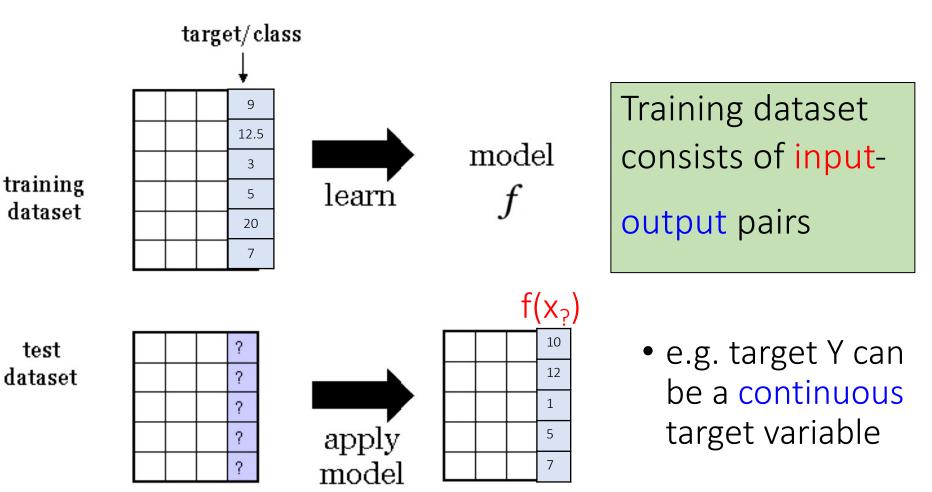
Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

e.g. SUPERVISED Classification

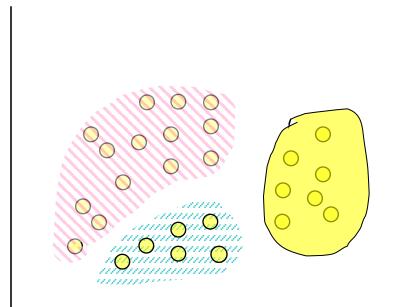


e.g. SUPERVISED Regression



Unsupervised LEARNING : [No Given Y]

- No labels are provided (e.g. No Y provided)
- Find patterns from unlabeled data, e.g. clustering



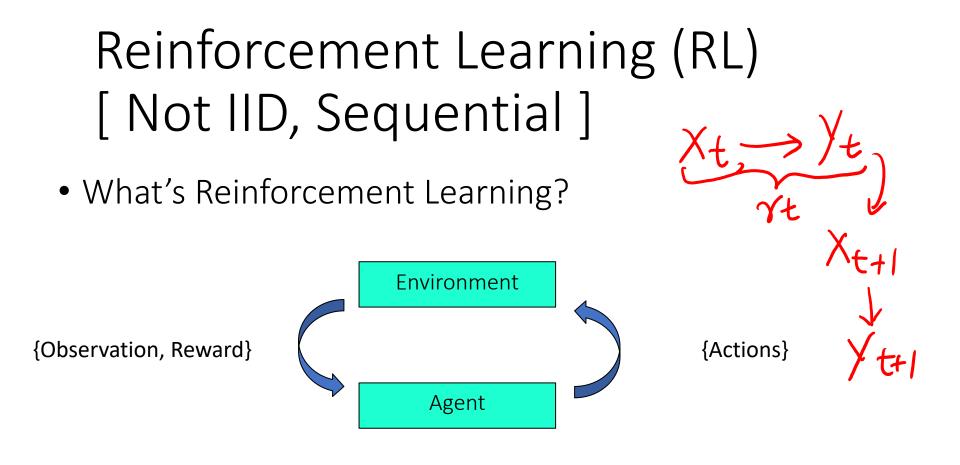
e.g. clustering => to find "natural" grouping of instances given unlabeled data

Structured Output LEARNING : [Complex Y]

• Many prediction tasks involve output labels having structured correlations or constraints among instances

ed Dependency Examples' Y	Sequence	Tree	Grid 🔨
Input X	APAFSVSPASGACGPECA	The dog chased the cat	
Output Y	CCEEEEECCCCCHHHCCC	Det N VP	Sky Building Car Road

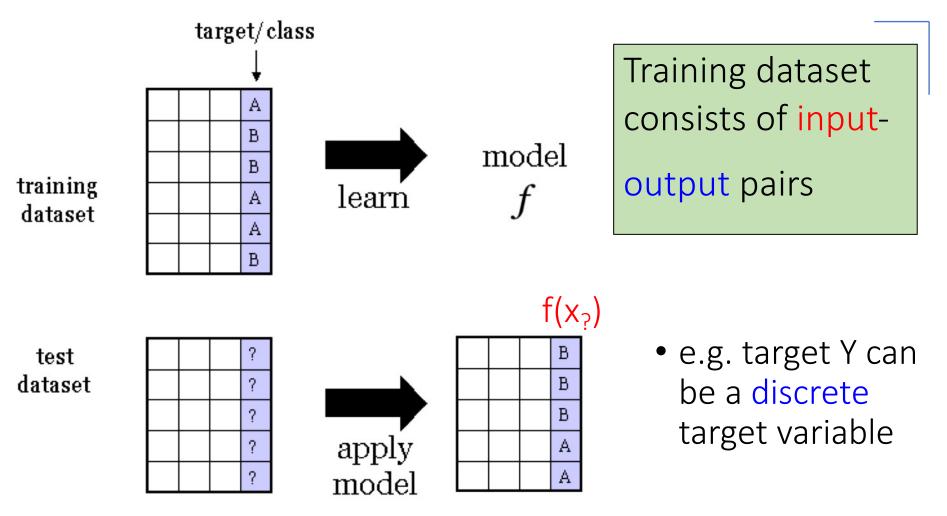
Many more possible structures between y_i , e.g. spatial , temporal, relational ...



- Agent interacts with an environment and learns by maximizing a scalar reward signal
 - Basic version: No labels or any other supervision signal.
 - Variation like imitation learning: supervised

Adapt from Professor Qiang Yang of HK UST

(Most popular:) SUPERVISED Classification



Many Variants of **SUPERVISED** Classification

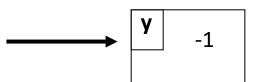
- Binary Classification
- Multi-class Classification
- Hierarchical Classification
- Multi-label Classification
- Structured Predictions

Binary: Text Review-based Sentiment Classification

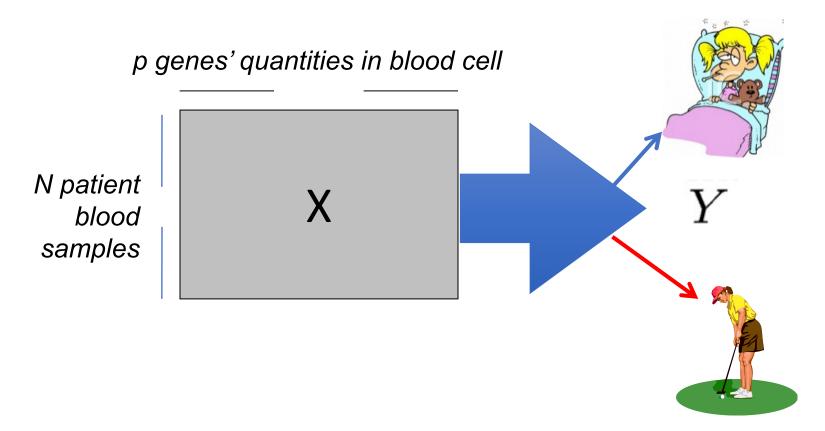
Х

I believe that this book is not at all helpful since it does not explain thoroughly the material . it just provides the reader with tables and calculations that sometimes are not easily understood ...

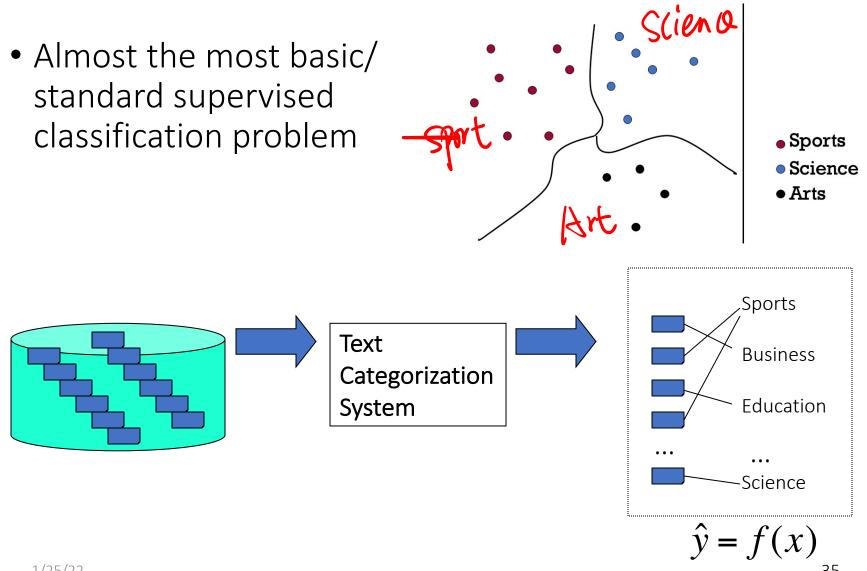
Input X : e.g. a piece of English text



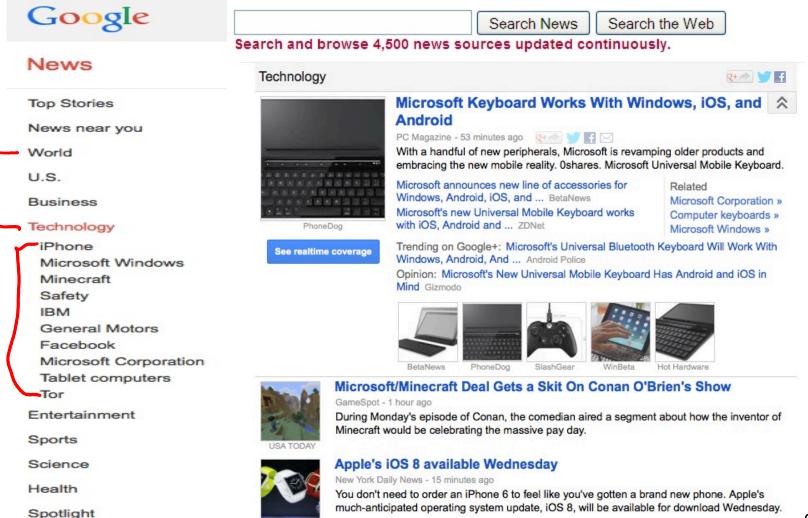
Output Y: {1 / Yes , -1 / No } e.g. Is this a positive product review ? **Binary:** : Disease Classification using gene expression



Multi-Class: Text Categorization



Hierarchical: Text Categorization, e.g. Google News



IBM Watson Data Analysis Service Revealed

Multi Label Classification (MLC)

- MLC is the task of assigning a set of target labels for a given sample
- Given input x, predict the set of labels { y_1, y_2, \dots, y_L }, $y_i \in \{0, 1\}$

10/30/19 Yanjun Qi / UVA CS

[Isola et al. CVPR 2017]

Generating X: Text2Image

this small bird has a pink breast and crown, and black primaries and secondaries.

this magnificent fellow is almost all black with a red crest, and white cheek patch.

the flower has petals that are bright pinkish purple with white stigma

10/30/19 Yarıjun Qı / UVA Co

this white and yellow flower have thin white petals and a round yellow stamen

Open Al recent: DALL·E: Creating Images from Text

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

Edit prompt or view more images↓

TEXT PROMPT

an armchair in the shape of an avocado....

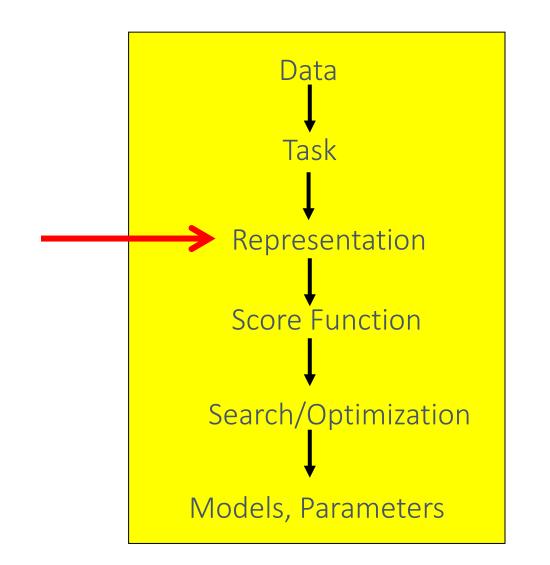
AI-GENERATED IMAGES

UVA CS 4774: Machine Learning L2

Roadmap

- Machine Learning in a Nutshell
- Examples of Different Tasks
- Examples of Different Data Types
- Examples of Different Representation Types
- Examples of Different Loss/Cost Types
- Examples of Different Model Properties

Machine Learning in a Nutshell

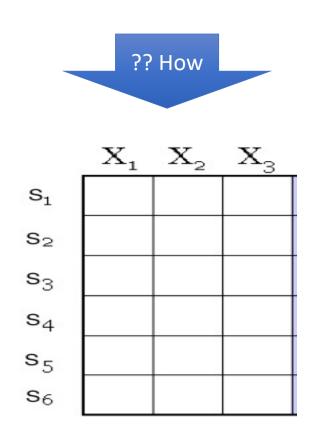


ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

- Text / String / Symbolic
- Sequences / Sets / Graph
 - Variable length
 - Discrete
 - Combinatorial
 - Spatial ordering among units



X? I believe that this book is not at all helpful since it does not explain thoroughly the material . it just provides the reader with tables and calculations that sometimes are not easily understood ...

Vector Space Representation: Bag of Words Trick

• Each document is a vector, one component for each term (= word).

	Doc 1	Doc 2	Doc 3	
Word 1	3	0	0	
Word 2	0	8	1	
Word 3	12	1	10	
	0	1	3	
	0	0	0	

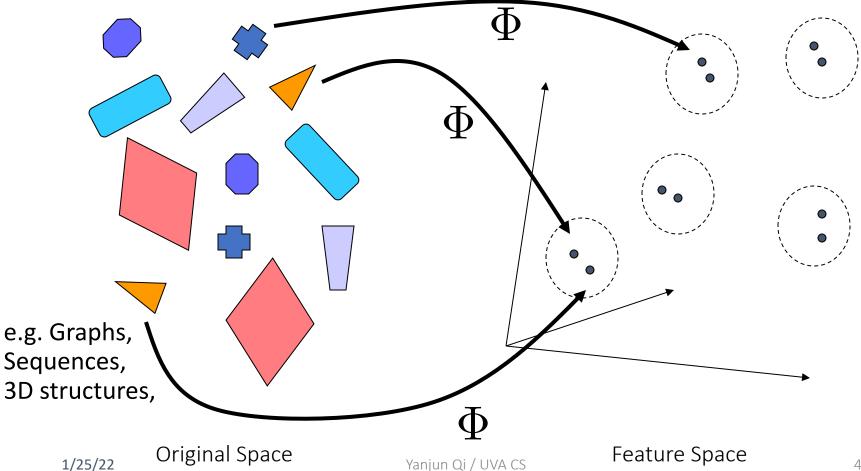
- Normalize to unit length.
- High-dimensional vector space:
 - Terms are axes, 10,000+ dimensions, or even 100,000+
 - Docs are vectors in this space

Visual

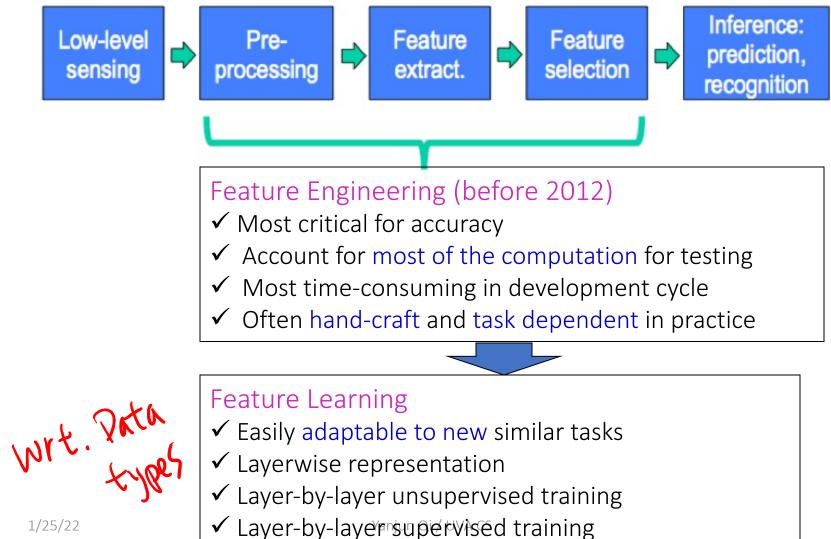
Bag of 'words'

Object

STRUCTURAL INPUT : Kernel Methods [Complex X]

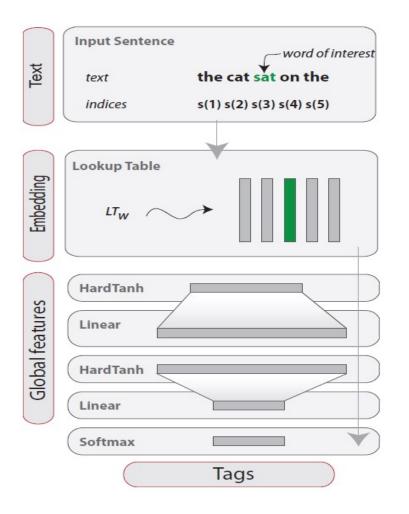


DEEP LEARNING / FEATURE LEARNING :

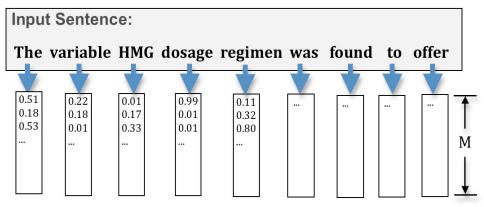


MORE RECENT: Deep Learning Based

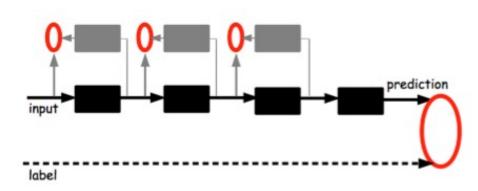
Deep Multi-Layer Learning



Supervised Embedding

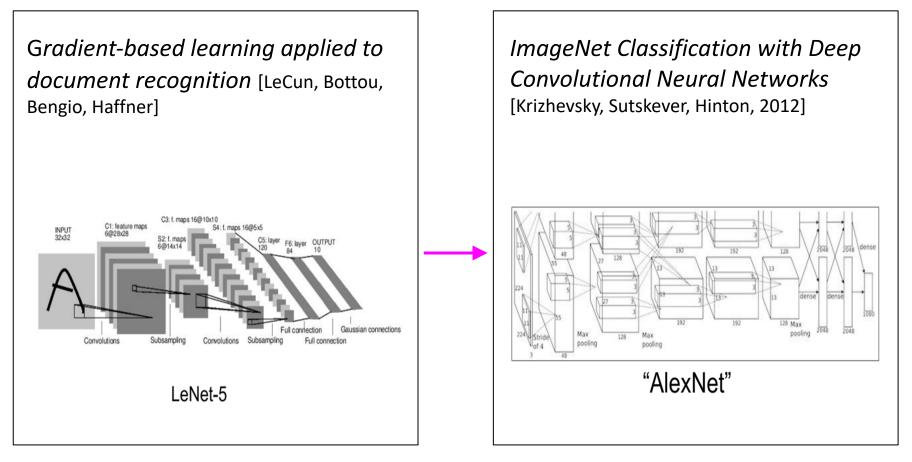


Layer-wise Pretraining

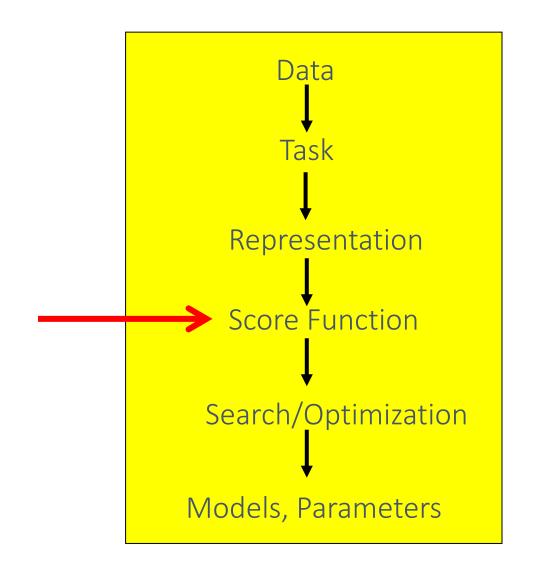


Yanjun Qi / UVA CS

History of ConvNets



Machine Learning in a Nutshell



ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

Basic Concepts

• Training (i.e. learning parameters w,b)

• Training set includes

- available examples x₁,...,x_L
- available corresponding labels y₁,...,y_L
- Find (w,b) by minimizing loss
 - (i.e. difference between y and f(x) on available examples in training set)

(W, b) = argmin
W, b
$$i=1$$

 $U(f(x_i), y_i)$

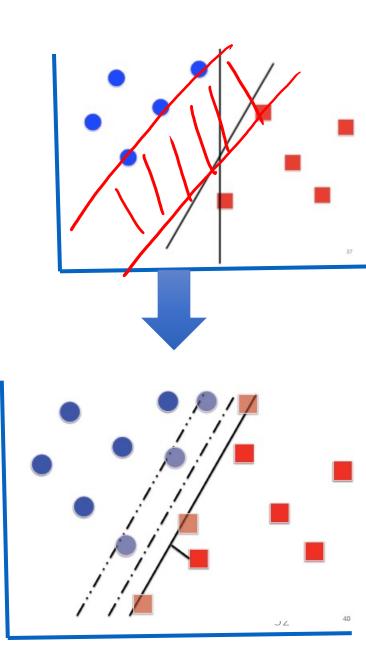
Basic Concepts

- Loss function
 - e.g. hinge loss for binary classification task

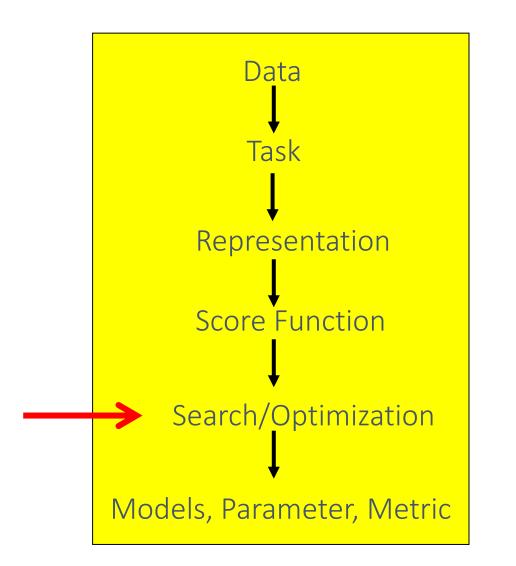
$$\sum_{i=1}^{L} \ell(f(x_i), y_i) = \sum_{i=1}^{L} \max(0, 1 - y_i f(x_i)) + \int_{-1}^{-1} \int_{-1}^{-1}$$

- Regularization
 - E.g. additional information added on loss function to control f

$$C\sum_{i=1}^{L}\ell(f(x_i), y_i) + \frac{1}{2}\|w\|^2$$



Machine Learning in a Nutshell



ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

Large-Scale Machine Learning: SIZE MATTERS

Those are not different numbers, those are different mindsets !!!

- One thousand data instances
- One million data instances
- •One billion data instances
- •One trillion data instances

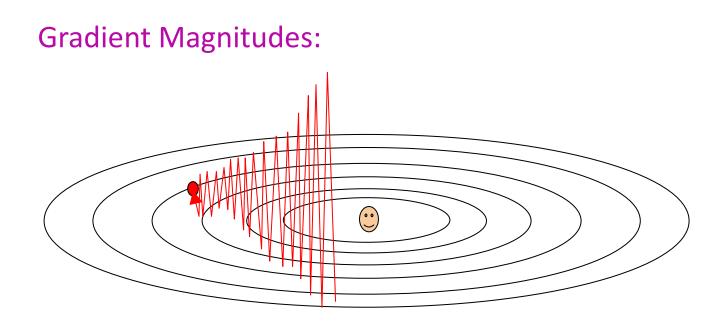
Not the focus, being covered in my advanced-level course Gradient Descent (Steepest Descent) – contour map view

A first-order optimization algorithm.

To find a local minimum of a function using gradient descent, one takes steps proportional to the *negative* of the gradient of the function at the current point. The gradient (in the variable space) points in the direction of the greatest rate of increase of the function and its magnitude is the slope of the surface graph in that direction

Dr. Yanjun Qi / UVA CS $- \nabla_{x}F(x_{k-1})$

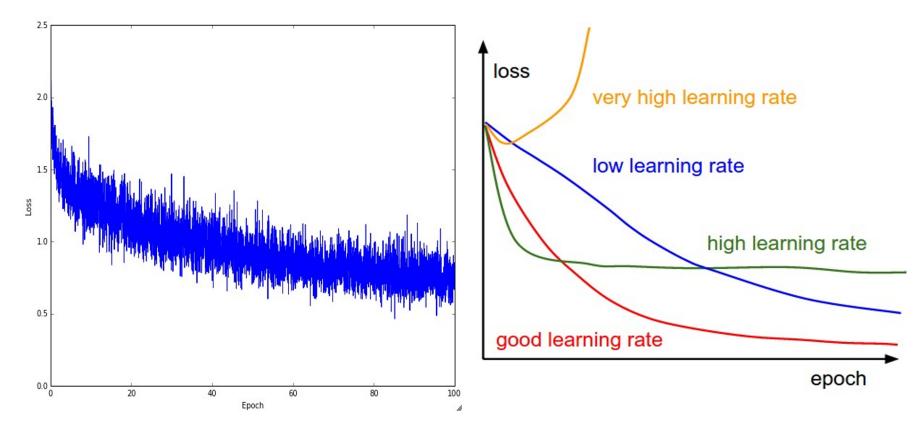
Contour map view



Gradients too big \rightarrow divergence Gradients too small \rightarrow slow convergence

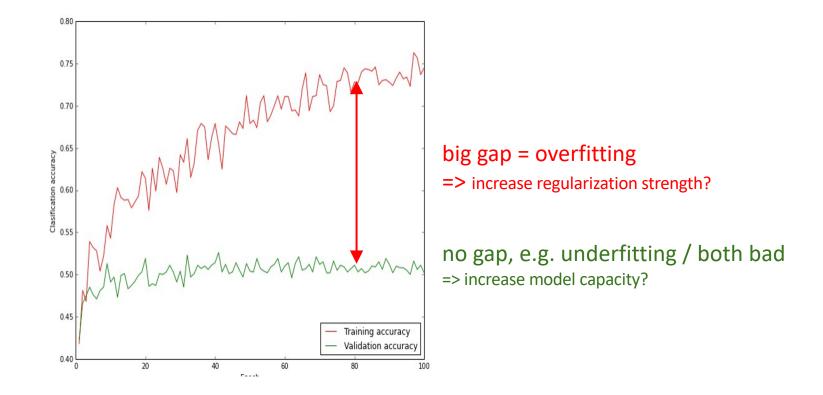
Divergence is much worse!

Many great tools, e.g., Adam https://arxiv.org/abs/1609.04747



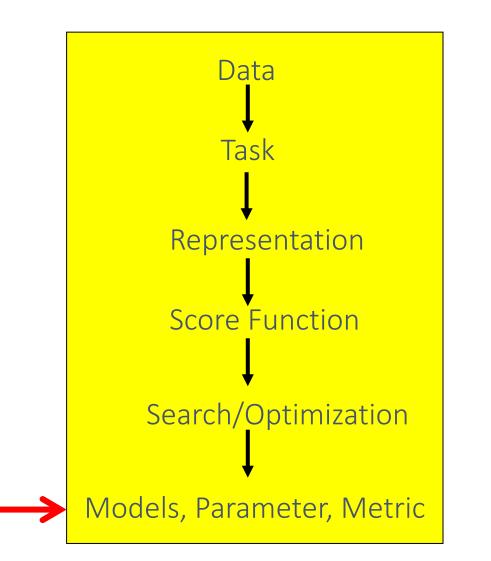
From Feifei Li Stanford Cousre

Monitor and visualize the train / validation loss / accuracy: Bias Variance Tradeoff



From Feifei Li Stanford Cousre

Machine Learning in a Nutshell

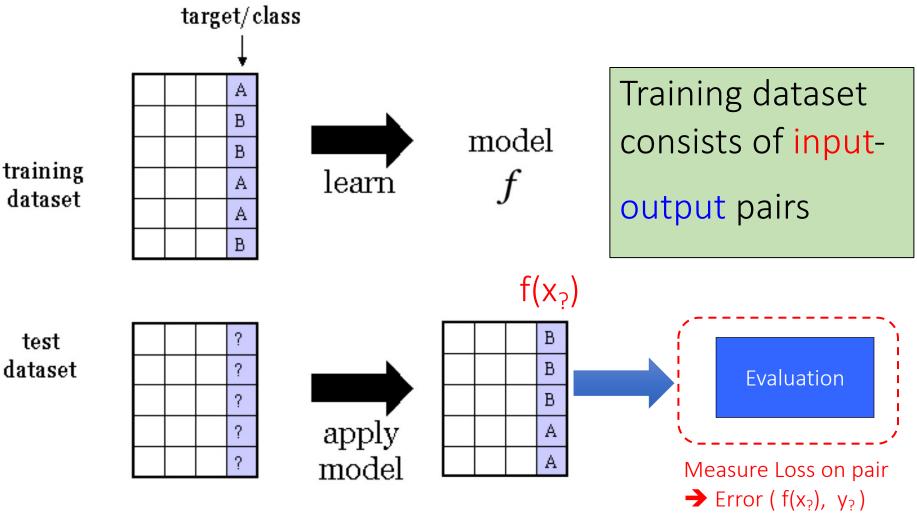


ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

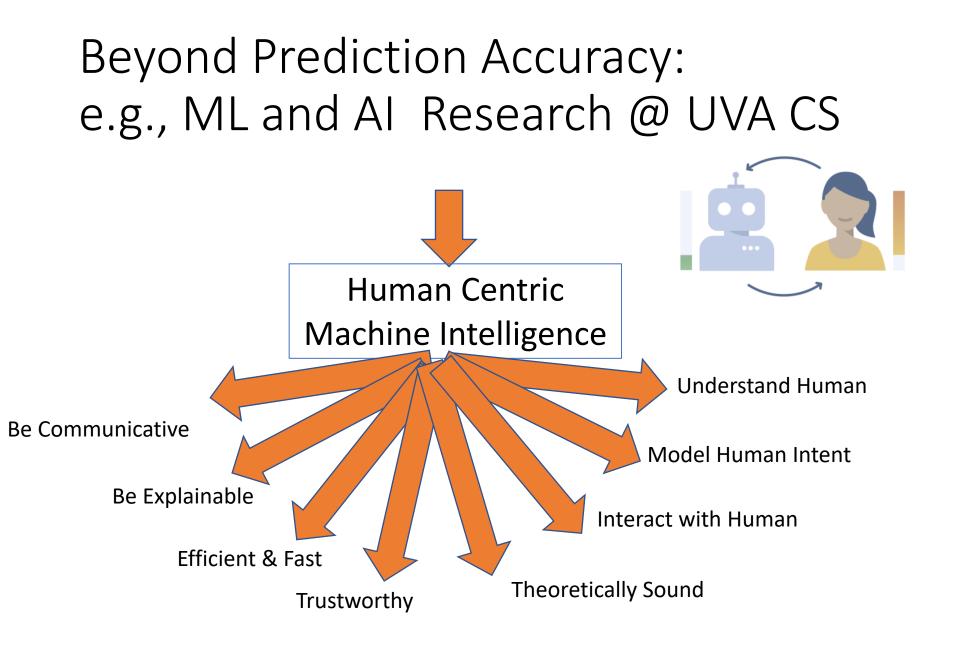
Aiming to generalize to unseen data

How to know the program works well: Measure Prediction Accuracy on Test Data

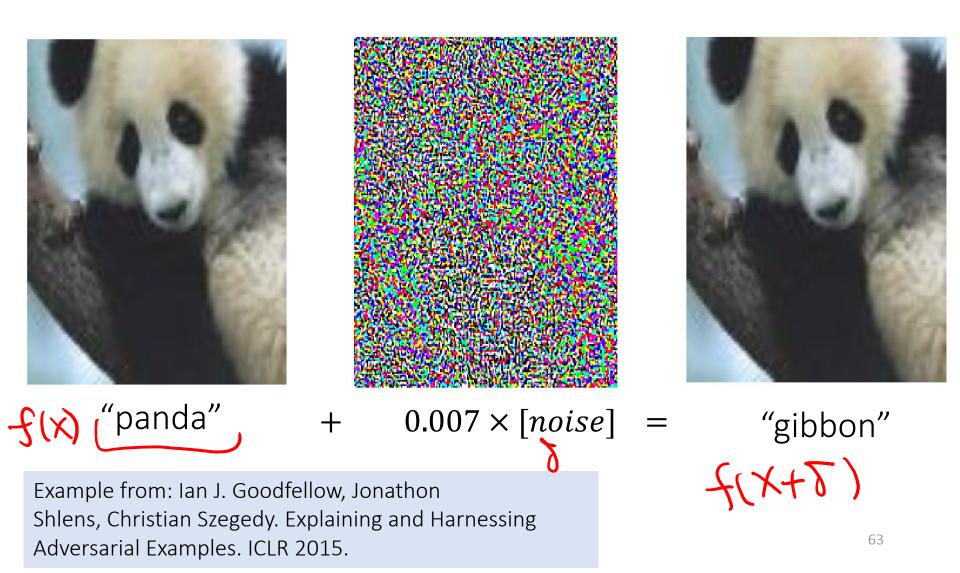


Many Metrics for Supervised Classification

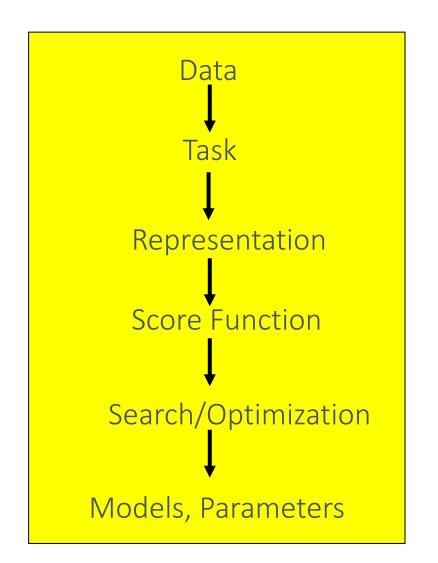
Metric	Formula	Interpretation
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	How accurate the positive predictions are
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Coverage of actual negative sample
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP}+\mathrm{FP}+\mathrm{FN}}$	Hybrid metric useful for unbalanced classes



Robustness of DNN, e.g. Adversarial Examples (AE)



Machine Learning in a Nutshell



ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

Rough Sectioning of this Course

- 1. Basic Supervised Regression + Tabular Data
- 2. Basic Deep Learning + 2D Imaging Data
- 3. Advanced Supervised learning + Tabular Data
- 4. Generative and Deep + 1D Sequence Text Data
- 5. Not Supervised

Now open course website Schedule page 🗲

References

- Prof. Andrew Moore's tutorials
- Prof. Raymond J. Mooney's slides
- Prof. Alexander Gray's slides
- Prof. Eric Xing's slides
- http://scikit-learn.org/
- □ Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
- □ Prof. M.A. Papalaskar's slides