
UVA CS 4774:
Machine Learning

Lecture 12: Neural Network (NN)
and More: BackProp

3/4/22 1

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

Last: Logistic Regression Classifier

Binary Classification

2

Task: y

Representation: : x, f()

Score Function: L()

Search/Optimization :
argmin()

Models, Parameters, metrics

Data: X X: Tabular

Log-odds y = linear function of Xs

Iterative (Newton) method
/ SGD

MLE

Logistic weights

/ Accuracy / F1

P(y = 1 x) = eβ0+β

T x

1+ eβ0+β
T x

3/4/22

Last: Logistic Regression Classifier

• View I: logit(y) as linear of Xs
• View II: model Y as Bernoulli with p(y=1|x) as p(Head)
• View III: S" shape function compress to [0,1]
• View IV: models a linear classification boundary!
• View V: Two stages: summation + sigmoid

3/4/22 3

4

Task: y

Representation: : x, f()

Score Function: L()

Search/Optimization :
argmin()

Models, Parameters, metrics

Data: X X: Tabular / 2D / 1D / 3D / Graph /…

Weights and biases in NN Layers

/ Accuracy / F1
3/4/22

Today: Basic Neural Network Models

neg Log-likelihood , Cross-
Entropy / MSE / Many more

SGD / Backprop

Classification / Regression

Multilayer Network
topology

Roadmap: DNN Basics

•Basics of Neural Network (NN)
• single neuron, e.g. logistic regression unit
• multilayer perceptron (MLP)
• various loss function
• E.g., when for multi-class classification, softmax layer

• training NN with backprop algorithm
• A few advanced tricks

3/4/22 5

ReWrite Logistic Regression as two stages:

3/4/22 6

𝑧 = 𝛽! + 𝛽"𝑥" + 𝛽#𝑥#+. . . +𝛽$𝑥$

!𝑦=P(y=1|x) = e!"#!$%$#!&%&#...#!(%(
1!e!"#!$%$#!&%&#...#!(%(=

e)
1!e)

First:
Summing

Second:
Sigmoid
Squashing

One “Neuron”: Expanded Logistic Regression

x1

x2

x3

Σ

+1

z

z = wT . x + b

y = sigmoid(z) =
7

ez

1 + ez

p = 3

w1

w2

w3

b1
Summing
Function

Sigmoid
Function

Multiply by
weights

ŷ = P(Y=1|x,w)

Input x

E.g., Many Possible Nonlinearity Functions
(aka transfer or activation functions)

x w

8
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions

Name Plot Equation Derivative (w.r.t x)

usually works best in practice

https://en.wikipedia.org/wiki/Activation_function

Activation functions

yield superior results in many different settings. Since this function is 0 for nega-
tive argument values, some units in the model will yield activations that are 0,
giving a “sparseness” property that is useful in many contexts. Moreover, the gra-
dient is particularly simple—either 0 or 1. The fact that when activated, the acti-
vation function has a gradient of exactly 1 helps address the vanishing or
exploding gradient problem—we discuss this in more detail below, under recur-
rent networks. ReLUs are a popular choice for h(l)(x), while piecewise linear
functions (the last entry of Table 10.3) have also grown in popularity for deep
learning systems. Like ReLUs, these are not differentiable at 0, but gradient
descent can be applied by using a subgradient instead, which means that h0ð0Þ can
be set to a (e.g.).

Table 10.3 Activation Functions and Their Derivatives

Name and Graph Function Derivative

sigmoid(x)

−4 −2 0 2 4

0

0.5

1 hðxÞ5
1

11 expð2 xÞ
h0ðxÞ5 hðxÞ 12 hðxÞ½ $

tanh(x)

−4 −2 0 2 4
−1

−0.5

1

0.5

1 hðxÞ5
expðxÞ2 expð2 xÞ
expðxÞ1 expð2 xÞ

h0ðxÞ512 hðxÞ2

softplus(x)

−4 −2 0 2 4
0

1

2

3

4 hðxÞ5 log ð11 expðxÞÞ h0ðxÞ5
1

11 expð2 xÞ

rectify(x)

−4 −2 0 2 4
0

1

2

3

4
hðxÞ5maxð0; xÞ h0ðxÞ5 1

0
if x$ 0
if x, 0

!

pw_linear(x)

−4 −2 0 2 4
−1

0

1

2

3

4
hðxÞ5 x

ax
if x$ 0
if x, 0

!
h0ðxÞ5 1

a
if x$ 0
if x, 0

!

42510.1 Deep Feedforward Networks

History è Perceptron: 1-Neuron Unit with Step
−First proposed by Rosenblatt (1958)
−A simple neuron that is used to classify its input into one of two categories.
−A perceptron uses a step function

		
φ(z)= +1	if	z ≥0

−1	if	z <0
⎧
⎨
⎩

3/4/22 10

x1

x2

x3

Σ

Summing
Function

Step Function

w1

w2

w3

+1

b1

z

Multiply by
weights

11

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout

ELU

Leaky ReLU
max(0.1x, x)

From Feifei Li Stanford Cousre

ez

1 + ez

Bias Term?

x1

x2

x3

Σ

+1

z

z = wT . x + b

y = sigmoid(z) =
12

p = 3

w1

w2

w3

b1
Summing
Function

Sigmoid
Function

Multiply by
weights

ŷ = P(Y=1|x,w)

Input x

Without Bias Term

0 1 1 1 1() ()n n n ny o w w x w x y o w x w x= + + Þ = +! !

13

Without Bias Term
3/4/22

With Bias
Term

14

0 1 1()n ny o w w x w x= + +!

With Bias Term
3/4/22

Roadmap: DNN Basics

•Basics of Neural Network (NN)
• single neuron, e.g. logistic regression unit
• multilayer perceptron (MLP)
• various loss function
• E.g., when for multi-class classification, softmax layer

• training NN with backprop algorithm

3/4/22 15

Neuron Representation

16

Σ

The linear transformation and nonlinearity together is typically considered a single neuron

ŷ

x1

x2

x3

x

w1
w2
w3

From here on, we leave out bias
square for simple visualization

Multi-Layer Perceptron (MLP)- (Feed-Forward NN)

17

1st

hidden
layer

2nd

hidden
layer

Output Layer
for Binary Classification

x1

x2

x3

x ŷ

W1

w3

W2

h1 h2

Multi-Layer Perceptron (MLP)- (Feed-Forward NN)

18

1st

hidden
layer

2nd

hidden
layer

Output Layer
for Binary Classification

x1

x2

x3

x ŷ

W1

w3

W2

h1 h2

z1 =WT x
h1 = sigmoid(z1)
z2 =WTh1
h2 = sigmoid(z2)
z3 =wT h2
ŷ = sigmoid(z3)

1

2

3

hidden layer 1 output

hidden layer 2 output

“Deep” Neural Networks (i.e. many hidden layers)

19

View IV: Logistic Regression models
a linear classification boundary!

3/4/22 20

!!y∈{0,1}

		
ln P(y |x)

1−P(y x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= β0 +β1x1 +β2x2 + ...+βpxp

		
ln P(y =1|x)

P(y =0|x)
⎡

⎣
⎢

⎤

⎦
⎥ = ln

P(y =1|x)
1−P(y =1|x)
⎡

⎣
⎢

⎤

⎦
⎥ =α +β1x1 +β2x2 + ...+βpxp

Decision Boundary è equals to zero

Review:

3/4/22 21

One neuron

Another neuron

How to combine
to get nonlinear
decision
boundary?

A friendly introduction to Deep Learning and Neural Networks from Luis Serrano

Bias

3/4/22 22

3/4/22 23

From https://www.youtube.com/watch?v=BR9h47Jtqyw&list=PLs8w1Cdi-zvavXlPXEAsWIh4Cgh83pZPO&index=3

https://www.youtube.com/watch?v=BR9h47Jtqyw&list=PLs8w1Cdi-zvavXlPXEAsWIh4Cgh83pZPO&index=3

3/4/22 24

From https://www.youtube.com/watch?v=BR9h47Jtqyw&list=PLs8w1Cdi-zvavXlPXEAsWIh4Cgh83pZPO&index=3

https://www.youtube.com/watch?v=BR9h47Jtqyw&list=PLs8w1Cdi-zvavXlPXEAsWIh4Cgh83pZPO&index=3

25

Task: y

Representation: : x, f()

Score Function: L()

Search/Optimization :
argmin()

Models, Parameters, metrics

Data: X X: Tabular / 2D / 1D / 3D / Graph /…

Weights and biases in NN Layers

/ Accuracy / F1
3/4/22

Today: Basic Neural Network Models

neg Log-likelihood , Cross-
Entropy / MSE / Many more

SGD / Backprop

Classification / Regression

Multilayer Network
topology

Thank you

26

Thank You

3/4/22

UVA CS 4774:
Machine Learning

Lecture 12: Neural Network (NN)
and More: BackProp

3/4/22 27

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

Module II

Roadmap: DNN Basics

•Basics of Neural Network (NN)
• single neuron, e.g. logistic regression unit
• multilayer perceptron (MLP)
• various loss function
• E.g., when for multi-class classification, softmax layer

• training NN with backprop algorithm

3/4/22 28

EW (ŷ,y) = SSE =

E.g., SSE loss on Multi-Layer Perceptron (MLP) for Regression

x1

x2

x3

+1 +1
+1

Example: 2 Hidden Layer MLP network with 2 output units:

hiddeninput

output

hidden

3/4/22 29

ŷ2

ŷ1

(y1-ŷ1)2+(y2-ŷ2)2

x1

x2

x3

+1 +1

hiddeninput

output

3/4/22 30

e.g., Cross-Entropy loss for Multi-Layer Perceptron (MLP) for Binary Classification

ŷ = P (Y=1|X,Θ)

		

Ex(θ)= Lossx(θ)= − logPr(Y = y |X = x)
= −{ yi log(ŷi)+(1− yi)log(1− ŷi)}

Cross-entropy loss function, OR named as
“deviance”, OR negative log-likelihood

x1

x2

x3

+1 +1

hiddeninput

output

3/4/22 31

e.g., Cross-Entropy loss for Multi-Layer Perceptron (MLP) for Binary Classification

ŷ = P (Y=1|X,Θ)

		

Ex(θ)= Lossx(θ)= − logPr(Y = y |X = x)
= −{ yi log(ŷi)+(1− yi)log(1− ŷi)}

For Bernoulli distribution,

p(y =1| x)y (1− p)1−y

Cross-entropy loss function, OR named as
“deviance”, OR negative log-likelihood

3/4/22 32

LIKELIHOOD:

𝐿(𝑝) =)
"#$

%
𝑝&* 1 − 𝑝 $'&*

function of p=Pr(head)

log(𝐿(𝑝) = log 0
!"#

$
𝑝%! 1 − 𝑝 #&%!

= ∑!"#$ (𝑧!log 𝑝 + 1 − 𝑧! log(1 − 𝑝))

Binary Classification è Multi-Class Classification

3/4/22 33

Multinoulli Distribution, e.g.,

P(y=1|x)

1-p(y=1x)

models the target binary random
variable with Bernoulli whose
parameter p=p(y=1|x) predefined
as function on x

ez

1 + ez

Multi-class target variable
representation

•Multi-class output variable è
An indicator basis vector representation
• If output variable G has K classes, there

will be K indicator variable y_i

3/4/22 34

Total Class

K=4

Review: Multi-class
variable representation

•Multi-class output variable è
An indicator basis vector representation
• If output variable G has K classes, there

will be K indicator variable y_i

• How to classify to multi-class ?
• First: learn K different regression
• Then: Softmax using all K outputs as input

• Then:

3/4/22 35

Class

N

Review: Multi-class
variable representation

•Multi-class output variable è
An indicator basis vector representation
• If output variable G has K classes, there

will be K indicator variable y_i

• How to classify to multi-class ?
• First: learn K different regression
• Then: Softmax using all K outputs as input
• Then:

3/4/22 36

Class

N

MAP

Review: Multi-class
variable representation

•Multi-class output variable è
An indicator basis vector representation
• If output variable G has K classes, there

will be K indicator variable y_i

• How to classify to multi-class ?
• First: learn K different regression
• Then: Softmax using all K outputs as input
• Then:

3/4/22 37

Class

N

MAP

Strategy : Use “softmax” layer function for multi-class classification

yi =
ezi

ezj
j
∑

∂yi
∂zi

= yi (1− yi)

Softmax
Output

z

y

z

y

z

y1

1 2

2 3

3

3/4/22 38

“Softmax” functio: Normalizing
function which converts each
class output to a probability.

When for multi-class classification
(last output layer: softmax layer)

3/4/22 39

last layer is softmax output layer è
a Multinoulli logistic regression unit

Output units

z

y

z

y

z

y1

1 2

2 3

3

3/4/22 40

Output units

z

y

z

y

z

y1

1 2

2 3

3

= P(ŷi = 1 | x)ŷi

When for multi-class classification
(last output layer: softmax layer)

last layer is softmax output layer è
a Multinoulli logistic regression unit

When for multi-class classification
(last output layer: softmax layer)

3/4/22 41

last layer is softmax output layer è
a Multinoulli logistic regression unit

Output units

z

y

z

y

z

y1

1 2

2 3

3

EW (ŷ,y) = cross-E = - yj ln ŷjΣ
j = 1...K

“0” for all
except
true class

0
1
0

0.1
0.7
0.2

ŷytrue

MLE / the negative log probability of the right
answer / Cross entropy loss function :

When for multi-class classification
(last output layer: softmax layer)

3/4/22 42

last layer is softmax output layer è
a Multinoulli logistic regression unit

Output units

z

y

z

y

z

y1

1 2

2 3

3

EW (ŷ,y) = cross-E = - yj ln ŷjΣ
j = 1...K

“0” for all
except
true class

0
1
0

0.1
0.7
0.2

ŷytrue

MLE / the negative log probability of the right
answer / Cross entropy loss function :

When for multi-class classification
(last output layer: softmax layer)

3/4/22 43

last layer is softmax output layer è
a Multinoulli logistic regression unit

Output units

z

y

z

y

z

y1

1 2

2 3

3

EW (ŷ,y) = cross-E = - yj ln ŷjΣ
j = 1...K

“0” for all
except
true class

0
1
0

0.1
0.7
0.2

ŷytrue

MLE / the negative log probability of the right
answer / Cross entropy loss function :

Error calculated from
predicted Output vs. true

𝜕𝐸
𝜕𝑧"

= /

6#$....8

𝜕𝐸
𝜕𝑦6

𝜕𝑦6
𝜕𝑧"

= !𝑦" − 𝑦𝑡𝑟𝑢𝑒,"

z1

z2

z3

Summary Recap: Multi-Class Classification Loss
Cross Entropy Loss

44

x1

x2

x3

x

Σ

Σ

Σ

ŷ1

ŷ2

ŷ3

“Softmax” function.
Normalizing function which
converts each class output to
a probability.

E = loss = - yj log ŷjΣ
j = 1...K

= P(yi = 1 | x)

W1 W3

W2

ŷi

“0” for all except true class

K = 3

0
1
0

0.1
0.7
0.2

ŷy

Logistic: a special case of softmax for two classes

• So the logistic binary case is just a special case that
avoids using redundant parameters:
• Adding the same constant to both z1 and z0 has no effect.
• The over-parameterization of the softmax is because the

probabilities must add to 1.

)(1 0101

1

1
1

zzzz

z

eee
ey --+

=
+

=

3/4/22 45

46

Task: y

Representation: : x, f()

Score Function: L()

Search/Optimization :
argmin()

Models, Parameters, metrics

Data: X X: Tabular / 2D / 1D / 3D / Graph /…

Weights and biases in NN Layers

/ Accuracy / F1
3/4/22

Today: Basic Neural Network Models

neg Log-likelihood , Cross-
Entropy / MSE / Many more

SGD / Backprop

Classification / Regression

Multilayer Network
topology

Thank you

47

Thank You

3/4/22

UVA CS 4774:
Machine Learning

Lecture 12: Neural Network (NN)
and More: BackProp

3/4/22 48

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

Module III

Roadmap: DNN Basics

•Basics of Neural Network (NN)
• single neuron, e.g. logistic regression unit
• multilayer perceptron (MLP)
• various loss function
• E.g., when for multi-class classification, softmax layer

• training NN with backprop algorithm
• A few advanced tricks

3/4/22 49

e.g., “Block View” of Logistic Regression

Dot Product Sigmoid

50

Input

output
x *

W z

W is a vector z is a vector

parameterized block,
W needs to be learned

No Parameters to Learn

E (ŷ,y)
ŷ loss

e.g., “Block View” of Logistic Regression

Dot Product Sigmoid

51

Input

output
x *

W z

W is a vector z is a vector

E (ŷ,y)
ŷ loss

e.g., “Block View” of multi-class NN

x

1st

hidden layer
2nd

hidden layer Output layer

52

*

W1

*

W2

*

W3z1 z2 z3
h1 h2

Loss Module

“Softmax”

E (ŷ,y)
ŷ

W is a matrix z is a vector

53

x1

x2

x3

W1

w3

W2

x ŷ E (ŷ,y)

• For LR: linear regression, We have the
following descent rule:

• è For neural network, we have the delta rule

Review: Stochastic GD è

3/4/22 54

Δw = −η ∂E
∂Wt

tj

t
j

t
j J)(q

q
aqq
¶
¶

-=+1

!!
Wt+1 =Wt −η ∂E

∂Wt =W
t +Δw

• 1. Initialize network with random weights
• 2. For training examples:
• Forward: Feed feed inputs to network layer by layer, and calculate output of

each layer (from input layer to until the final layer (error function))

• Backward: For all layers (starting with the output layer, back to input layer):
• Propagate local gradients layer by layer from final layer, until back to input layer to

calculate each layer’s gradient

• Adapt weights in current layer

Backpropagation

3/4/22 55

𝑊𝑙
'(𝟏 = 𝑊𝑙

' − 𝜂
𝜕𝐸
𝜕𝑊𝑙

'

𝜕𝐸
𝜕𝑊𝑙

' Need to calculate these!

Training Neural Networks by Backpropagation - to
jointly optimize all parameters

56

How do we learn the optimal weights WL for our task??
● Stochastic Gradient descent:

LeCun et. al. Efficient Backpropagation. 1998

But how do we get gradients of lower layers?
● Backpropagation!

○ Repeated application of chain rule of calculus
○ Locally minimize the objective
○ Requires all “blocks” of the network to be

differentiable

x ŷ

W1

w3

W2

E (ŷ,y)		
WL

t+1 =WL
t −η

∂Ex
WL

t

Layers of Differentiable Parameterized Functions (with nonlinearities)

57

Forward: Feed inputs to network layer by layer, and calculate output of each layer
(from input layer to until the final layer (error function))

Need to calculate these!

f3f2f1
x

ŷ

E(ŷ,y)
f4

x ŷ

W1

w3

W2

E (ŷ,y)

Layers of Differentiable Parameterized Functions (with nonlinearities)

58

Backward: For all layers (starting with the output layer, back to input layer):
Propagate local gradients layer by layer from final layer, until back to
input layer to calculate each layer’s gradient

Adapt weights in current layer
𝑊𝑙

'(𝟏 = 𝑊𝑙
' − 𝜂

𝜕𝐸
𝜕𝑊𝑙

'

𝜕𝐸
𝜕𝑊𝑙

' Need to calculate these!

f3f2f1
x

ŷ

E(ŷ,y)
f4

Training Neural Networks by Backpropagation - to
jointly optimize all parameters

59

How do we learn the optimal weights WL for our task??
● Stochastic Gradient descent:

LeCun et. al. Efficient Backpropagation. 1998

But how do we get gradients of lower layers?
● Backpropagation!

○ Repeated application of chain rule of calculus
○ Locally minimize the objective
○ Requires all “blocks” of the network to be

differentiable

x ŷ

W1

w3

W2

E (ŷ,y)		
WL

t+1 =WL
t −η

∂Ex
WL

t

“Local-ness” of Backpropagation

60

fi
x y

“local gradients”
activations

gradients

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf

“Local-ness” of Backpropagation

61

f
x y=f(x)

activations

gradients

“local gradients”

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf

x

62

Example: Sigmoid Block

sigmoid(x)
= 𝛔 (x)

		
∂σ
∂x

=σ (1−σ)

z

63

Example: Softmax Block (right before loss layer)

softmax(x)

“Softmax”

ŷ

E (ŷ,y)

“Cross Entropy”
𝜕𝐸
𝜕𝑧!

= =

*"#....,

𝜕𝐸
𝜕𝑦*

𝜕𝑦*
𝜕𝑧!

= ?𝑦! − 𝑦𝑡𝑟𝑢𝑒,!

3/4/22 64

x1

x2

1

Σ

Σ

ŷ

w1 z1
w2

w3

w4

b1

b2

z2

h1

h2

Σ

w5

w6

1
b3

z1 = x1w1 + x2w3 + b1

z2 = x1w2 + x2w4 + b2

h1 =
exp(z1)

1 + exp(z1)

exp(z2)
1 + exp(z2)

h2 =

ŷ = h1w5 + h2w6 + b3

E = (y - ŷ)2

f1

f2

f3

f4

Backpropagation Example

E = (y - ŷ)2

𝝏 E
𝝏 w5 =

𝝏 E
𝝏 w1 =

Loss/Error

argmin_w { f4 (f3 (f2 (f1 ()))) }

65

z1 = x1w1+ x2w3 + b1
z2 = x1w2 + x2w4 + b2

h1 =
exp(z1)

1 + exp(z1)
exp(z2)

1 + exp(z2)h2 =

ŷ = h1w5 + h2w6 + b3

E = (y - ŷ)2

f1

f2

f3

f4

argmin_w { f4 (f3 (f2 (f1 ()))) }
Input Output Local Gradients= Output / InputExtra

66

z1 = x1w1+ x2w3 + b1
z2 = x1w2 + x2w4 + b2

h1 =
exp(z1)

1 + exp(z1)
exp(z2)

1 + exp(z2)h2 =

ŷ = h1w5 + h2w6 + b3

E = (y - ŷ)2

f1

f2

f3

f4

argmin_w { f4 (f3 (f2 (f1 ()))) }

Input Output Local Gradients= Output / Input

, w1, …

w5,

Extra

3/4/22 67

f
x y

“local
gradients”

gradients to the
next previous layer

BackProp in Practice: Mini-batch SGD

68

x ŷ

W1
w3

1. Initialize weights
2. For each batch of input samples Sx :

a. Run the network “Forward” on S to compute outputs and loss
b. Run the network “Backward” using outputs and loss to compute gradients
c. Update weights using SGD (or a similar method)

2. Repeat step 2 until loss convergence

W2

E

Monitor and visualize the loss curve

From Feifei Li Stanford Cousre

Gradients too big à divergence
Gradients too small à slow convergence

Divergence is much worse!

Gradient Magnitudes:

Many great tools, e.g., Adam
https://arxiv.org/abs/1609.04747

3/4/22 70

https://arxiv.org/abs/1609.04747

Monitor and visualize the train / validation loss / accuracy: Bias Variance Tradeoff

big gap = overfitting
=> increase regularization strength?

no gap, e.g. underfitting / both bad
=> increase model capacity?

From Feifei Li Stanford Cousre

Other things to plot and check:

• Per-layer activations:
• Magnitude, center (mean or median), breadth (sdev or quartiles)
• Spatial/feature-rank variations

• Gradients
• Magnitude, center (mean or median), breadth (sdev or quartiles)
• Spatial/feature-rank variations

• Learning trajectories
• Plot parameter values in a low-dimensional space

From Feifei Li Stanford Cousre

3/4/22 72

Extra

Hyperparameters to play with:

• network architecture
• learning rate, decay schedule, update type
• regularization (L2/Dropout strength)

How to become a great neural
networks practitioner
è Craft? / Talent? / Experience?

Your Friend: loss function

From Feifei Li Stanford Cousre

Extra

74

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

Weight Initialization

From Feifei Li Stanford Cousre

Extra

75

Batch Normalization: implicit regularization

[Ioffe and Szegedy, 2015]

And then allow the network to squash
the range if it wants to:

Normalize: - Improves gradient flow through the
network

- Allows higher learning rates
- Reduces the strong dependence on

initialization
- Acts as a form of regularization in a

funny way, and slightly reduces the
need for dropout, maybe

From Feifei Li Stanford Cousre

Extra

Standardizing the activations of the prior layer means that
assumptions the subsequent layer makes about the
spread and distribution of inputs during the weight
update will not change, at least not dramatically. This has
the effect of stabilizing and speeding-up the training
process of deep neural networks.

Data Preprocessing

From Feifei Li Stanford Cousre

Extra

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

77

Regularization by Dropout

“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

From Feifei Li Stanford Course

Extra

Dropout is training a large ensemble of models (that share prameters).
Each binary mask is one model

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

78

Dropout At test time….

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with different
dropout masks, average all predictions

From Feifei Li Stanford Course

79

Task: y

Representation: : x, f()

Score Function: L()

Search/Optimization :
argmin()

Models, Parameters, metrics

Data: X X: Tabular / 2D / 1D / 3D / Graph /…

Weights and biases in NN Layers

/ Accuracy / F1
3/4/22

Today: Basics of Neural Network Models

neg Log-likelihood , Cross-
Entropy / MSE / Many more

SGD / Backprop

Classification / Regression

Multilayer Network
topology

Thank you

80

Thank You

3/4/22

References

q Dr. Yann Lecun’s deep learning tutorials
q Dr. Li Deng’s ICML 2014 Deep Learning Tutorial
q Dr. Kai Yu’s deep learning tutorial
q Dr. Rob Fergus’ deep learning tutorial
q Prof. Nando de Freitas’ slides
q Olivier Grisel’s talk at Paris Data Geeks / Open World Forum
q Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1.

New York: Springer, 2009.
q Dr. Hung-yi Lee’s CNN slides

3/4/22 81

UVA CS 4774:
Machine Learning

Lecture 12: Neural Network (NN)
and More: BackProp

3/4/22 82

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

Module IV

“Local-ness” of Backpropagation

83

f
x y

activations

gradients

“local gradients”

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf

Backpropagation
(binary classification example)

84

x ŷ*
W1

*
w2z1 z2h1

Backpropagation
(binary classification example)

85

x ŷ*
W1

*
w2z1 z2h1

E = loss =

Gradient
Descent to
Minimize loss:

Need to find
these!

Backpropagation
(binary classification example)

86

x ŷ*
W1

*
w2z1 z2h1

Backpropagation
(binary classification example)

87

= ??

= ??

x ŷ*
W1

*
w2z1 h1 z2

Backpropagation
(binary classification example)

88

= ??

= ??

Exploit the chain rule!

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

89

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

90

chain
rule

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

91

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

92

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

93

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

94

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

95

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

96

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

97

x *
W1

*
w2z1 ŷh1 z2

Backpropagation
(binary classification example)

98

already computed!

x *
W1

*
w2z1 ŷh1 z2

