UVA CS 4774: Machine Learning

S3: Lecture 16 Extra: Gaussian Generative Classifier & vs. Discriminative Classifier

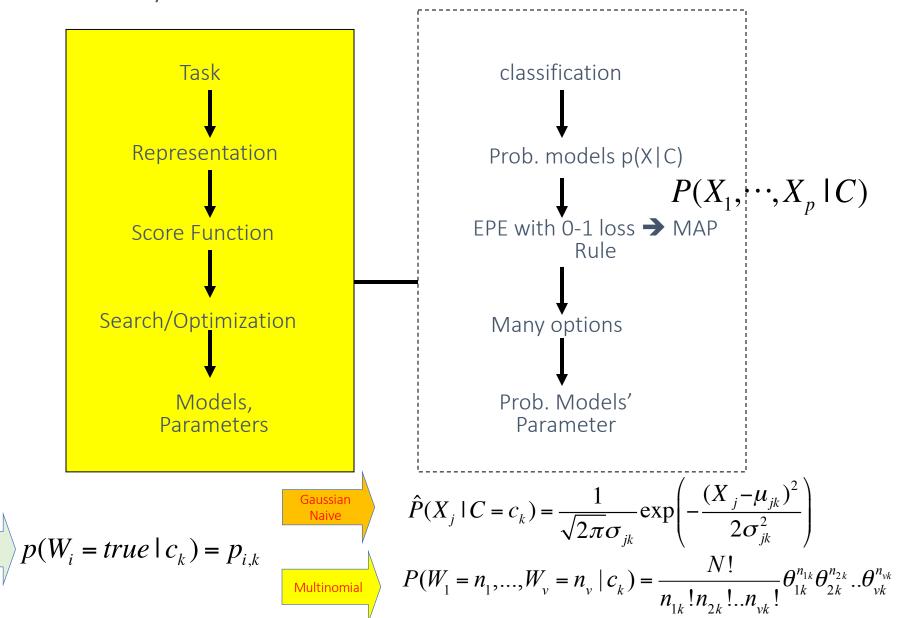
Dr. Yanjun Qi

University of Virginia Department of Computer Science **Roadmap: More** Generative Bayes Classifiers

- ✓ Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC -> LDA, QDA
 - ✓ Discriminative vs. Generative classifier

Extra

 $\underset{k}{\operatorname{argmax}} P(C_k | X) = \underset{k}{\operatorname{argmax}} P(X, C) = \underset{k}{\operatorname{argmax}} P(X | C) P(C)$ Generative Bayes Classifier



Bernoulli

Naïve

Review: Continuous Random Variables

- Probability density function (pdf) instead of probability mass function (pmf)
 - For discrete RV: Probability mass function (pmf): $P(X = x_i)$
- A pdf (prob. Density func.) is any function f(x) that describes the probability density in terms of the input variable x.

Review: Probability of Continuous RV

• Properties of pdf

$$f(x) \ge 0, \forall x$$

$$\int_{-\infty}^{+\infty} f(x) = 1 \qquad \longrightarrow \qquad \sum_{i=1}^{k} P(x = x_i) = 1$$

• Actual probability can be obtained by taking the integral of pdf

• E.g. the probability of X being between 5 and 6 is

$$P(5 \le X \le 6) = \int_{5}^{6} f(x) dx$$

Review: Mean and Variance of RV

- Mean (Expectation):
 - Discrete RVs:

$$\mu = E(X)$$
$$E(X) = \sum_{v_i} v_i P(X = v_i)$$
$$E(g(X)) = \sum_{v_i} g(v_i) P(X = v_i)$$

• Continuous RVs:

$$E(X) = \int_{-\infty}^{+\infty} xf(x) dx$$
$$E(g(X)) = \int_{-\infty}^{+\infty} g(x)f(x) dx$$

 $-\infty$

10/21/19 Dr. Yanjun Qi / UVA CS

Adapt From Carols' prob tutorial

Review: Mean and Variance of RV

- Variance: $Var(X) = E((X \mu)^2)$
 - Discrete RVs:

$$V(\mathbf{X}) = \sum_{v_i} (v_i - \mu)^2 \mathbf{P}(\mathbf{X} = v_i)$$

• Continuous RVs:

$$V(\mathbf{X}) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

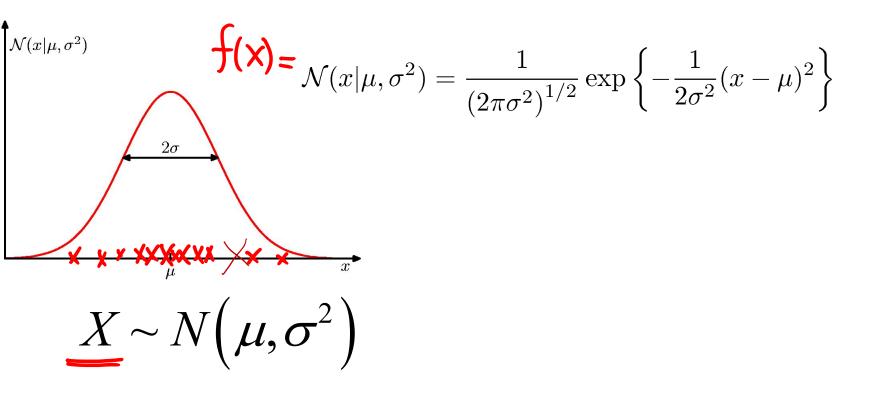
•Covariance:

$$Cov(X,Y) = E((X - \mu_x)(Y - \mu_y)) = E(XY) - \mu_x\mu_y$$

10/21/19 Dr. Yanjun Qi / UVA CS

Adapt From Carols' prob tutorial

Single-Variate Gaussian Distribution



Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm

Multivariate Normal (Gaussian) PDFs

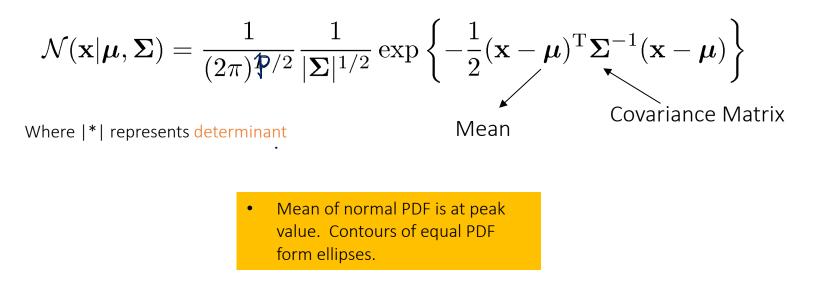
The only widely used continuous joint PDF is the multivariate normal (or Gaussian):

$$f(\vec{x}) = \mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{1}{p}/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^{T}\Sigma^{-1}(\mathbf{x}-\mu)\right\}$$
Where |*| represents determinant
$$f(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots; \mathbf{x}_{p})$$

$$f(\mathbf{x}_{2}, \dots$$

Multivariate Normal (Gaussian) PDFs

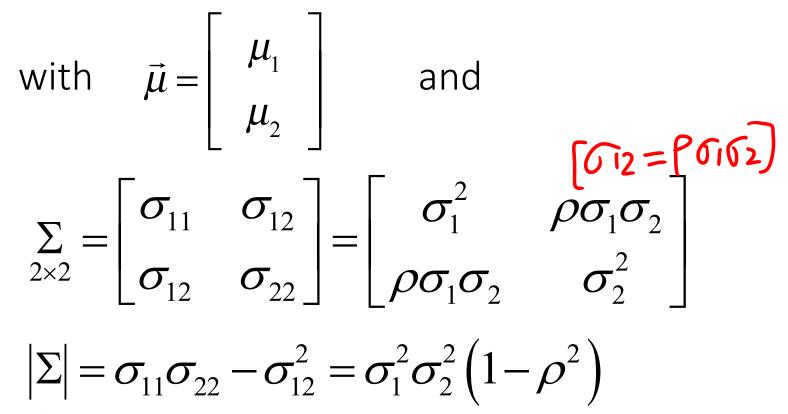
The only widely used continuous joint PDF is the multivariate normal (or Gaussian):



• The covariance matrix captures linear dependencies among the variables

Example: the Bivariate Normal distribution

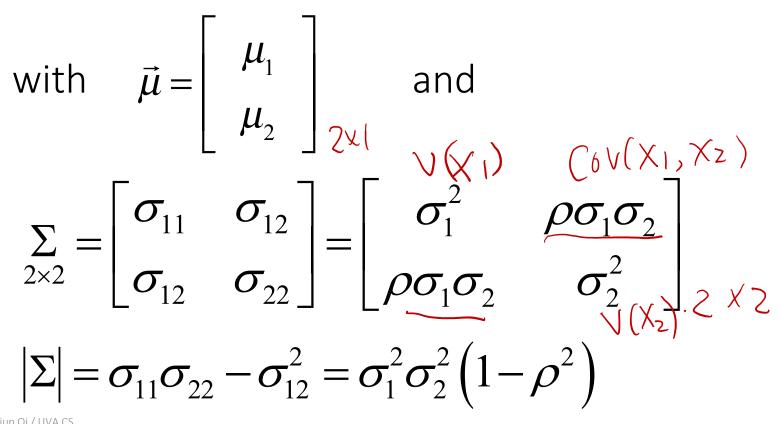
$$f(x_1, x_2) = \frac{1}{(2\pi) |\Sigma|^{1/2}} e^{-\frac{1}{2} (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})}$$



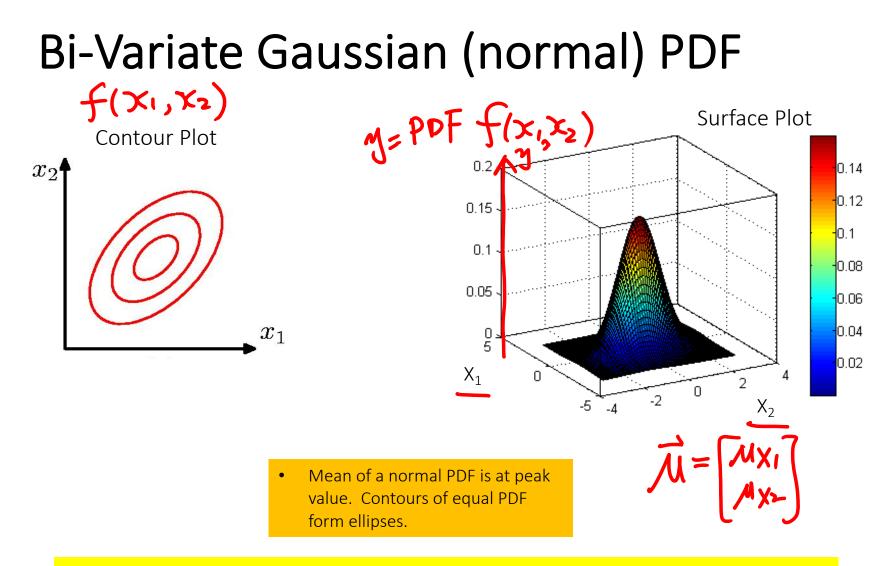
10/21/19 Dr. Yanjun Qi / UVA CS

Example: the Bivariate Normal distribution

$$f(x_1, x_2) = \frac{1}{(2\pi) |\Sigma|^{1/2}} e^{-\frac{1}{2} (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})}$$

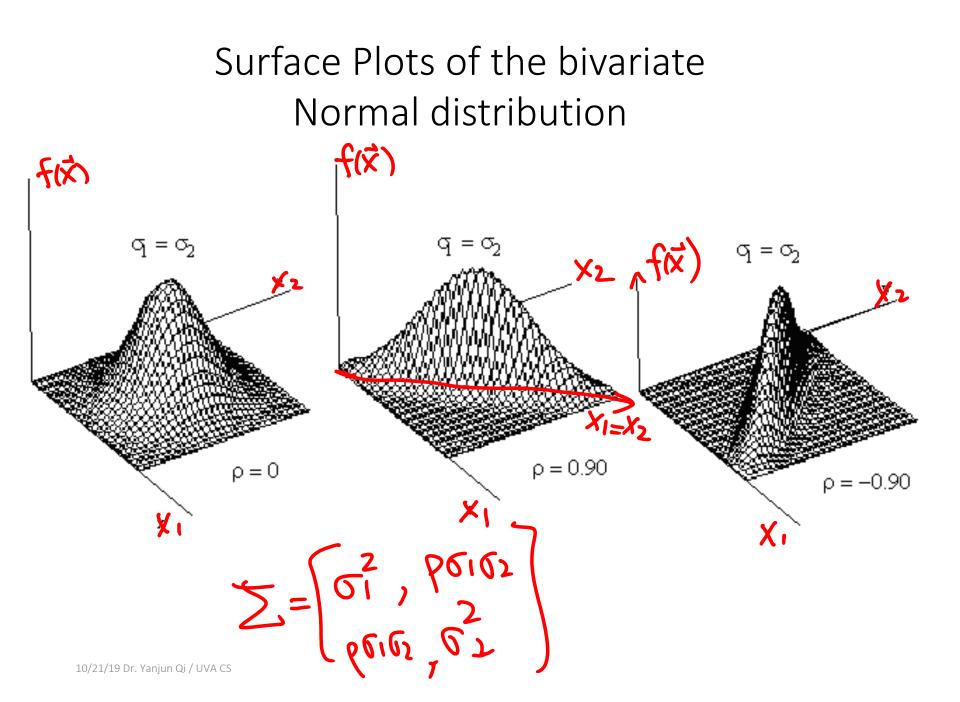


10/21/19 Dr. Yanjun Qi / UVA CS



• The covariance matrix captures linear dependencies among the variables

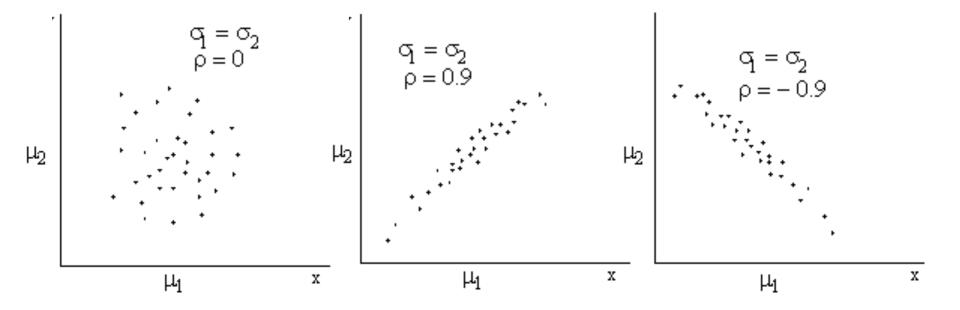
Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm



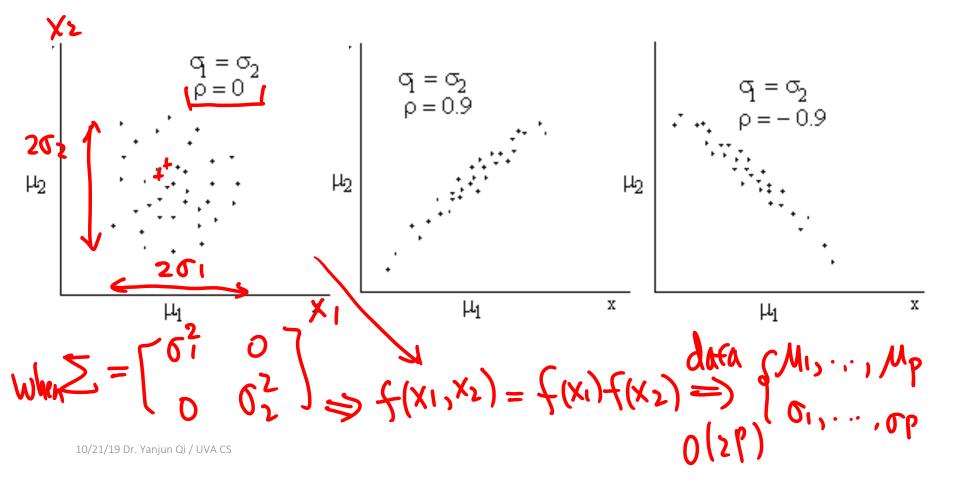
Contour Plots of the bivariate Normal distribution

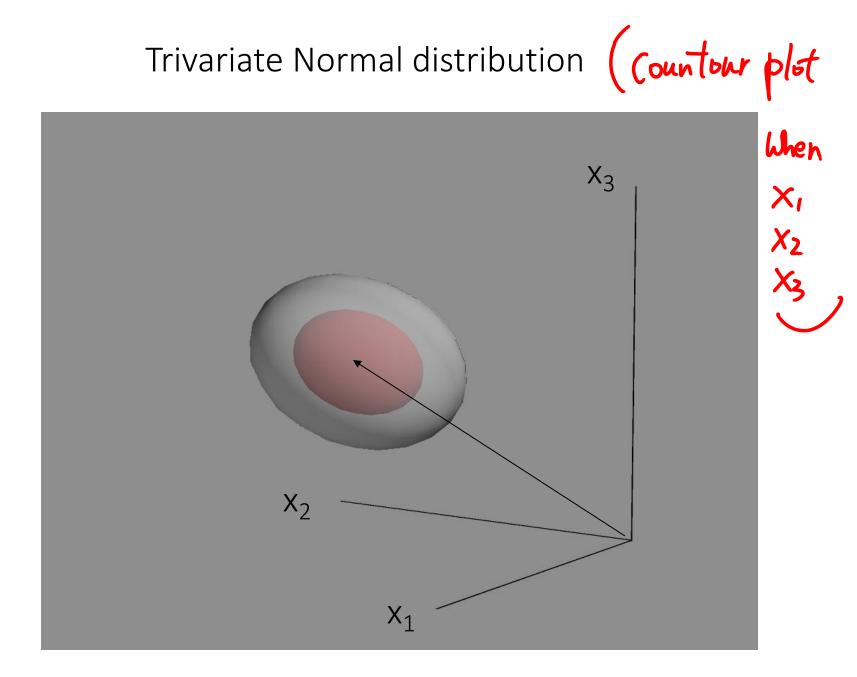


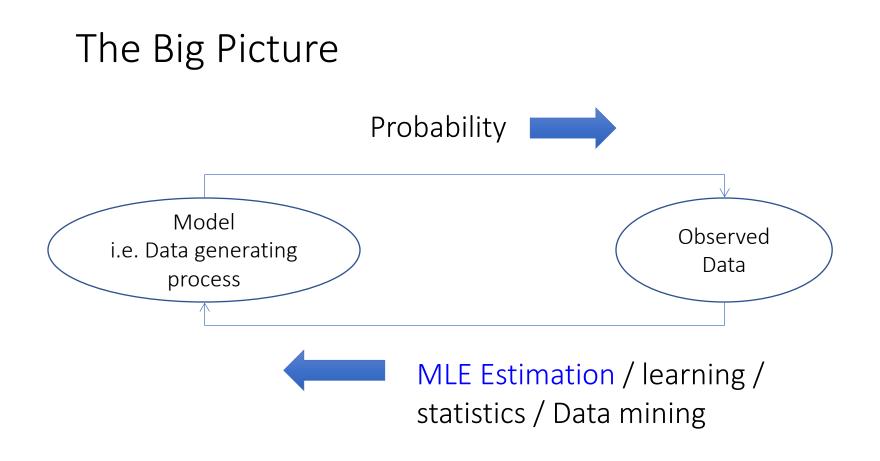
Scatter Plots of samples from the three bivariate Normal distributions



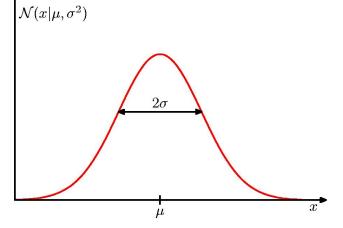
Scatter Plots of samples from the three bivariate Normal distributions



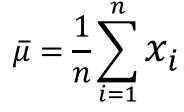


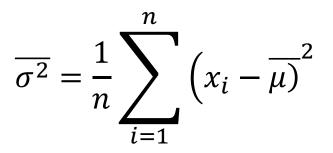


How to Estimate 1D Gaussian: MLE



• In the 1D Gaussian case, we simply set the mean and the variance to the sample mean and the sample variance:





How to Estimate p-D Gaussian: MLE

 $\in \{1, 2, ..., P\}$

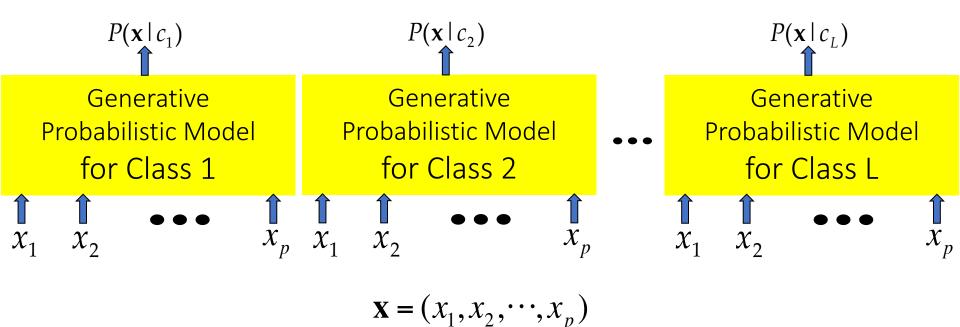
 $< X_1, X_2, \cdots, X_p > \sim N(\vec{\mu}, \Sigma)$

How to Estimate p-D Gaussian: MLE $\{1, 2, ..., P$ $< X_1, X_2, \cdots, X_p > \sim N(\vec{\mu}, \Sigma)$ N_2 Sahr NIP

Review: Generative BC $c^* = argmax P(C = c_i | \mathbf{X} = \mathbf{x})$ $\propto P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)$ for $i = 1, 2, \dots, L$

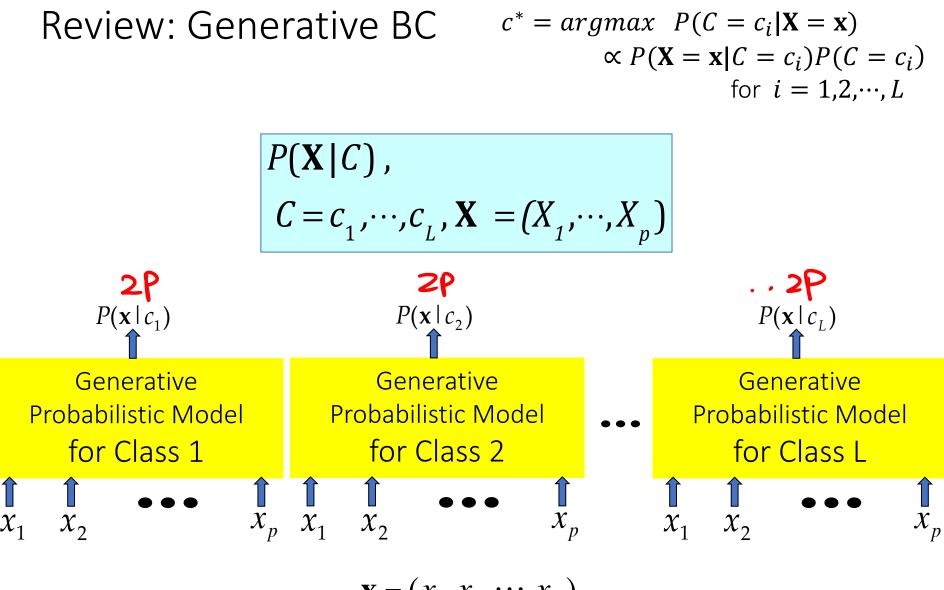
$$P(\mathbf{X} | C),$$

$$C = c_1, \dots, c_L, \mathbf{X} = (X_1, \dots, X_p)$$



11/6/19 Dr. Yanjun Qi / UVA CS

Adapt from Prof. Ke Chen NB³ slides



 $\mathbf{x} = (x_1, x_2, \cdots, x_p)$

Adapt from Prof. Ke Chen NB⁴ slides

Review: Naïve Bayes Classifier

$$\underset{C}{\operatorname{argmax}} P(C \mid X) = \underset{C}{\operatorname{argmax}} P(X,C) = \underset{C}{\operatorname{argmax}} P(X \mid C)P(C)$$
Naïve
Bayes
P(X_1, X_2, \dots, X_p \mid C) = P(X_1 \mid C)P(X_2 \mid C) \dots P(X_p \mid C)
Classifier

Today: More Generative Bayes Classifiers

- ✓ Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC -> LDA, QDA
- ✓ Discriminative vs. Generative

$$\underset{C}{\operatorname{argmax}} P(C \mid X) = \underset{C}{\operatorname{argmax}} P(X,C) = \underset{C}{\operatorname{argmax}} P(X \mid C)P(C)$$
Naïve
Bayes
P(X_1, X_2, \dots, X_p \mid C) = P(X_1 \mid C)P(X_2 \mid C) \dots P(X_p \mid C)
Classifier

$$\hat{P}(X_{j} | C = c_{i}) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$

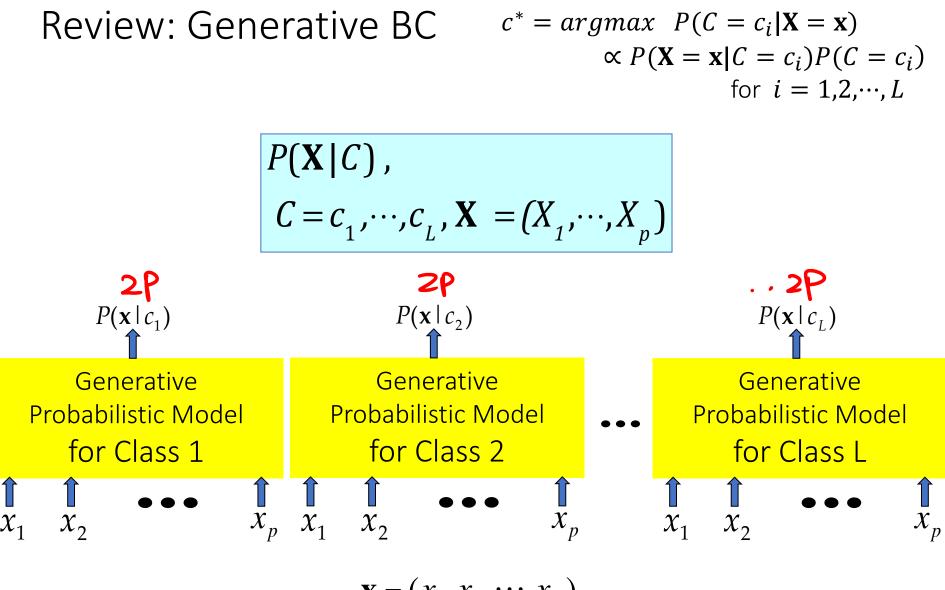
 μ_{ji} : mean (avearage) of attribute values X_j of examples for which $C = c_i$ σ_{ji} : standard deviation of attribute values X_j of examples for which $C = c_i$

- Continuous-valued Input Attributes
 - Conditional probability modeled with the normal distribution

$$\hat{P}(X_{j} | C = c_{i}) = \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$

 μ_{ji} : mean (avearage) of attribute values X_j of examples for which $C = c_i$ σ_{ji} : standard deviation of attribute values X_j of examples for which $C = c_i$

- Learning Phase: for $\mathbf{X} = (X_1, \dots, X_p)$, $C = c_1, \dots, c_L$ Output: L different p-normal distributions and $P(C = c_i)$ $i = 1, \dots, L$



 $\mathbf{X} = (x_1, x_2, \cdots, x_p)$

Adapt from Prof. Ke Chen NB^oslides

- Continuous-valued Input Attributes
 - Conditional probability modeled with the normal distribution

$$\hat{P}(X_{j} | C = c_{i}) = \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$

 μ_{ji} : mean (avearage) of attribute values X_j of examples for which $C = c_i$ σ_{ji} : standard deviation of attribute values X_j of examples for which $C = c_i$

- Learning Phase: for $\mathbf{X} = (X_1, \dots, X_p)$, $C = c_1, \dots, c_L$ Output: L different p-normal distributions and $P(C = c_i)$ $i = 1, \dots, L$

argmax
$$P(C | X) = \operatorname{argmax}_{C} P(X,C) = \operatorname{argmax}_{C} P(X | C)P(C)$$

Naïve
Bayes
Classifier
$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$$

$$O(L \times 2P + L)$$

$$\hat{P}(X_j | C = c_j) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

$$\mu_{ji} : \text{mean (avearage) of attribute values } X_j \text{ of examples for which } C = c_i$$

$$\sigma_{ji} : \text{standard deviation of attribute values } X_j \text{ of examples for which } C = c_i$$

- Continuous-valued Input Attributes
 - Conditional probability modeled with the normal distribution

$$\hat{P}(X_{j} \mid C = c_{i}) = \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$

 μ_{ii} : mean (avearage) of attribute values X_i of examples for which $C = c_i$ σ_{ii} : standard deviation of attribute values X_i of examples for which $C = c_i$

- Learning Phase: for $\mathbf{X} = (X_1, \dots, X_p), \quad C = c_1, \dots, c_L$ Output: L different p-normal distributions and $P(C = c_i)$ $i = 1, \dots, L$

- Test Phase: for
$$\mathbf{X}' = (X'_1, \dots, X'_p)$$

Calculate conditional probabilities with all the normal distributions $\operatorname{ArgmaX}_{i} p((=(i))p(X_{1}|G), p(X_{p}|G))$

Apply the MAP rule to make a decision 11/6/19 Dr. Yanjun Qi / UVA CS

$$W_{\text{Max}} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{1}^{2} \\ \sigma_{2}^{2} \end{bmatrix} \Rightarrow f(x_{1}, x_{2}) = f(x_{1})f(x_{2}) \Longrightarrow \begin{bmatrix} \sigma_{1}, \dots, \sigma_{p} \\ \sigma_{1}, \dots, \sigma_{p} \end{bmatrix}$$

Naïve

$$P(X_{1}, X_{2}, \dots, X_{p} | C = c_{j}) = P(X_{1} | C)P(X_{2} | C) \dots P(X_{p} | C)$$

$$= \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$
Diagonal Matrix

$$\sum_{1/6/19 \text{ Dr. Yanjun Qi / UVA CS}} \sum_{k} C_{k} = \Lambda C_{k} \qquad \begin{array}{c} \text{Each class'} \\ \text{covariance} \\ \text{matrix is} \\ \text{diagonal} \end{array}$$

$w_{\text{MM}} = \begin{bmatrix} \sigma^2 & \sigma \\ \sigma & \sigma^2 \end{bmatrix} \Rightarrow f(x_1, x_2) = f(x_1)f(x_2) \Longrightarrow \begin{bmatrix} \sigma_1, \dots, \sigma_p \\ \sigma_1, \dots, \sigma_p \end{bmatrix}$

Total #pan L × (P+Pf $P(X_1, X_2, \dots, X_p | C = c_i) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$ Naïve $=\prod_{i}\frac{1}{\sqrt{2\pi\sigma_{ji}}}\exp\left(-\frac{(X_{j}-\mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right) \ge \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n$ Each class' covariance $C_k = \Lambda$ Diagonal Matrix matrix is diagonal 11/6/19 Dr. Yanjun Qi / UVA CS

34

Today: More Generative Bayes Classifiers

- ✓ Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC → LDA, QDA
 - LDA: Linear Discriminant Analysis
 - QDA: Quadratic Discriminant Analysis

✓ Discriminative vs. Generative

Not Naïve Gaussian means?

Not
Naive
$$\begin{split} P(X_1, X_2, \cdots, X_p \mid C) &= \\ \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\} \\ P(X_1, X_2, \cdots, X_p \mid C = c_j) &= P(X_1 \mid C) P(X_2 \mid C) \cdots P(X_p \mid C) \\ &= \prod_i \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right) \\ \end{split}$$
Naive
$$\begin{split} \text{Naive} \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right) \\ \overset{\text{Diagonal Matrix}}{\sum_{i=1}^{n} C_k} \sum_{i=1}^{n} \frac{1}{\sqrt{2\mu_i}} \sum_{j \in \mathcal{I}} \frac{1}{2\mu_j} \sum_{j \in \mathcal$$

36

T=28~28 ~105, [~10 Not Naïve Gaussian means? $\vec{\Sigma}_{c}, \vec{M}_{c} \Rightarrow O(LP + UP^{2})$ $P(X_1, X_2, \dots, X_p \mid C) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$ Not Naïve $\Rightarrow D(2PL)$ $P(X_1, X_2, \dots, X_p | C = c_i) = P(X_1 | C)P(X_2 | C) \dots P(X_n | C)$ Naïve $=\prod_{i} \frac{1}{\sqrt{2\pi\sigma_{ii}}} \exp\left(-\frac{(X_{j}-\mu_{ji})^{2}}{2\sigma_{ii}^{2}}\right)$ Each class' Diagonal Matrix $\Sigma_c_k = \Lambda_c_k$ covariance matrix is diagonal 37

Not Naïve Gaussian means?

$$\int_{\text{Total}} \# \rho \alpha \text{ for } x \text{ for } p \text{ for } x \text{ for } x \text{ for } x \text{ for } p \text{ for } x \text{ for$$

Not-naïve Gaussian BC

- LDA: Linear Discriminant Analysis
- QDA: Quadratic Discriminant Analysis

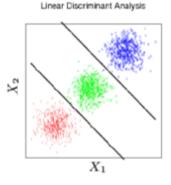
Z, JP, P~100, L~10 O(N

 $\sum =$

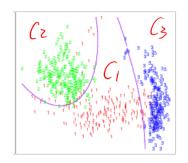
=5,

Not-naïve Gaussian BC

LDA: Linear Discriminant Analysis



QDA: Quadratic Discriminant Analysis

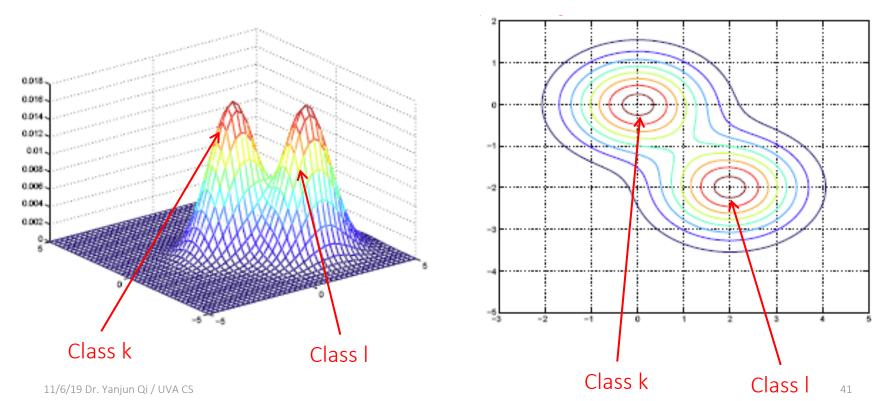


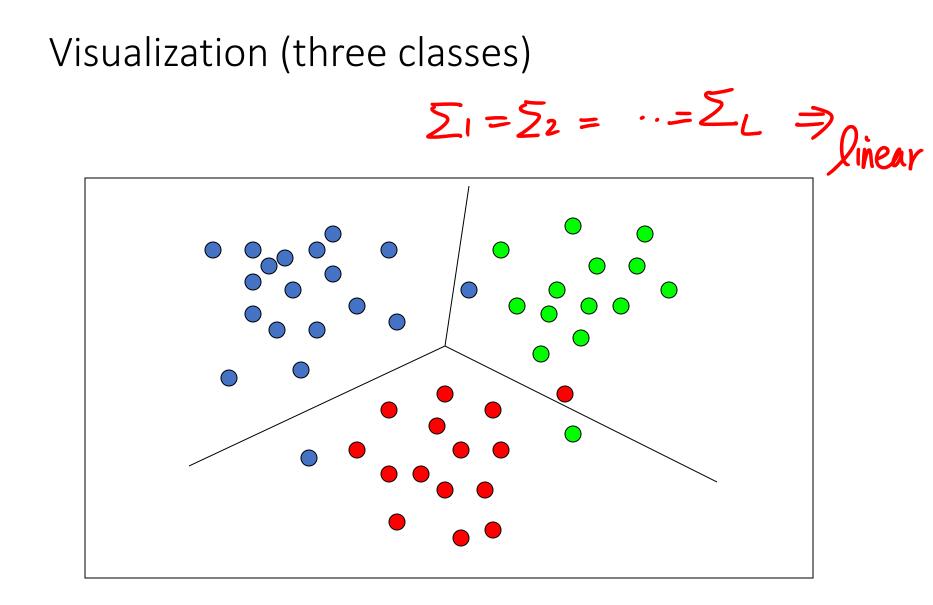
(1) covariance matrix are the same across classes
 → LDA (Linear Discriminant Analysis)

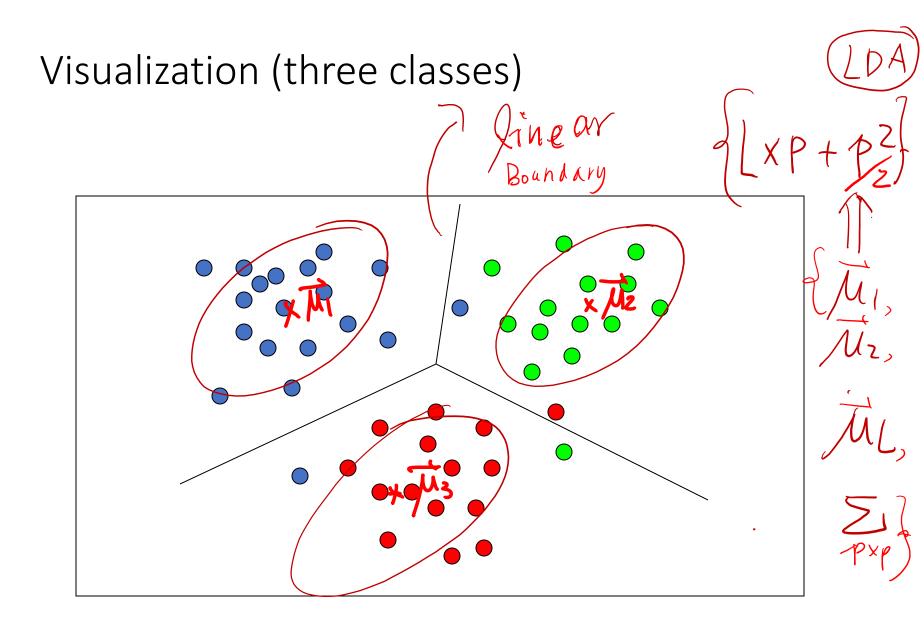
Linear Discriminant Analysis : $\sum_{k} = \sum_{k} \forall k$

Each class' covariance matrix is the same

The Gaussian Distribution are shifted versions of each other







$$\operatorname{argmax}_{k} P(C_{k} | X) = \operatorname{argmax}_{k} P(X, C_{k}) = \operatorname{argmax}_{k} P(X | C_{k}) P(C_{k})$$

$$= \operatorname{argmax}_{k} \log\{P(X | C_{k}) P(C_{k})\}$$
Decision Boundary Points \Rightarrow

$$\operatorname{Satisfying}_{k} P(C_{k} | X) = P(C_{k} | X)$$

 $\frac{1}{3} = 1$ $\frac{1}{3} = 1$

$$\operatorname{argmax}_{k} P(C_{k} | X) = \operatorname{argmax}_{k} P(X, C_{k}) = \operatorname{argmax}_{k} P(X | C_{k}) P(C_{k})$$

$$= \operatorname{argmax}_{k} \log \{P(X | C_{k}) P(C_{k})\}$$

$$= \operatorname{argmax}_{k} \log \{P(X | C_{k}) + \log P(C_{k}) \to \mathbb{T}_{k} \setminus \mathbb{T}_{k}$$

$$\operatorname{Pe(ision Boundary Points)}_{k} \int \left(\sum_{k} \frac{P(C_{k} | X)}{P(C_{k} | X)} = 0 \right) = \log \frac{P(X | C_{k})}{P(X | C_{k})} + \log \frac{T_{k}}{T_{k}}$$

$$= \log P(X | C_{k}) - \log P(X | C_{k}) + \log \frac{T_{k}}{T_{k}}$$

$$\log \frac{P(C_k | X)}{P(C_l | X)} = \log \frac{P(X | C_k)}{P(X | C_l)} + \log \frac{P(C_k)}{P(C_l)}$$

Decision Boundary Points of LDA classifier \rightarrow

$$= \log \frac{\pi_k}{\pi_\ell} - \frac{1}{2} (\mu_k + \mu_\ell)^T \Sigma^{-1} (\mu_k - \mu_\ell)$$
(4.9)
+ $x^T \Sigma^{-1} (\mu_k - \mu_\ell),$

$$\log \frac{P(C_k | X)}{P(C_l | X)} = \log \frac{P(X | C_k)}{P(X | C_l)} + \log \frac{P(C_k)}{P(C_l)}$$

Decision Boundary Points of LDA classifier \rightarrow

$$= \log \frac{\pi_k}{\pi_\ell} - \frac{1}{2} (\mu_k + \mu_\ell)^T \Sigma^{-1} (\mu_k - \mu_\ell)$$
(4.9)
+ $x^T \Sigma^{-1} (\mu_k - \mu_\ell),$

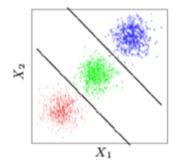
The above is derived from the following :

$$-\frac{1}{2}(x-\mu_k)^T \Sigma^{-1}(x-\mu_k) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k - \frac{1}{2} x^T \Sigma^{-1} x$$

$$\log \frac{P(C_k | X)}{P(C_l | X)} = \log \frac{P(X | C_k)}{P(X | C_l)} + \log \frac{P(C_k)}{P(C_l)}$$

Decision Boundary Points of LDA classifier \rightarrow

LDA Classification Rule (also called as Linear discriminant function:)

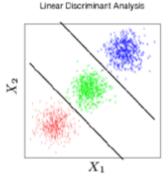


 $\operatorname{argmax}_{k} P(C_{k} | X) = \operatorname{argmax}_{k} P(X, C_{k}) = \operatorname{argmax}_{k} P(X | C_{k}) P(C_{k})$ $= \operatorname{argmax}_{k} \left[-\log((2\pi)^{p/2} |\Sigma|^{1/2}) -\frac{1}{2}(x - \mu_{k})^{T} \Sigma^{-1}(x - \mu_{k}) + \log(\pi_{k}) \right]$ $-\operatorname{Note}_{k} = \operatorname{argmax}_{k} \left[-\frac{1}{2}(x - \mu_{k})^{T} \Sigma^{-1}(x - \mu_{k}) + \log(\pi_{k}) \right]$

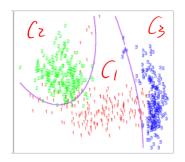
Linear Discriminant Function for LDA

Not-naïve Gaussian BC

LDA: Linear Discriminant Analysis



QDA: Quadratic Discriminant Analysis



(2) If covariance matrix are not the same
 e.g. → QDA (Quadratic Discriminant Analysis)

Estimate the covariance matrix Σ_k separately for each class k, k = 1, 2, ..., K.

Quadratic discriminant function:

$$\delta_{k}(x) = -\frac{1}{2} \log |\Sigma_{k}| - \frac{1}{2} (x - \mu_{k})^{T} \Sigma_{k}^{-1} (x - \mu_{k}) + \log \pi_{k}.$$
Classification rule:
$$\int \int \varphi(x) e^{-1} \nabla_{k} \nabla$$

- Decision boundaries are quadratic equations in x.
- QDA fits the data better than LDA, but has more parameters to estimate.

(2) If covariance matrix are not the same e.g. -> QDA (Quadratic Discriminant Analysis)

> \blacktriangleright Estimate the covariance matrix Σ_k separately for each class k, k = 1, 2, ..., K.

Quadratic discriminant function: $\delta_k(x) = -\frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + \log \pi_k .$ $M_{1,1}$ Classification rule:

Quadratic discriminant function:

 $G(x) = \arg \max_k \delta_k(x)$.

Decision boundaries are quadratic equations in x.

QDA fits the data better than LDA, but has more parameters to estimate.

TK(X)-DR(X)=0

Total # para

 $(P+P^2)$

(3) Regularized Discriminant Analysis

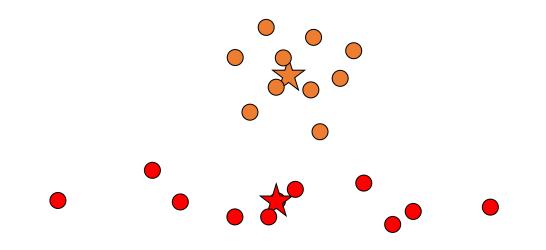
- A compromise between LDA and QDA.
- Shrink the separate covariances of QDA toward a common covariance as in LDA.
- Regularized covariance matrices:

$$\hat{\Sigma}_k(\alpha) = \alpha \hat{\Sigma}_k + (1 - \alpha) \hat{\Sigma} .$$

- The quadratic discriminant function δ_k(x) is defined using the shrunken covariance matrices Σ_k(α).
- The parameter α controls the complexity of the model.

More: Decision Boundary of Gaussian naïve Bayes Classifiers ???

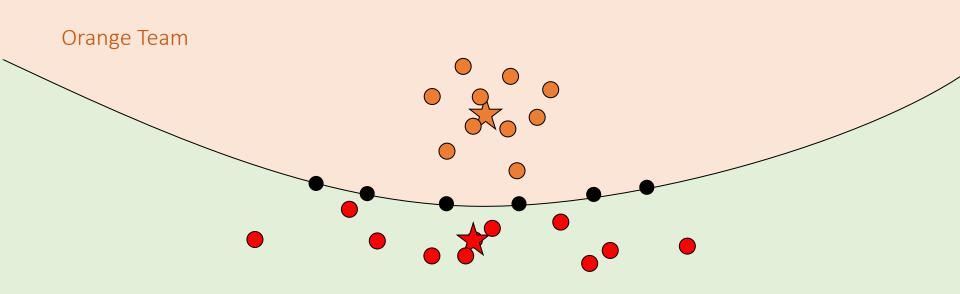
Orange Team



Green Team

Naïve Gaussian Bayes Classifier is not a linear classifier!

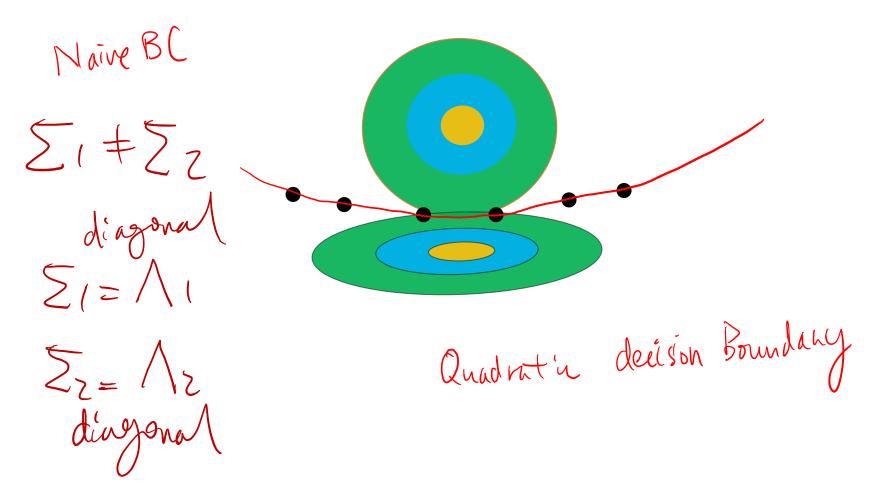
Gaussian Naïve Bayes Classifier



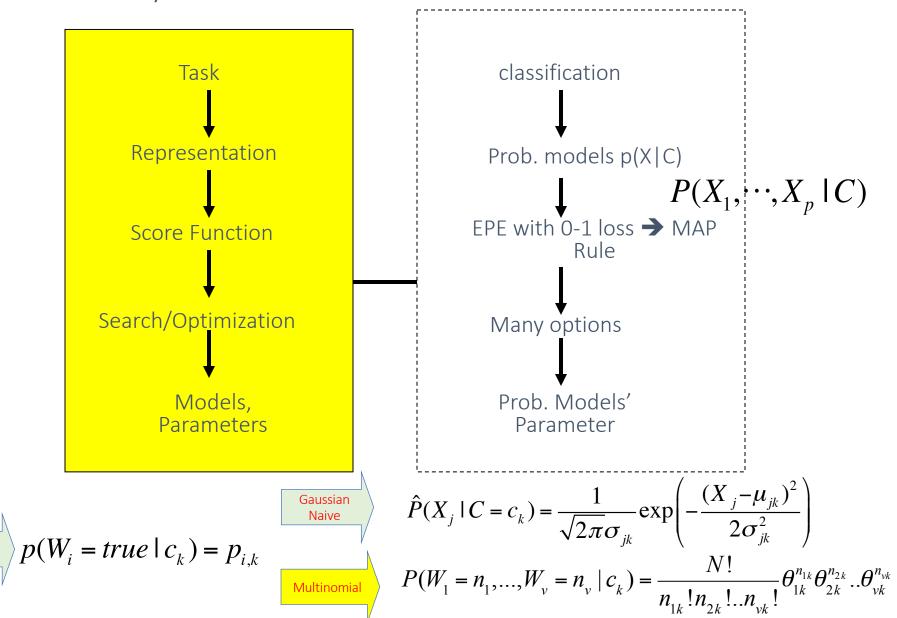
Green Team

Naïve Gaussian Bayes Classifier is not a linear classifier!

Decision Boundary of Gaussian naïve Bayes Classifiers ???



 $\underset{k}{\operatorname{argmax}} P(C_k | X) = \underset{k}{\operatorname{argmax}} P(X, C) = \underset{k}{\operatorname{argmax}} P(X | C) P(C)$ Generative Bayes Classifier



Bernoulli

Naïve

GBC Models	x; =k 1,p	Ф(сj) j=1,··, L	¢(X1 X2 X Xp Cj) #
GBC discrete	zi =K	# O(L)	KXL
NBC discrete naive	x~1=K	D(L)	kp × L
Naive Gaussian	N(Mi, Ai) PXI PXP	0(L)	2P × L
LDA	N(Mi, 5)	0(L)	PxL + p2/2
QDA	$N(M_{\tilde{v}},\Sigma_{\tilde{i}})$	0(L)	$(p+p^2)\times L$
multinomial BC	01, ., 0KC	0(1)	VXL
10/10/20			Г. С.

Thank You

59

UVA CS 4774: Machine Learning

S3: Lecture 16 Extra: Gaussian Generative Classifier & vs. Discriminative Classifier

Dr. Yanjun Qi

Module II

University of Virginia

Department of Computer Science

Today: More Generative Bayes Classifiers

- ✓ Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC -> LDA, QDA
- ✓ Discriminative vs. Generative classifier

Discriminative vs. Generative

Generative approach

- Model the joint distribution p(X, C) using

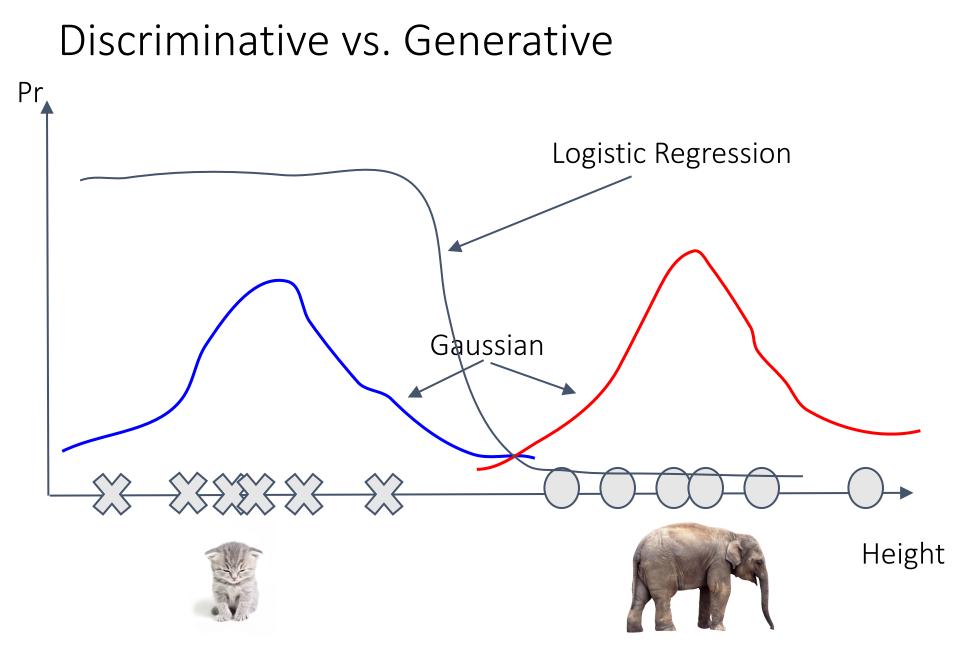
 $p(X | C = c_k)$ and $p(C = c_k)$

Discriminative approach

- Model the conditional distribution p(c| X) directly

$$\gamma((1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 * X)}}$$

Ng, Jordan,. "On discriminative vs. generative classifiers 2002



LDA vs. Logistic Regression

LDA (Generative model)

- Assumes Gaussian class-conditional densities and a common covariance
- Model parameters are estimated by maximizing the full log likelihood, parameters for each class are estimated independently of other classes, $K p + \frac{p(p+1)}{2} + (K-1)$ parameters
- Makes use of marginal density information Pr(x)
- Easier to train, low variance, more efficient if model is correct
- Higher asymptotic error, but converges faster

Logistic Regression (Discriminative model)

- Assumes class-conditional densities are members of the (same) exponential family distribution
- Model parameters are estimated by maximizing the conditional log likelihood, simultaneous consideration of all other classes, (K 1)(p + 1) parameters
- Ignores marginal density information Pr(x)
- Harder to train, robust to uncertainty about the data generation process
- Lower asymptotic error, but converges more slowly

Ng, Jordan,. "On discriminative vs. generative classifiers 2002

LDA vs. Logistic Regression

LDA (Generative model) $4(X_{res} | C_i)$

- Assumes Gaussian class-conditional densities and a common covariance
- Model parameters are estimated by maximizing the full log likelihood, parameters for each class are estimated independently of other classes, $K p + \frac{p(p+1)}{2} + (K - 1)$ parameters
- Makes use of marginal density information Pr(x)
- Easier to train, low variance, more efficient if model is correct
- Higher asymptotic error, but converges faster

 \Rightarrow (K-1)(p+1)

> mean KP+P(ConV

Logistic Regression (Discriminative model)

- Assumes class-conditional densities are members of the (same) exponential family distribution $\gamma(\zeta, \chi)$
- Model parameters are estimated by maximizing the conditional log likelihood simultaneous consideration of all other classes, (K 1)(p + 1) parameters
- Ignores marginal density information Pr(x)
- Harder to train, robust to uncertainty about the data generation process
- Lower asymptotic error, but converges more slowly

asymptotic classifiers

- Definitions
 - h_{gen} and h_{dis}: generative and discriminative classifiers
 - h_{gen, inf} and h_{dis, inf}: same classifiers but trained on the entire population (asymptotic classifiers)
 - $\circ~n \rightarrow~infinity,~h_{gen} \rightarrow h_{gen,~inf}~and~h_{dis} \rightarrow h_{dis,~inf}$

Ng, Jordan,. "On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes." Advances in neural information processing systems 14 (2002): 841.

Discriminative vs. Generative

Proposition 1:
$$h_{true}$$

 $\epsilon \left(h_{dis, inf}
ight) \leq \epsilon \left(h_{gen, inf}
ight)$

- p : number of dimensions
- n : number of observations
- ε : asymptotic generalization error

Proposition 1 states that aymptotically, the error of the discriminative logistic regression is smaller than that of the generative naive Bayes. This is easily shown

Logistic Regression vs. Naïve /LDA

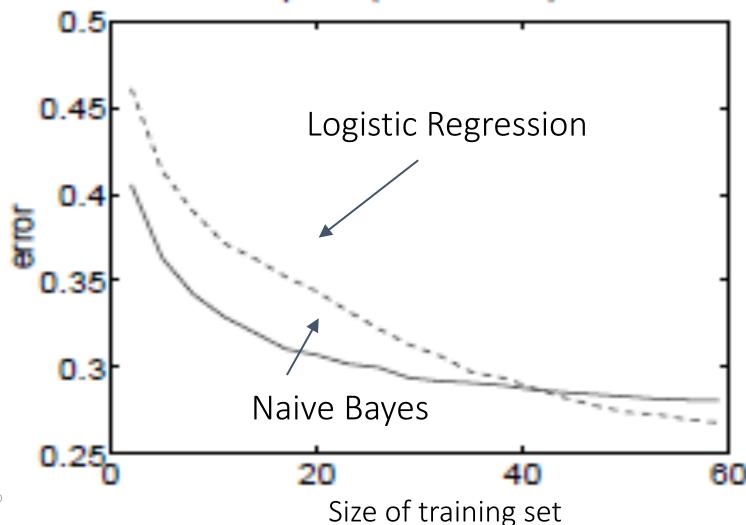
Discriminative classifier (Logistic Regression)

- Smaller asymptotic error
- Slow convergence $\sim O(p)$

Generative classifier (Naive Bayes)

- Larger asymptotic error
- Can handle missing data (EM)
- Fast convergence ~ O(lg(p))

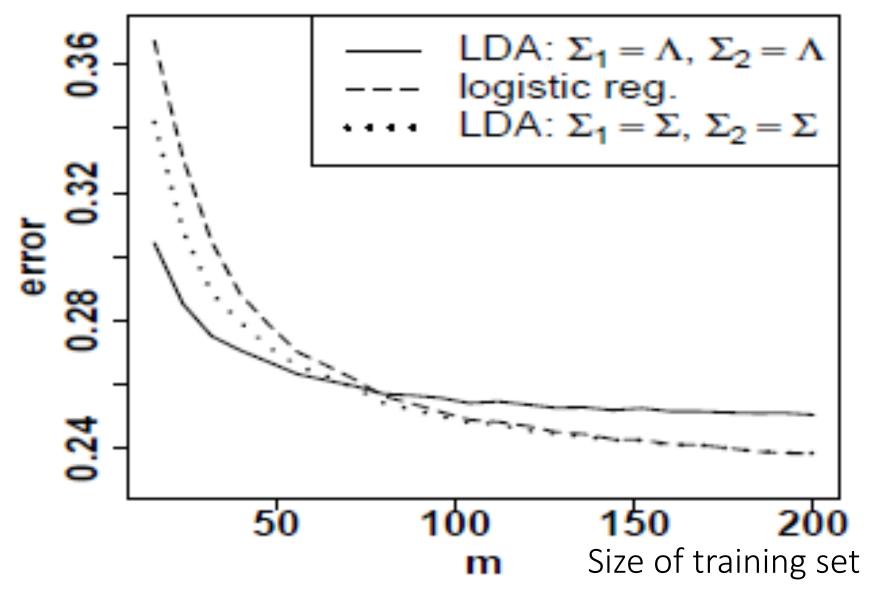
the speed at which a convergent sequence approaches its limit is called the rate of convergence. Ng, Jordan,. "On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes." Advances in neural information processing systems 14 (2002): 841.



69

pima (continuous)

Logistic regression / vs. Naïve LDA / vs. LDA



Xue, Jing-Hao, and D. Michael Titterington. "Comment on "On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes"."*Neural processing letters* 28.3 (2008): 169-187.

Summary: Discriminative vs. Generative

- Empirically, generative classifiers approach their asymptotic error faster than discriminative ones
 - Good for small training set
 - Handle missing data well (EM)
- Empirically, discriminative classifiers have lower asymptotic error than generative ones
 - $\circ \quad \ \ {\rm Good \ for \ larger \ training \ set}$

References

Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide

- □ Prof. Andrew Moore's slides
- □ Prof. Eric Xing's slides
- Prof. Ke Chen NB slides
- □ Hastie, Trevor, et al. *The elements of statistical learning*. Vol. 2. No. 1. New York: Springer, 2009.