UVA CS 4774: Machine Learning

S3: Lecture 16: Generative Bayes Classifiers

Module I

Dr. Yanjun Qi University of Virginia Department of Computer Science

Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative

directly estimate a decision rule/boundary

e.g., support vector machine, decision tree, logistic regression,

e.g. neural networks (NN), deep NN

2. Generative:

build a generative statistical model

e.g., Bayesian networks, Naïve Bayes classifier

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

Roadmap : Generative Bayes Classifiers

✓ Bayes Classifier (BC)

- Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC -> LDA, QDA

Extra

Review: Bayes classifiers (BC)

- Treat each feature attribute and the class label as random variables.
- Testing: Given a sample **x** with attributes $(x_1, x_2, ..., x_p)$:
 - Goal is to predict its class c.
 - Specifically, we want to find the class that maximizes $p(c | x_1, x_2, ..., x_p)$.
- Training: can we estimate $p(C_i | \mathbf{x}) = p(C_i | x_1, x_2, ..., x_p)$ directly from data?

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_p)$$

MAP Rule

Two kinds of Bayes classifiers via MAP classification rule

- Establishing a probabilistic model for classification
 - (1) Discriminative
 - (2) Generative

Adapt from Prof. Ke Chen NB slides

Review Probability: If hard to directly estimate from data, most likely we can estimate

- 1. Joint probability
 - Use Chain Rule
- 2. Marginal probability
 - Use the total law of probability
- 3. Conditional probability
 - Use the Bayes Rule

 $p(c_i|\vec{x}) = \frac{p(\vec{x}|c_i)p(c_i)}{p(\vec{x})}$ $C^{*} = \alpha r g m a \times p(Ci | \vec{x})$ $C^{*} = Ci^{*} Ci^{*}$

One Example:

Assume we have a dark box with 3 red balls and 1 blue ball. That is, we have the set {r,r,r,b}. What is the probability of drawing 2 red balls in the first 2 tries?

$$P(B_1 = r, B_2 = r) =$$

$$P(B_1 = r | B_2 = r)$$

Adapt from Prof. Nando de Freitas's review slides

One Example: Joint

Assume we have a dark box with 3 red balls and 1 blue ball. That is, we have the set {r,r,r,b}. What is the probability of drawing 2 red balls in the first 2 tries?

$$P(B_1 = r, B_2 = r) = P(B_1 = r) P(B_2 = r | B_1 = r)$$

$$= \frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$$

Adapt from Prof. Nando de Freitas's review slides

5

Review : Bayes' Rule – for Generative Bayes Classifiers

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

 $P(C_1|x), P(C_2|x), ..., P(C_L|x)$

 $P(C_1), P(C_2), ..., P(C_L)$

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i) P(C_i)}{P(\mathbf{X})}$$

Review : Bayes' Rule – for Generative Bayes Classifiers

Summary of Generative BC:

Apply Bayes rule to get posterior probabilities

$$P(C = c_i | \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)}{P(\mathbf{X} = \mathbf{x})}$$
$$\propto P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)$$
for $i = 1, 2, \dots, L$

- Then apply the MAP rule

Summary of Generative BC:

- Apply Bayes rule to get posterior probabilities

$$P(C = c_i | \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)}{P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)}$$

$$\propto \frac{P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)}{\text{for } i = 1, 2, \cdots, L}$$

Then apply the MAP rule

$$p(\mathbf{x} \mid C\mathbf{i}) \quad C\mathbf{i} \in \{C\mathbf{i}, C\mathbf{i}, \cdots, C\mathbf{i}\}$$

Establishing a probabilistic model for classification through generative probabilistic models

$$\operatorname{argmax}_{C_{i}} P(C_{i} | X) = \operatorname{argmax}_{C_{i}} P(X, C_{i}) = \operatorname{argmax}_{C_{i}} P(X | C_{i}) P(C_{i})$$

$$\xrightarrow{P(x | c_{1})}_{Generative}_{Probabilistic Model}_{for Class 1} \xrightarrow{P(x | c_{2})}_{Generative}_{Probabilistic Model}_{for Class 2} \xrightarrow{P(x | c_{L})}_{Generative}_{Probabilistic Model}_{for Class 2} \xrightarrow{P(x | c_{L})}_{Generative}_{Probabilistic Model}_{for Class 2} \xrightarrow{P(x | c_{L})}_{X_{1}} \xrightarrow{R_{2}}_{X_{p}} \xrightarrow{P(x | c_{L})}_{X_{1}} \xrightarrow{P(x | c_{L})} \xrightarrow{P(x | c_{L})} \xrightarrow{P(x | c_{L})} \xrightarrow{P($$

3/29/22

Adapt from Prof. Ke Chen NB slides

 $\operatorname{argmax}_{k} P(C_k | X) = \operatorname{argmax}_{k} P(X, C) = \operatorname{argmax}_{k} P(X | C) P(C)$

An Example

• Example: Play Tennis

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
	۶,	¥2	83	24	C

PlayTennis: training examples

 $X_1 X_2 X_3 C$

Learning Phase:

Kz=3

Example: Play Tennis

ZI

		- V	•	•			
Kz=>		Pla	PlayTennis: training examples				
T-	Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
\mathcal{A}	D1	Sunny	Hot	High	Weak	No	
Get .	D2	Sunny	Hot	High	Strong	No	
21100	D3	Overcast	Hot	High	Weak	Yes	
L Mild,	D4	Rain	Mild	High	Weak	Yes	
(1 L	D5	Rain	Cool	Normal	Weak	Yes	
(our f	D6	Rain	Cool	Normal	Strong	No	
(a)	D7	Overcast	Cool	Normal	Strong	Yes	
thigh f	D8	Sunny	Mild	High	Weak	No	
A3= hubren)	D9	Sunny	Cool	Normal	Weak	Yes	
	D10	Rain	Mild	Normal	Weak	Yes	
KYEL	D11	Sunny	Mild	Normal	Strong	Yes	
J (W)J	D12	Overcast	Mild	High	Strong	Yes	
XY= KY=	D13	Overcast	Hot	Normal	Weak	Yes	
	D14	Rain	Mild	High	Strong	No	

ZZ

X3 X4 个个

C

Tes =2) No7 1 = Sunny ovec,)raint

С

Learning: maximum likelihood estimates simply use the frequencies in the data data

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Directly estimate from data via counting e.g. p(overcast, hot, high, wea **Check MLE** Lecture for Why

Blay Tennis: training examples					
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny 🗸	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny 🗸	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
	N N	5 × 3 ×	21	12	= 36

С

 $P(C_{2}C_{1})$

Stes] No

P(C=TeS) = 9/14

 $P(C=N_0)$

= 5/14

Generative Bayes Classifier:

Learning Phase → a look up cable of cond. prob

 $P(C_1), P(C_2), ..., P(C_L)$

P(Play=Yes) = 9/14 P(Play=No) = 5/14

 $P(X_1, X_2, ..., X_p | C_1), P(X_1, X_2, ..., X_p | C_2)$

Outlook	Temperature	Humidity	Wind	Play=Yes	Play=No
(3 values)	(3 values)	(2 values)	(2 values)		
sunny	hot	high	weak	0/9	1/5
sunny	hot	high	strong	/9	/5
sunny	hot	normal	weak	/9	/5
sunny	hot	normal	strong	/9	/5

3*3*2*2 [conjunctions of attributes] * 2 [two classes]=72 parameters

Generativ	ve Bayes Clas	ssifier:	2.9 Erglish	Dictiona	1 y 81,
• Learning	Phase			P~30k	JxZd
P(C ₁), P(C	$(2), \ldots, P(C_L)$		⇒C(up, 1/44)	down)	
	P(Play=Yes) =	= 9/14 P(Pl	ay=No) = 5/	14	• I
P(X ₁ , X ₂ ,	$\frac{1}{2}, \frac{X_p[O_1]}{P(X_1, X_2)},$	$\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i$	a look up	prable of	Cond. prob
Outlook	Temperature	Humidity	Wind	Play=Yes	Play=No
(3 values)	(3 values)	(2 values)	(2 values)		
sunny	hot	high	weak	0/9	1/5
sunny	hot	high	strong	/9	/5
sunny	hot	normal	weak	/9	/5
sunny	hot	normal	strong	/9	/5

3*3*2*2 [conjunctions of attributes] * 2 [two classes]=72 parameters

Generative Bayes Classifier:

- Testing Phase
 - – Given an unknown instance

$$\mathbf{X}'_{ts} = (a'_1, \cdots, a'_p)$$

- Look up tables to assign the label c^* to X_{ts} if

Last Page: the learned model

$$\hat{P}(a'_{1}, \cdots a'_{p} | c^{*}) \hat{P}(c^{*}) > \hat{P}(a'_{1}, \cdots a'_{p} | c) \hat{P}(c),$$

 $c \neq c^{*}, c = c_{1}, \cdots, c_{L}$

Given a new instance,

x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong) $\begin{cases} p(x' | Yes) p(C=Yes) \\ p(x' | No) p((=No)) \\ C \end{cases} \Rightarrow argmAX \Rightarrow predicted C*$

Thank you

AT 1894 (1994)

3/29/22

UVA CS 4774: Machine Learning

S3: Lecture 16: Generative Bayes Classifiers

Module II

Dr. Yanjun Qi University of Virginia Department of Computer Science **Today Recap:** Generative Bayes Classifiers

✓ Bayes Classifier

- Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC -> LDA, QDA

Generative Bayes Classifier

• Bayes classification

$$\operatorname{argmax}_{c_{j} \in C} P(x_{1}, x_{2}, \dots, x_{p} | c_{j}) P(c_{j})$$

$$\underbrace{\sum_{i \neq 2} \sum_{j \neq i} \sum_{i \neq j} \sum_{j \neq i} \sum_{i \neq j} P(c_{j})}_{Z \neq 2} P(c_{j})$$

Difficulty: learning the joint probability

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

• Bayes classification

 $\operatorname{argmax}_{i} P(x_{1}, x_{2}, \dots, x_{p} | c_{j}) P(c_{j})$ $C_i \in C$

Difficulty: learning the joint probability

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

 $= P(X_1|G_j) P(X_2|G_j) \cdot P(X_p|G_j)$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$(assumption]$$

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C) P(X_2 | C) \dots P(X_p | C)$$

$$P(C_j | X_1, \dots X_p) \propto P(X_1, X_2, \dots X_p | C_j) P(C_j)$$

$$= P(X_1 | C_j) P(X_2 | C_j) \dots P(X_p | C_j) P(C_j)$$

Learning Phase:

Example: Play Tennis

• Example	e: Pla	iy lenni	S	ð	∇I		
		Zi	ZZ 1	×3 1	4	С	
Kz=>		Pla	<i>yTennis</i> : tra	ining exai	nples		
X-	Day	Outlook	Temperature	Humidity	Wind	PlayTennis]
$f_{\mathcal{L}}$.	D1	Sunny	Hot	High	Weak	No] (
Get .	D2	Sunny	Hot	High	Strong	No	
7100	D3	Overcast	Hot	High	Weak	Yes	
L Mild,	D4	Rain	Mild	High	Weak	Yes	
() L	D5	Rain	Cool	Normal	Weak	Yes	T
(our f	D6	Rain	Cool	Normal	Strong	No	$ >$
$\left(\alpha \right)$	D7	Overcast	Cool	Normal	Strong	Yes	
thigh f	D8	Sunny	Mild	High	Weak	No	/k
X3= hhopen)	D9	Sunny	Cool	Normal	Weak	Yes	
	D10	Rain	Mild	Normal	Weak	Yes	
KYEL	D11	Sunny	Mild	Normal	Strong	Yes	
N [W,J]	D12	Overcast	Mild	High	Strong	Yes	
Xy= KY=	D13	Overcast	Hot	Normal	Weak	Yes	
	D14	Rain	Mild	High	Strong	No	

e Sunny ovec,

С

$$3 \times L \qquad p(\underline{X}_{1}|_{C}) \qquad \qquad X_{1} : 3 \times L$$

$$\overline{X}_{1} = Sunn \qquad C = Tes \qquad \underline{N(S, Yes)}_{N(Yes)} = \frac{2}{9} \qquad \qquad X_{2} : 3 \times L$$

$$\overline{X}_{1} = 0 \qquad C = Tes \qquad \qquad X_{1} : 2 \times L$$

$$\overline{X}_{1} = R \qquad C = Tes \qquad \qquad X_{2} : 2 \times L$$

$$\overline{X}_{1} = R \qquad C = Tes \qquad \qquad X_{4} : 2 \times L$$

$$\overline{X}_{2} = S \qquad C = No \qquad \underline{N(S, N)}_{N(No)} = \frac{3}{5} \qquad L = 2 \qquad p(C = Ye) \qquad p(C=N)$$

$$\frac{9}{14} \qquad \frac{5}{14}$$

$$No Naive \qquad (3 + 3 + 2 + 2) \times L = 20$$

$$\frac{9}{2^{1}} = \frac{20}{2^{1}} \qquad X_{2} =$$

Estimate $P(X_j = x_{jk} | C = c_i)$ with examples in training;

$P(X_2|C_1), P(X_2|C_2)$

Outlook	Play=Yes	Play=No
Sunny		
Overcast		
Rain		

Temperature	Play=Yes	Play=No
Hot		
Mild		
Cool		

 $P(X \mid C) = P(X \mid C)$

Humidity	Play=Yes	Play=No
High		
Normal		

Wind	Play=Yes	Play=No
Strong		
Weak		

P(Play=Yes) = ??

$$P(Play=No) = ??$$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C) P(X_2 | C) \cdots P(X_p | C)$$

MAP classification rule: for a sample

$$\mathbf{x} = (x_1, x_2, \cdots, x_p)$$

$$[P(x_1 | c^*) \cdots P(x_p | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_p | c)]P(c),$$

 $c \neq c^*, \ c = c_1, \cdots, c_L$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent! —

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \cdots P(X_p | C)$$

$$\mathbf{x} = (x_1, x_2, \cdots, x_p)$$

$$[P(x_{1} | c^{*}) \cdots P(x_{p} | c^{*})]P(c^{*}) > [P(x_{1} | c) \cdots P(x_{p} | c)]P(c),$$

$$c \neq c^{*}, c = c_{1}, \cdots, c_{L}$$

$$P(c) P(x_{1} | c_{i}) P(x_{2} | c_{i}) P(x_{2} | c_{i}) \cdots P(x_{p} | c_{i})$$

$$P(x_{1} | c_{i}) P(x_{2} | c_{i}) \cdots P(x_{p} | c_{i})$$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \cdots P(X_p | C)$$

- MAP classification rule: for a sample

$$\mathbf{x} = (x_1, x_2, \cdots, x_p)$$

 $[P(x_{1} | c^{*}) \cdots P(x_{p} | c^{*})]P(c^{*}) > [P(x_{1} | c) \cdots P(x_{p} | c)]P(c),$ $c \neq c^{*}, c = c_{1}, \cdots, c_{L} \quad \{\forall z^{(1,2)} \in P(z_{1}, c_{1}) \inP(z_{1}, c_{1}) \inP$

Naïve Bayes Classifier (for discrete input attributes) – training/ Learning phase

- Learning Phase: Given a training set S,

For each target value of $c_i (c_i = c_1, \dots, c_L)$

 $\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};$

Naïve Bayes Classifier (for discrete input attributes) – training/ Learning phase

- Learning Phase: Given a training set S,

For each target value of c_i ($c_i = c_1, \dots, c_L$) $\hat{P}(C = c_i) \leftarrow$ estimate $P(C = c_i)$ with examples in **S**; For every attribute value x_{jk} of each attribute X_j ($j = 1, \dots, p$; $k = 1, \dots, K_j$) $\hat{P}(X_j = x_{jk} | C = c_i) \leftarrow$ estimate $P(X_j = x_{jk} | C = c_i)$ with examples in **S**;

Output: conditional probability tables; for X_j : $K_j \times L$ elements

Naïve Bayes Classifier (for discrete input attributes) - training

- Learning Phase: Given a training set S,

For each target value of $c_i (c_i = c_1, \dots, c_n)$ $\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};$ For every attribute value x_{ik} of each attribute X_i ($j = 1, \dots, p$; $k = 1, \dots, K_i$) $\hat{P}(X_i = x_{ik} | C = c_i) \leftarrow \text{estimate } P(X_i = x_{ik} | C = c_i) \text{ with examples in } \mathbf{S};$ X_7 , X_0 3/29/22

Naïve Bayes (for discrete input attributes) - testing

Test Phase: Given an unknown instance
 Look up tables to assign the label c* to X' if

$$\mathbf{X}' = (a_1', \cdots, a_p')$$

Learning (training) the NBC Model

Learning (training) the NBC Model

- maximum likelihood estimates:
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$
$$\hat{P}(x_i | c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

Learning (training) the NBC Model

Day	Outlook	Temperature	Humidity	Wind	PlayTenr	nis	
D1	Sunny	Hot	High	Weak	No		
D2	Sunny	Hot	High	Strong	No		f(x) = Rain (C = Yes)
D3	Overcast	Hot	High	Weak	Yes	\in	
D4	(Rain)	Mild	High	Weak	Yes	C	5
D5	(Rain	Cool	Normal	Weak	Yes	\subset	
D6	Rain	Cool	Normal	Strong	No		9
D7	Overcast	Cool	Normal	Strong	Yes	\subset	•
D8	Sunny	Mild	High	Weak	No		
D9	Sunny	Cool	Normal	Weak	Yes	\in	-
D10	Rain	Mild	Normal	Weak	Yes	e	-
D11	Sunny	Mild	Normal	Strong	Yes	e	_
D12	Overcast	Mild	High	Strong	Yes	E	-
D13	Overcast	Hot	Normal	Weak	Yes	\in	
D14	Rain	Mild	High	Strong	No		
					\$(Xi	= 1	$\frac{2}{5}$

PlayTennis: training examples

Estimate $P(X_j = x_{jk} | C = c_i)$ with examples in training;

$P(X_2|C_1), P(X_2|C_2)$

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

	$P(X_4 C_1), P(X_4 C_2)$				
Wind	Play=Yes	Play=No			
Strong	3/9	3/5			
Weak	6/9	2/5			

3+3+2+2 [naïve assumption] * 2 [two classes]= 20 parameters

P(Play=Yes) = 9/14 P(Play=No) = 5/14

 $P(C_1), P(C_2), ..., P(C_L)$

	Counting		<i>E</i> stima	ate	$P(X_i = X_{ik})$	X_{1} C = 0	(X_{z}) with	<کے , exar	Xq. (nples i	(;) in trai	ning;	
•	Learning	g Phase	2	`			P(X ₂	C₁),	P(X ₂	<mark>C₂)</mark>)	
\sim	Outlook	Play=Yes	Play=No)	Temperatu	re	Play=\	′es	Play	=No		
\wedge	Sunny	2/9	3/5		Hot		2/9)	2/	/5	\mathcal{I}	
3	Overcast	4/9	0/5		Mild		4/9)	2/	/5	3	
	Rain	3/9	2/5		Cool		3/9)	1/	/5		
		2		-						7	•	
ſ	Humidity	Play=Yes	Play=No	Play=No	=No) M/in d					[
<u>\</u>	High	3/9	4/5		VVIIIQ		ay=res	PId	y=NO	9		
2	Normal	6/9	1/5		Strong		3/9	3	8/5	2		
		0,5	1/3	1	Weak		6/9	2	2/5	2	272	
		3+3+2+	2 [naïve a	ISS	umption] * 2	2 [tv	vo class	ses] {	20 pa	aramet	ters	
	P(Play=Yes	5) = 9/14	P(Play=	=No (o) = 5/14 (;)		P(C ₁),	<mark>P(C</mark> 2),, I	<mark>P(C∟)</mark>		

Testingthe NBC Model $l_{vk} \forall p$ $[\hat{P}(a'_1 | c^*) \cdots \hat{P}(a'_n)]$

$$[\hat{P}(a_{1}'|c^{*})\cdots\hat{P}(a_{p}'|c^{*})]\hat{P}(c^{*}) > [\hat{P}(a_{1}'|c)\cdots\hat{P}(a_{p}'|c)]\hat{P}(c)$$

- Test Phase
 - Given a new instance,

x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Using the NBC Model

$$[\hat{P}(a_{1}'|c^{*})\cdots\hat{P}(a_{p}'|c^{*})]\hat{P}(c^{*})>[\hat{P}(a_{1}'|c)\cdots\hat{P}(a_{p}'|c)]\hat{P}(c)$$

- Test Phase
 - Given a new instance,

x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

 $= \frac{P(C_{i})P(Summery | C_{i})P(C_{obl} | C_{i})P(High | C_{i})P(Strong | C_{i})}{= \frac{q}{T\psi} \times \frac{2}{q}} = \frac{1}{T\psi} \times \frac{2}{q} = \frac{1}{T\psi} \times \frac{2}{\tau} = \frac{1}{T\psi} \times \frac{2}{\tau} \times \frac{2}{\tau} = \frac{1}{T\psi} \times \frac{2}{\tau} \times \frac{2}{\tau} = \frac{1}{T\psi} \times \frac{2}{\tau} = \frac{1}{T$ = t x f x ··· =

Testing the NBC Model

$[\hat{P}(a_{1}'|c^{*})\cdots\hat{P}(a_{p}'|c^{*})]\hat{P}(c^{*}) > [\hat{P}(a_{1}'|c)\cdots\hat{P}(a_{p}'|c)]\hat{P}(c)$

- Test Phase
 - Given a new instance,
 - x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)
 - Look up in conditional-prob tables

P(Outlook=Sunny Play=Yes) = 2/9	P(Outlook=Sunny Play=No) = 3/5
P(Temperature=Cool Play=Yes) = 3/9	P(Temperature=Cool Play==No) = 1/5
P(Huminity=High Play=Yes) = 3/9	P(Huminity=High Play=No) = 4/5
P(Wind=Strong Play=Yes) = 3/9	P(Wind=Strong Play=No) = 3/5
P(Play=Yes) = 9/14	P(Play=No) = 5/14

$[\hat{P}(a_{1}'|c^{*})\cdots\hat{P}(a_{p}'|c^{*})]\hat{P}(c^{*}) > [\hat{P}(a_{1}'|c)\cdots\hat{P}(a_{p}'|c)]\hat{P}(c)$

- Test Phase
 - Given a new instance,

x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Look up in conditional-prob tables

P(Outlook=Sunny Play=Yes) = 2/9	P(Outlook=Sunny Play=No) = 3/5
P(Temperature=Cool Play=Yes) = 3/9	P(Temperature=Cool Play==No) = 1/5
P(Huminity=High Play=Yes) = 3/9	P(Huminity=High Play=No) = 4/5
P(Wind=Strong Play=Yes) = 3/9	P(Wind=Strong Play=No) = 3/5
P(Play=Yes) = 9/14	P(Play=No) = 5/14

– MAP rule

P(Yes|X'): [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053 P(No|X'): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given the fact P(Yes | X') < P(No | X'), we label X' to be "No".

Thank You

in the second second

UVA CS 4774: Machine Learning

S3: Lecture 16: Generative Bayes Classifiers

Module III

Dr. Yanjun Qi University of Virginia Department of Computer Science

WHY ? Naïve Bayes Assumption

- *P*(*c_j*)
 - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, ..., x_p | c_j)$
 - O(/X₁/. /X₂/. /X₃/.... /X_p/./C/) parameters
 - Could only be estimated if a very, very large number of training examples was available.

Naïve

Not

Naïve

- O([/X₁/+ /X₂/+ /X₃/....+ /X_p/]./C/) parameters
- Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(x_i | c_j)$.

$$\frac{3 \times L}{Z_{I} = Sunn} \xrightarrow{(C=Tes)} \frac{N(S, YeS)}{N(YeS)} = \frac{2}{9} \qquad Z_{I} : 3 \times L$$

$$\frac{Z_{I} = Sunn}{Z_{I} = 0} \xrightarrow{(C=Tes)} \frac{N(S, YeS)}{N(YeS)} = \frac{2}{9} \qquad Z_{2} : 3 \times L$$

$$\frac{Z_{I} = 0}{Z_{I} = 2} \xrightarrow{(C=Tes)} \qquad Z_{3} : 2 \times L$$

$$\frac{Z_{I} = R}{Z_{I} = R} \xrightarrow{(C=Tes)} \frac{N(S, N)}{N(N_{0})} = \frac{3}{5} \qquad L=2 \xrightarrow{P(C=Ye)} \frac{P(CN)}{P(CN)}$$

$$\frac{9}{14} \xrightarrow{5}{14}$$

$$N_{0} \xrightarrow{Vaive} \xrightarrow{(C=N_{0})} (3 + 3 + 2 + 2) \times L = 20$$

$$\frac{9}{2^{1}} \xrightarrow{(L)} \xrightarrow{Z_{1}} \xrightarrow{Z_{2}} \xrightarrow{Z_{2$$

$$\frac{3 \times L}{Z_{I} = Sunn} \xrightarrow{(C=Tes)} \frac{N(S, YeS)}{N(YeS)} = \frac{2}{9} \qquad Z_{I} : 3 \times L$$

$$\frac{Z_{I} = Sunn}{Z_{I} = 0} \xrightarrow{(C=Tes)} \frac{N(S, YeS)}{N(YeS)} = \frac{2}{9} \qquad Z_{2} : 3 \times L$$

$$\frac{Z_{I} = 0}{Z_{I} = 2} \xrightarrow{(C=Tes)} \qquad Z_{3} : 2 \times L$$

$$\frac{Z_{I} = R}{Z_{I} = R} \xrightarrow{(C=Tes)} \frac{N(S, N)}{N(N_{0})} = \frac{3}{5} \qquad L=2 \xrightarrow{P(C=Ye)} \frac{P(CN)}{P(CN)}$$

$$\frac{9}{14} \xrightarrow{5}{14}$$

$$N_{0} \xrightarrow{Vaive} \xrightarrow{(C=N_{0})} (3 + 3 + 2 + 2) \times L = 20$$

$$\frac{9}{2^{1}} \xrightarrow{(L)} \xrightarrow{Z_{1}} \xrightarrow{Z_{2}} \xrightarrow{Z_{2$$

WHY ? Naïve Bayes Assumption Assuming |c| = L num of unique values

- $P(C_i)$
 - Can be estimated from the frequency of classes in the Assuming $|X_i| = 2$, $i=1,2,\cdots, P$ $\Rightarrow 2^P \times 1$ training examples.
- $P(x_1, x_2, ..., x_p | c_i)$
 - $O(|X_1|, |X_2|, |X_3|, ..., |X_p|, |C|)$ parameters
 - Could only be estimated if a very, very large number of training examples was available.
- $P(x_k | c_i)$
- Naïve

Not

Naïve

- $r(x_k/c_j) = 2^{T}P^{T}$ O([/X_1/+ |X_2/+ |X_3/....+ |X_p/]./C/) parameters
 Assume that the probability of observing of attributes is equal. Assume that the probability of observing the conjunction probabilities $P(x_i | c_i)$.

Challenges during Learning (training) the GBC Model

For instance:

For instance: X_1 X_2 X_3 X_4 X_5 X_6 =Muscle-ache

• What if we have seen no training cases where patient had no flu and muscle aches?

$$\hat{P}(X_6 = T | C = not_f lu) = \frac{N(X_6 = T, C = nf)}{N(C = nf)} = 0$$

$$MUSC | Q-UChe_res/N0 \qquad f(u/nf)$$

• Zero probabilities cannot be conditioned away, no matter the other evidence!

?? =
$$\arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} | c)$$

$$\begin{split} & \mathcal{S}_{S} = \mathcal{P}(c=f|u) \mathcal{P}(x_{1}|f) \mathcal{P}(x_{2}|f) \mathcal{P}(x_{2}|f) \mathcal{P}(x_{4}|f) \mathcal$$

Smoothing to Avoid Overfitting

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k_i}$$

$$\text{To make sum_i (P(xi \mid Cj) = 1)}$$

$$\begin{pmatrix} \chi'_{ij} = k_{ij} \end{pmatrix}$$

Adapt From Manning' textCat tutorial

 \sim

Smoothing to Avoid Overfitting

$$\hat{P}(x_{i} | c_{j}) = \frac{N(X_{i} = x_{i}, C = c_{j}) + 1}{N(C = c_{j}) + k_{i}}$$
of values of X_i
• Somewhat more subtle version
$$\hat{P}(x_{i,k} | c_{j}) = \frac{N(X_{i} = x_{i,k}, C = c_{j}) + mp_{i,k}}{N(C = c_{j}) + mp_{i,k}}$$
extent of
"smoothing"

Summary: Generative Bayes Classifier

Task: Classify a new instance X based on a tuple of attribute $X = \langle X_1, X_2, \dots, X_p \rangle$ into one of the classes values $c_{MAP} = \operatorname{argmax} P(c_i | x_1, x_2, \dots, x_p)$ $c_i \in C$ $= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, \dots, x_{p} \mid c_{j})P(c_{j})}{P(x_{1}, x_{2}, \dots, x_{p})}$ $= \operatorname{argmax}_{c_j \in C} P(x_1, x_2, \dots, x_p \mid c_j) P(c_j)$ $j = \lfloor 2 \rfloor_{i=1}^{c_j \in C} P(x_1, x_2, \dots, x_p \mid c_j) P(c_j)$ MAP = Maximum A Posteriori

Today Recap: Generative Bayes Classifier and Naïve BC

Thank you

3/29/22

10.000-000

65

NEXT: More Generative Bayes Classifiers

- Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
- ✓ Gaussian Bayes Classifiers
 - Gaussian distribution
 - Naïve Gaussian BC
 - Not-naïve Gaussian BC -> LDA, QDA
 - ✓ Discriminative vs. Generative

EXTRA

References

Prof. Andrew Moore's review tutorial

Prof. Ke Chen NB slides

□ Prof. Carlos Guestrin recitation slides