UVA CS 4774: Machine Learning

S5: Lecture 25 Extra Extra: EM (Extra)

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Extra Outline

- Principles for Model Inference
 - Maximum Likelihood Estimation
 - Bayesian Estimation
- Strategies for Model Inference
 - EM Algorithm simplify difficult MLE
 - Algorithm
 - Application
 - Theory
 - MCMC samples rather than maximizing

Model Inference through Maximum Likelihood Estimation (MLE)

Assumption: the data is coming from a known probability distribution

The probability distribution has some parameters that are unknown to you

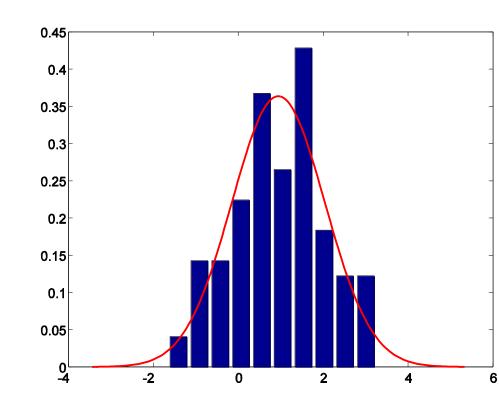
Example: data is distributed as Gaussian
$$y_i=N(\mu,\sigma^2)$$
 so the unknown parameters here are $\theta=(\mu,\sigma^2)$

MLE is a tool that estimates the unknown parameters of the probability distribution from data

MLE: e.g. Single Gaussian Model (when p=1)

 Need to adjust the parameters (→ model inference)

 So that the resulting distribution fits the observed data well



Maximum Likelihood revisited

$$y_i = N(\mu, \sigma^2)$$

$$Y = \{y_1, y_2, ..., y_N\}$$

$$l(\theta) = \log(L(\theta; Y)) = \log \prod_{i=1}^{N} p(y_i)$$

Choose
$$\theta$$
 that maximizes $l(\theta)$... $\frac{\partial l}{\partial \theta} = 0$

MLE: e.g. Single Gaussian Model

- Assume observation data y_i are independent
- Form the Likelihood:

$$L(\theta;Y) = \prod_{i=1}^{N} p(y_i) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(y_i - \mu)^2}{2\sigma^2});$$

$$Y = \{y_1, y_2, ..., y_N\}$$

Form the Log-likelihood:

$$l(\theta) = \log(\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(y_i - \mu)^2}{2\sigma^2})) = -\sum_{i=1}^{N} \frac{(y_i - \mu)^2}{2\sigma^2} - N\log(\sqrt{2\pi\sigma})$$

MLE: e.g. Single Gaussian Model

 To find out the unknown parameter values, maximize the log-likelihood with respect to the unknown parameters:

Choose
$$\theta$$
 that maximizes $l(\theta)$... $\frac{\partial l}{\partial \theta} = 0$

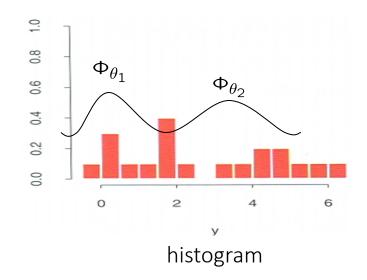
$$\frac{\partial l}{\partial \mu} = 0 \Rightarrow \mu = \frac{\sum_{i=1}^{N} y_i}{N}; \quad \frac{\partial l}{\partial \sigma^2} = 0 \Rightarrow \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu)^2$$

MLE: A Challenging Mixture Example

$$Y_1 \sim N(\mu_1, \sigma_1^2); \quad Y_2 \sim N(\mu_2, \sigma_2^2)$$

 $Y = (1 - \Delta)Y_1 + \Delta Y_2; \quad \Delta \in \{0,1\}$

Indicator variable



Mixture model:
$$g_Y(y) = (1 - \pi) \Phi_{\theta_1}(y) + \pi \Phi_{\theta_2(y)}$$
 $(\pi = Pr(\Delta = 1))$

$$\theta_1 = (\mu_1, \sigma_1); \quad \theta_2 = (\mu_2, \sigma_2)$$

 π is the probability with which the observation is chosen from density model 2

(1/19) is the probability with which the observation is chosen from density 1

MLE: A Challenging Mixture Example

$$Y_1 \sim N(\mu_1, \sigma_1^2); \quad Y_2 \sim N(\mu_2, \sigma_2^2)$$

$$Y = (1 - \Delta)Y_1 + \Delta Y_2; \quad \Delta \in \{0, 1\}$$
Indicator variable
$$g_Y(y) = (1 - \pi) \Phi_{\theta_1}(y) + \pi \Phi_{\theta_2}(y)$$

$$\theta_1 = (\mu_1, \sigma_1); \quad \theta_2 = (\mu_2, \sigma_2)$$

 π is the probability with which the observation is chosen from density model 2

(1/19) is the probability with which the observation is chosen from density 1

MLE: Gaussian Mixture Example

Maximum likelihood fitting for parameters: $\widehat{\theta} = (\pi, \mu_1, \mu_2, \sigma_1, \sigma_2)$

$$l(\theta) = \sum_{i=1}^{N} log[(1-\pi)\Phi_{\theta_1}(y_i) + \pi\Phi_{\theta_2(y_i)}]$$
$$\frac{\partial l}{\partial \theta} = 0$$

Numerically (and of course analytically, too) Challenging to solve!!

Bayesian Methods & Maximum Likelihood

Bayesian

Pr(model|data) i.e. posterior

- =>Pr(data|model) Pr(model)
- => Likelihood * prior

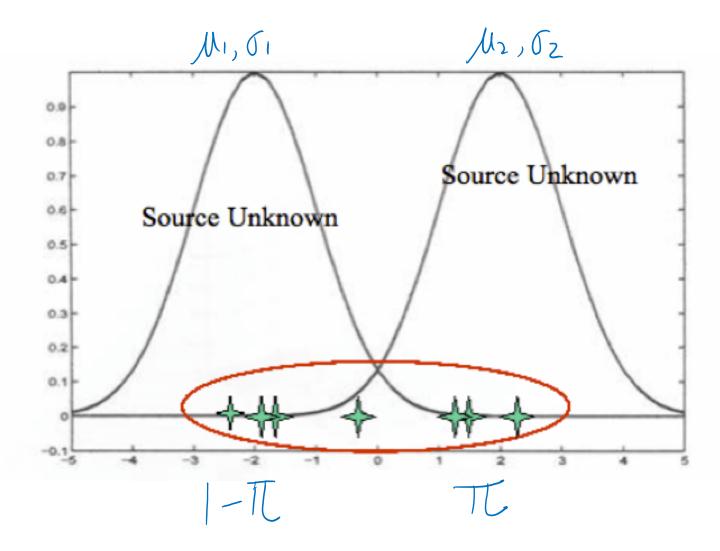
 Assume prior is uniform, equal to MLE argmax_{model} Pr(data | model) Pr(model)

= argmax _{model} Pr(data | model)

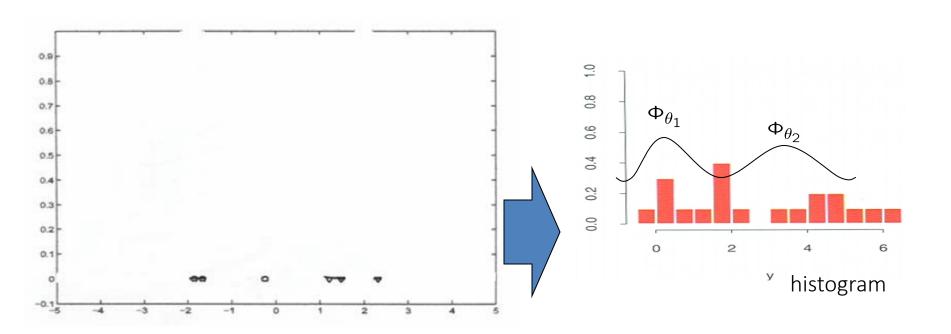
Today Outline

- Principles for Model Inference
 - Maximum Likelihood Estimation
 - Bayesian Estimation
- Strategies for Model Inference
 - EM Algorithm simplify difficult MLE
 - Algorithm
 - Application
 - Theory
 - MCMC samples rather than maximizing

Here is the problem



All we have is



From which we need to infer the likelihood function which generate the observations

Expectation Maximization: add latent variable $\Delta =>$ latent data

EM augments the data space—assumes with latent data

$$\Delta_i \in 0,1$$
 (latent data)

$$if(\Delta_i = 0)$$

 y_i was generated from first component

$$if(\Delta_i = 1)$$

 y_i was generated from second component

Complete data:
$$t_i = (y_i, \Delta_i)$$

$$p(t_i|\theta) = p(y_i, \Delta_i|\theta) = p(y_i|\Delta_i, \theta)Pr(\Delta_i)$$

$$p(t_i|\theta) = [\Phi_{\theta_1}(y_i)(1-\pi)]^{(1-\Delta_i)}[\Phi_{\theta_2}(y_i)\pi]^{\Delta_i}$$

Expectation Maximization: add latent variable $\Delta = >$ latent data

 Δ_i

EM augments the data space—assumes with latent data

$$\Delta_i \in [0, 1]$$
 (latent data)

$$if(\Delta_i = 0)$$

 y_i was generated from first component

$$if(\Delta_i = 1)$$

 y_i was generated from second component

$$\{y_1, y_2, \dots, y_n\}$$

Complete data:
$$t_i = (y_i, \Delta_i)$$

$$p(t_i|\theta) = p(y_i, \Delta_i|\theta) = p(y_i|\Delta_i, \theta)Pr(\Delta_i)$$

$$p(t_i|\theta) = [\Phi_{\theta_1}(y_i)(1-\pi)]^{(1-\Delta_i)}[\Phi_{\theta_2}(y_i)\pi]^{\Delta_i}$$

Computing log-likelihood based on complete data

$$p(t_i|\theta) = [\Phi_{\theta_1}(y_i)(1-\pi)]^{(1-\Delta_i)}[\pi\Phi_{\theta_2}(y_i)\pi]^{\Delta_i}$$

$$l_0(\theta; \mathbf{T})$$
 $T = \{t_i = (y_i, \Delta_i), i = 1...N\}$

$$= \sum_{i=1}^{N} (1 - \Delta_i) \log[(1 - \pi) \Phi_{\theta_1}(y_i)] + \Delta_i \log[\pi \Phi_{\theta_2}(y_i)]$$

$$= \sum_{i=1}^{N} (1 - \Delta_i) log \Phi_{\theta_1}(y_i) + \Delta_i log \Phi_{\theta_2}(y_i)] + \sum_{i=1}^{N} [(1 - \Delta_i) log (1 - \pi) + \Delta_i log \pi$$
 (8.40)

Maximizing this form of log-likelihood is now tractable

EM: The Complete Data Likelihood

By simple differentiations we have:

$$\frac{\partial l_0}{\partial \mu_1} = 0 \Rightarrow \mu_1 = \frac{\sum_{i=1}^{N} (1 - \Delta_i) y_i}{\sum_{i=1}^{N} (1 - \Delta_i)};$$

$$\frac{\partial l_0}{\partial \sigma_1^2} = 0 \Rightarrow \sigma_1^2 = \frac{\sum_{i=1}^{N} (1 - \Delta_i) (y_i - \mu_1)^2}{\sum_{i=1}^{N} (1 - \Delta_i)};$$

So, maximization of the complete data likelihood is much easier!

EM: The Complete Data Likelihood

By simple differentiations we have:

$$\frac{\partial l_0}{\partial \mu_2} = 0 \Longrightarrow \mu_2 = \frac{\sum_{i=1}^{N} \Delta_i y_i}{\sum_{i=1}^{N} \Delta_i};$$

$$\frac{\partial l_0}{\partial \sigma_2^2} = 0 \Rightarrow \sigma_2^2 = \frac{\sum_{i=1}^N \Delta_i (y_i - \mu_2)^2}{\sum_{i=1}^N \Delta_i};$$

So, maximization of the complete data likelihood is much easier!

$$\frac{\partial l_0}{\partial \pi} = 0 \Longrightarrow \pi = \frac{\sum_{i=1}^{N} \Delta_i}{N}$$

Obtaining Latent Variables

The latent variables are computed as expected values given the data and parameters:

Apply Bayes' rule:

$$\gamma_{i}(\theta) = \Pr(\Delta_{i} = 1 \mid \theta, y_{i}) = \frac{\Pr(y_{i} \mid \Delta_{i} = 1, \theta) \Pr(\Delta_{i} = 1 \mid \theta)}{\Pr(y_{i} \mid \Delta_{i} = 1, \theta) \Pr(\Delta_{i} = 1 \mid \theta) + \Pr(y_{i} \mid \Delta_{i} = 0, \theta) \Pr(\Delta_{i} = 0 \mid \theta)}$$

$$= \frac{\Phi_{\theta_{2}}(y_{i})\pi}{\Phi_{\theta_{1}}(y_{i})(1 - \pi) + \Phi_{\theta_{2}}(y_{i})\pi}$$

$$(\forall \hat{y}) \qquad (\forall \hat{y}) \qquad (\forall$$

Dilemma Situation

- We need to know latent variable / data to maximize the complete loglikelihood to get the parameters
- We need to know the parameters to calculate the expected values of latent variable / data
- Solve through iterations

So we iterate EM for Gaussian Mixtures...

- 1. Initialize parameters $\widehat{\mu_1}, \widehat{\sigma_1^2}, \widehat{\mu_2}, \widehat{\sigma_2^2}, \widehat{\pi}$ 2. Expectation Step: $\{\theta^{(t)}, \gamma\} \Rightarrow E(D_i)$
 - $\gamma_i(\theta) = E(\Delta_i | \theta, Y) = Pr(\Delta_i = 1 | \theta, Y)$

By Bayes' theroem:

$$Pr(\Delta_i = 1 | \theta, y_i) = \frac{p(y_i | \Delta_i = 1, \theta).P(\Delta_i = 1 | \theta)}{p(y_i | \theta)}$$
$$= \frac{\Phi_{\widehat{\theta_2}}(y_i).\widehat{\pi}}{(1 - \widehat{\pi})\Phi_{\widehat{\theta_1}}(y_i) + \widehat{\pi}\Phi_{\widehat{\theta_2}}(y_i)}$$

$$E[l_{0}(\theta; \mathbf{T}|Y, \hat{\theta}^{(j)})] = \sum_{i=1}^{N} [(1 - \hat{\gamma}_{i})log\Phi_{\theta_{1}}(y_{i}) + \hat{\gamma}_{i}log\Phi_{\theta_{2}}(y_{i})] + \sum_{i=1}^{N} [(1 - \hat{\gamma}_{i})log(1 - \pi) + \hat{\gamma}_{i}log\pi]$$

EM for Gaussian Mixtures...

3. Maximization Step:

Maximization Step:
$$Q(\theta', \widehat{\theta}^{(j)}) = E[l_0(\theta'; \mathbf{T}|Y, \widehat{\theta}^{(j)})]$$

$$= \sum_{i=1}^{N} [(1 - \widehat{\gamma_i})log\Phi_{\theta_1}(y_i) + \widehat{\gamma_i}log\Phi_{\theta_2}(y_i)]$$

$$+ \sum_{i=1}^{N} [(1 - \widehat{\gamma_i})log(1 - \pi) + \widehat{\gamma_i}log\pi]$$

Find θ' that maximizes $Q(\theta', \widehat{\theta}^{(j)}) \dots$

Set
$$\frac{\partial Q}{\partial \hat{\mu_1}}$$
, $\frac{\partial Q}{\partial \hat{\mu_2}}$, $\frac{\partial Q}{\partial \hat{\sigma_1}}$, $\frac{\partial Q}{\partial \hat{\sigma_2}}$, $\frac{\partial Q}{\partial \hat{\pi}} = 0$

to get $\hat{\theta}^{(j+1)}$

4. Use this $\hat{\theta}^{j+1}$ to compute the expected values $\hat{\gamma}_i$ and repeat...until convergence

EM for Two-component Gaussian Mixture

- Initialize $\mu_1, \sigma_1, \mu_2, \sigma_2, \pi$
- Iterate until convergence
 - Expectation of latent variables

$$\gamma_{i}(\theta) = \frac{\Phi_{\theta_{2}}(y_{i})\pi}{\Phi_{\theta_{1}}(y_{i})(1-\pi) + \Phi_{\theta_{2}}(y_{i})\pi} = \frac{1}{1 + \frac{1-\pi}{\pi} \frac{\sigma_{2}}{\sigma_{1}} \exp(-\frac{(y_{i} - \mu_{1})^{2}}{2\sigma_{1}^{2}} + \frac{(y_{i} - \mu_{2})^{2}}{2\sigma_{2}^{2}})}$$

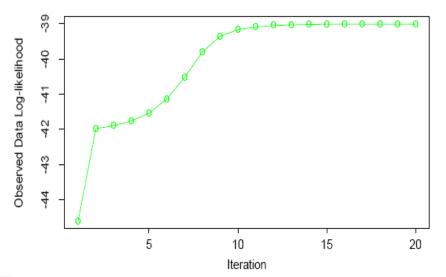
Maximization for finding parameters

$$\mu_{1} = \frac{\sum_{i=1}^{N} (1 - \gamma_{i}) y_{i}}{\sum_{i=1}^{N} (1 - \gamma_{i})}; \quad \mu_{2} = \frac{\sum_{i=1}^{N} \gamma_{i} y_{i}}{\sum_{i=1}^{N} \gamma_{i}}; \quad \sigma_{1}^{2} = \frac{\sum_{i=1}^{N} (1 - \gamma_{i}) (y_{i} - \mu_{1})^{2}}{\sum_{i=1}^{N} (1 - \gamma_{i})}; \quad \sigma_{2}^{2} = \frac{\sum_{i=1}^{N} \gamma_{i} (y_{i} - \mu_{2})^{2}}{\sum_{i=1}^{N} \gamma_{i}}; \quad \pi = \frac{\sum_{i=1}^{N} \gamma_{i}}{N};$$

EM in....simple words

- Given observed data, you need to come up with a generative model
- You choose a model that comprises of some hidden variables Δ_i (this is your belief!)
- Problem: To estimate the parameters of model
 - Assume some initial values parameters
 - Replace values of hidden variable with their expectation (given the old parameters)
 - Recompute new values of parameters (given Δ_i
 - Check for convergence using log-likelihood

EM – Example (cont'd)



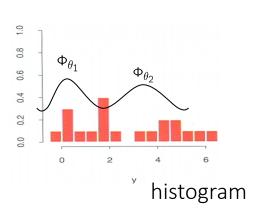


Figure 8.6: EM algorithm: observed data log-likelihood as a function of the iteration number.

Selected iterations of the EM algorithm For mixture example

Iteration	π
1	0.485
5	0.493
10	0.523
15	0.544
20	0.546

EM Summary

- An iterative approach for MLE
- Good idea when you have missing or latent data
- Has a nice property of convergence
- Can get stuck in local minima (try different starting points)
- Generally hard to calculate expectation over all possible values of hidden variables
- Still not much known about the rate of convergence

10/19/20 27

Today Outline

- Principles for Model Inference
 - Maximum Likelihood Estimation
 - Bayesian Estimation
- Strategies for Model Inference
 - EM Algorithm simplify difficult MLE
 - Algorithm

- Application
- Theory
- MCMC samples rather than maximizing

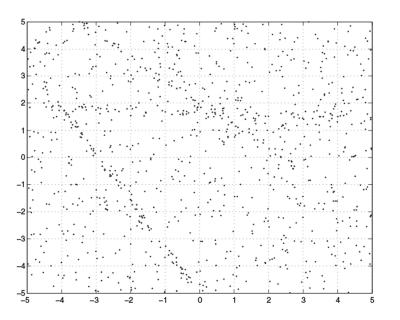
Applications of EM

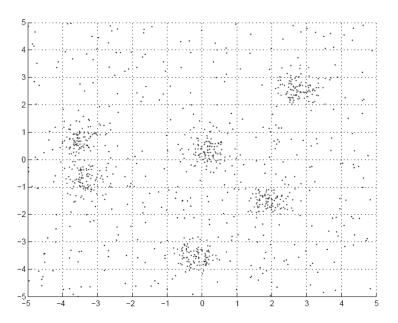
- Mixture models
- HMMs
- Latent variable models
- Missing data problems

— ...

Applications of EM (1)

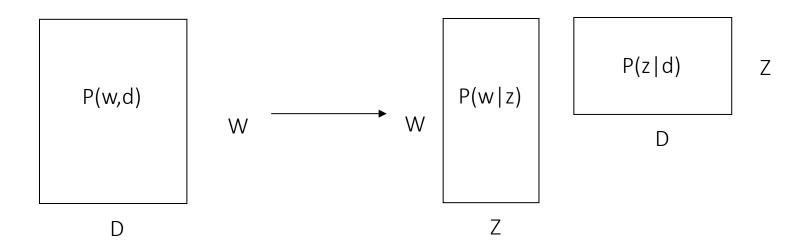
Fitting mixture models





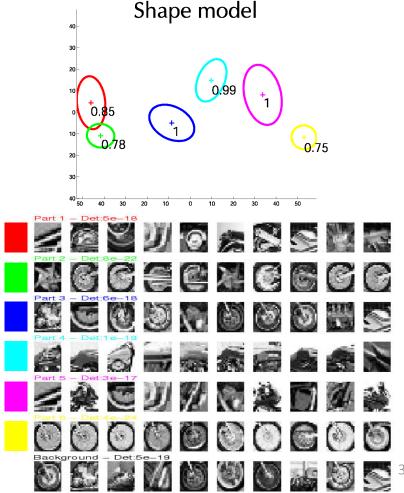
Applications of EM (2)

- Probabilistic Latent Semantic Analysis (pLSA)
 - Technique from text for topic modeling



Applications of EM (3)

Learning parts and structure models



Applications of EM (4)

Automatic segmentation of layers in video

http://www.psi.toronto.edu/images/figures/cutouts_vid.gif

Expectation Maximization (EM)

• Old idea (late 50's) but formalized by Dempster, Laird and Rubin in 1977

• Subject of much investigation. See McLachlan & Krishnan book 1997.

$$P$$
 pose 10 $\pi = P(\Delta = 1)$

single-

+

twocluster case

Joint Prob. Model:

$$\begin{array}{ll}
\emptyset & \text{Joint Prob. Model}: \\
0 & P(y_i \Delta_i) \theta) = P(y_i \Delta_i \theta) P(\Delta_i) & Q_i \Delta_i = 1 \\
= & \left[N(y_i M_i, \delta_i) (1-T) \right] (1-\Delta_i) \\
& \left[N(y_i M_2, \delta_2) T \right] \Delta_i
\end{array}$$

(a) Maginal Prob.

$$p(\forall i | \theta) = \sum_{\Delta i} p(\forall i | \Delta i, \theta) p(\mathbf{A}i)$$

$$= N(\forall i | M, \sigma_i) (1-\Pi) + N(\forall i | M_2, \sigma_2) \Pi$$
(b) Conditional
$$p(\forall i | \Delta i, \theta) = \begin{cases} \Delta i = 1 & N(\forall i | M_1, \sigma_1) \\ \Delta i = 0 & N(\forall i | M_1, \sigma_2) \end{cases}$$

$$p(\forall i | \Delta i, \theta) = \begin{cases} \Delta i = 0 & N(\forall i | M_1, \sigma_1) \\ \Delta i = 0 & N(\forall i | M_1, \sigma_2) \end{cases}$$

$$Ester \Rightarrow p(\Delta i = 1, \sigma_1, \theta) = \frac{p_r(\forall i | \Delta i = 1) p_r(\Delta i = 1, \theta)}{p(\forall i | \theta)}$$

multivariable

+

multicluster case

```
multi-variate > Given ( X1, X2, -, Xn)
                                                                                                         > complete (2, 32, ..., Zn)
                                                       enh vector \overline{Z}_i = (0,0,0,0) K

enh vector \overline{Z}_i = (0,0,0,0) K

\overline{Z}_i = (0,0,0,0) Basis Vector
                                                                                                           >> parameters 0 0 includes
                                                                                             \{\hat{z}, \hat{z}, \hat{z
                                                                                                                                                                                                                                                      T_{3} = P(Z^{(3)} = 1)
                                                     P(x_i, \overline{z_i}) = \prod_{j=1}^{K} \left[ \prod_{j} N(x_i | \mathcal{U}_j, \overline{z_j}) \right]^{\overline{z_i^{(j)}}}
P(x_i, \overline{z_i^{(j)}} | 10)
    1 Joint Prob.
                                                            P(x_i, Z_i^{(\hat{a})} = |\theta) = T_j N(x_i | M_j, \Sigma_j)
         @ Marginal
                                                                   P(xi|\theta) = \sum_{i=1}^{k} \prod_{j} N(xi|\mu_{j}, \Sigma_{j})
                                                                                                                                                                                                                                                                                                                                     Ti N (Xi Mi, Zi)
                                                             P(Zi=1 | xi, M;, Z;) = Boyes Rule
               3 Conditional
                                                                                                                                                                                                                                                                                                                                    ET TR N(Xi MR, ER)
```

Today Outline

- Principles for Model Inference
 - Maximum Likelihood Estimation
 - Bayesian Estimation
- Strategies for Model Inference
 - EM Algorithm simplify difficult MLE
 - Algorithm
 - Application
- Theory
 - MCMC samples rather than maximizing

Why is Learning Harder?

• In fully observed iid settings, the complete log likelihood decomposes into a sum of local terms.

$$\ell_c(\theta; D) = \log p(x, z \mid \theta) = \log p(z \mid \theta_z) + \log p(x \mid z, \theta_x)$$

• When with latent variables, all the parameters become coupled together via *marginalization*

$$/(\theta;D) = \log p(x|\theta) = \log \sum_{z} p(z|\theta_{z}) p(x|z,\theta_{x})$$

$$/(\theta;D) = \log p(x|\theta) = \log \sum_{z} p(z|\theta_{z}) p(x|z,\theta_{x})$$

Gradient Learning for mixture models

 We can learn mixture densities using gradient descent on the observed log likelihood. The gradients are quite interesting:

$$\ell(\theta) = \log p(\mathbf{x} \mid \theta) = \log \sum_{k} \pi_{k} p_{k}(\mathbf{x} \mid \theta_{k})$$

$$\frac{\partial \ell}{\partial \theta} = \frac{1}{p(\mathbf{x} \mid \theta)} \sum_{k} \pi_{k} \frac{\partial p_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta}$$

$$= \sum_{k} \frac{\pi_{k}}{p(\mathbf{x} \mid \theta)} p_{k}(\mathbf{x} \mid \theta_{k}) \frac{\partial \log p_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta}$$

$$= \sum_{k} \pi_{k} \frac{p_{k}(\mathbf{x} \mid \theta_{k})}{p(\mathbf{x} \mid \theta)} \frac{\partial \log p_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta_{k}} = \sum_{k} r_{k} \frac{\partial \ell_{k}}{\partial \theta_{k}}$$

- In other words, the gradient is the responsibility weighted sum of the individual log likelihood gradients.
- ₱/19©an pass this to a conjugate gradient routine.

Parameter Constraints

- Often we have constraints on the parameters, e.g. \sum_k being symmetric positive definite.
- We can use constrained optimization, or we can reparameterize in terms of unconstrained values.
 - For normalized weights, softmax to e.g. $\sum_{i=1}^{K} \pi_{i} = 1$
 - For covariance matrices, use the Cholesky decomposition:

$$\Sigma^{-1} = \mathbf{A}^{\mathsf{T}} \mathbf{A}$$

where A is upper diagonal with positive diagonal:

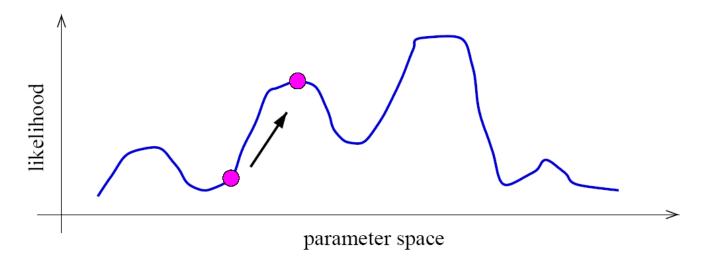
$$\mathbf{A}_{ii} = \exp(\lambda_i) > 0 \quad \mathbf{A}_{ij} = \eta_{ij} \quad (j > i) \quad \mathbf{A}_{ij} = 0 \quad (j < i)$$

Use chain rule to compute

$$\frac{\partial \ell}{\partial \pi}, \frac{\partial \ell}{\partial \mathbf{A}}$$

Identifiability

- A mixture model induces a multi-modal likelihood.
- Hence gradient ascent can only find a local maximum.
- Mixture models are unidentifiable, since we can always switch the hidden labels without affecting the likelihood.
- Hence we should be careful in trying to interpret the "meaning" of latent variables.



Expectation-Maximization (EM) Algorithm

- EM is an Iterative algorithm with two linked steps:
 - E-step: fill-in hidden values using inference: p(z|x, \thetat).
 - M-step: update parameters (t+1) rounds using standard MLE/MAP method applied to completed data
- We will prove that this procedure monotonically improves (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe z, so computing

$$\ell_c(\theta; D) = \log \sum_z p(x, z \mid \theta) = \log \sum_z p(z \mid \theta_z) p(x \mid z, \theta_x)$$

is difficult!

What shall we do?

(1) Incomplete Log Likelihoods

Incomplete log likelihood

With z unobserved, our objective becomes the log of a marginal probability:

This objective won't decouple

jective won't decouple
$$I(\theta;x) = \log p(x|\theta) = \log \sum_{z} p(x,z|\theta)$$

(2) Complete Log Likelihoods

Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s). If Z could be observed, then

$$I_c(\theta;x,z) = \log p(x,z|\theta) = \log p(z|\theta_z)p(x|z,\theta_x)$$

- Usually, optimizing $I_c()$ given both z and x is straightforward (c.f. MLE for fully observed models).
- Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor can be estimated separately.
- But given that Z is not observed, $l_c()$ is a random quantity, cannot be maximized directly.

Three types of log-likelihood

over multiple observed samples (x 1, x 2, ..., x N)

Observed data
$$x=(x_1,x_2,\ldots,x_N)$$
 Latent variables $z=(z_1,z_2,\ldots,z_N)$ Iteration index

Log-likelihood [Incomplete log-likelihood (ILL)]

$$l(\theta; x) = log p(x|\theta) = log \prod_{x} p(x|\theta)$$

= $\sum_{x} log \sum_{z} p(x, z|\theta)$

Complete log-likelihood (CLL)

$$l_c(\theta; x, z) \triangleq \sum_{x} \log p(x, z \mid \theta)$$

Expected complete log-likelihood (ECLL)

$$\text{Extrapolation} \langle l_c(\theta; x, z) \rangle_q \triangleq \sum_{\mathcal{X}} \sum_{z} q(z \mid x, \theta) \log p(x, z \mid \theta)$$

Three types of log-likelihood

over multiple observed samples (x_1, x_2, ..., x_N)

Observed data
$$x = (x_1, x_2, \dots, x_N)$$

Latent variables $z = (z_1, z_2, \dots, z_N)$

Iteration index $t = (z_1, z_2, \dots, z_N)$

Log-likelihood [Incomplete log-likelihood (ILL)]

$$l(\theta; x) = \log p(x|\theta) = \log \prod_{x} p(x|\theta)$$

$$= \sum_{x} \log \sum_{z} p(x, z|\theta)$$
Complete log-likelihood (CLL)

$$l_c(\theta; x, z) \triangleq \sum_{x} \log p(x, z \mid \theta)$$

Expected complete log-likelihood (ECLL)

$$= \langle l_c(\theta; x, z) \rangle_q \triangleq \sum_{\chi_1, \chi_2, \chi_3, \chi_4, \chi_4} \sum_{z} q(z \mid x, \theta) \log p(x, z \mid \theta)$$

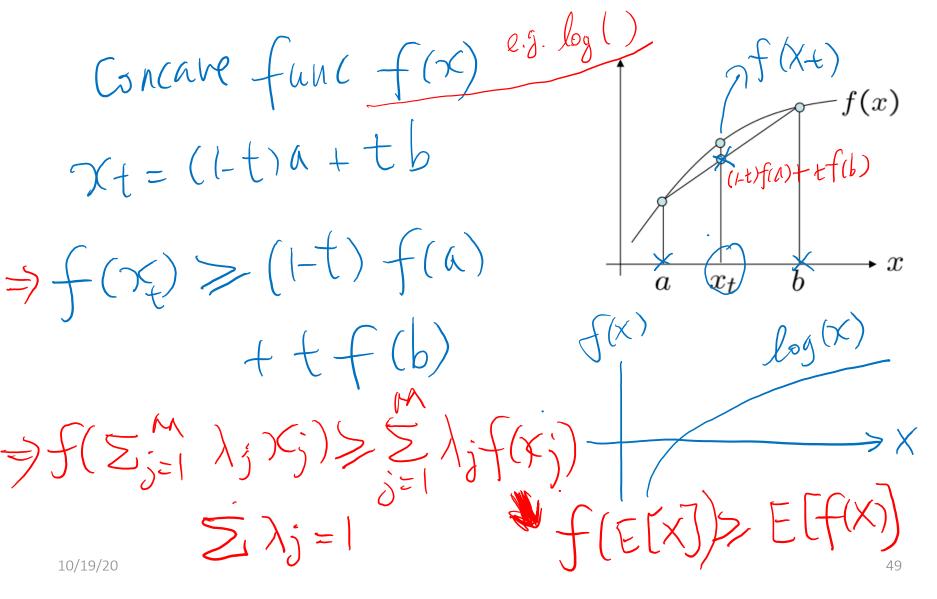
(3) Expected Complete Log Likelihood

- For any distribution q(z), define expected complete log likelihood (ECLL):
 - CLL is random variable → ECLL is a deterministic function of q
 - Linear in CLL() --- inherit its factorizabiility
 - Does maximizing this surrogate yield a maximizer of the likelihood?

$$ECLL = \left\langle I_c(\theta; x, z) \right\rangle_q = \sum_z q(z \mid x, \theta) \log p(x, z \mid \theta)$$

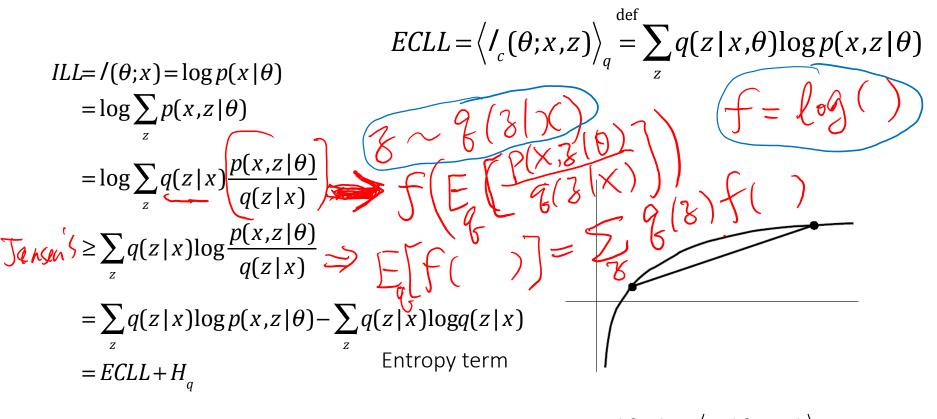
10/19/20 48

Jensen's inequality



Jensen's inequality

Jensen's inequality



$$\Rightarrow \ell(\theta; x) \ge \left\langle \ell_c(\theta; x, z) \right\rangle_q + H_q$$

$$\text{ILL} \ge FCLL + H_q$$

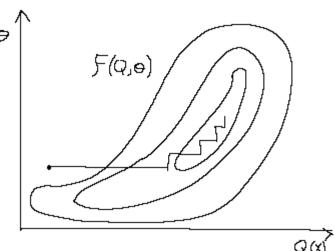
Lower Bounds and Free Energy

• For fixed data x, define a functional called the free energy: $F(q,\theta) = \sum_{z} q(z|x) \log \frac{p(x,z|\theta)}{q(z|x)} \le \ell(\theta;x)$

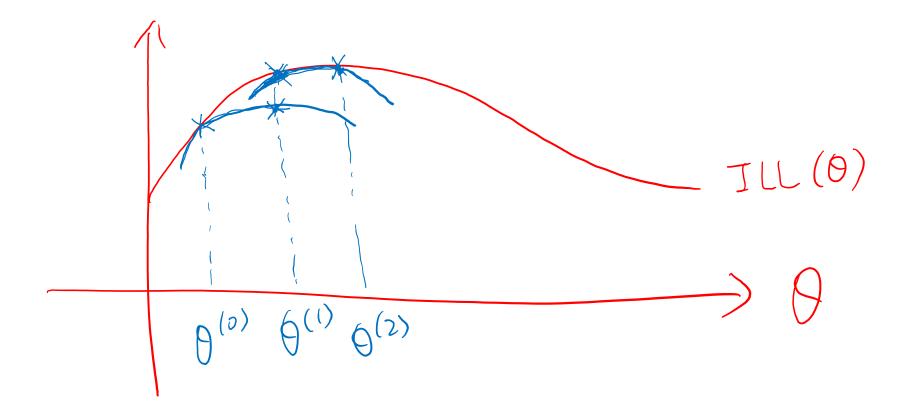
- E-step:
$$q^{t+1} = \arg \max_{q} F(q, \theta^t)$$

- E-step:
$$q^{t+1} = \underset{q}{\operatorname{arg max}} F(q, \theta^t)$$

- M-step: $\theta^{t+1} = \underset{\theta}{\operatorname{arg max}} F(q^{t+1}, \theta^t)$



How EM optimize ILL?



E-step: maximization of w.r.t. q

Claim:

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t}) = p(z \mid x, \theta^{t})$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform clustering).
- Proof (easy): this setting attains the bound of ILL

$$F(p(z|x,\theta^t),\theta^t) = \sum_{z} p(z|x,\theta^t) \log \frac{p(x,z|\theta^t)}{p(z|x,\theta^t)}$$
$$= \sum_{z} p(z|x,\theta^t) \log p(x|\theta^t)$$
$$= \log p(x|\theta^t) = \ell(\theta^t;x)$$

 Can also show this result using variational calculus or the fact that

$$\ell(\theta; \mathbf{X}) - F(\mathbf{q}, \theta) = \mathrm{KL}(\mathbf{q} \parallel \mathbf{p}(\mathbf{z} \mid \mathbf{X}, \theta))$$

E-step: Alternative derivation

$$\begin{array}{ll}
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} \\
\mathcal{L} & \mathcal{L} &$$

M-step: maximization w.r.t. \theta

 Note that the free energy breaks into two terms:

$$F(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$= \sum_{z} q(z \mid x) \log p(x,z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \langle \ell_{c}(\theta; x, z) \rangle_{q} + H_{q}$$

$$= \langle \ell_{c}(\theta; x, z) \rangle_{q} + Q \text{ which } \gamma_{e}$$

 The first term is the expected complete log likelihood (energy) and the second term, which does not depend on q, is the entropy.

M-step: maximization w.r.t. \theta

 Thus, in the M-step, maximizing with respect to q for fixed q we only need to consider the first term:

$$\mathcal{E}(\mathcal{L})$$

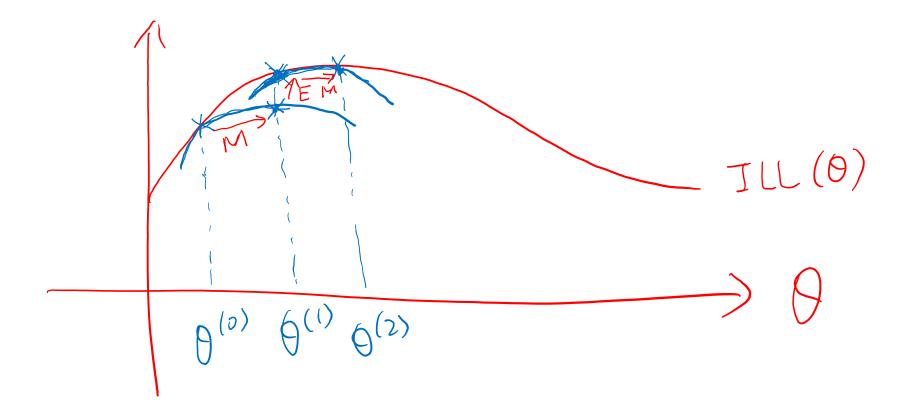
$$\theta^{t+1} = \arg \max_{\theta} \left\langle \ell_c(\theta; \mathbf{X}, \mathbf{Z}) \right\rangle_{q^{t+1}} = \arg \max_{\theta} \sum_{\mathbf{Z}} q(\mathbf{Z} \mid \mathbf{X}) \log p(\mathbf{X}, \mathbf{Z} \mid \theta)$$

- Under optimal q^{t+1} , this is equivalent to solving a standard MLE of fully observed model p(x,z|q), with the sufficient statistics involving z replaced by their expectations w.r.t. p(z|x,q).

Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models.
 Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - E-step: - M-step: $q^{t+1} = \arg \max_{q} F(q, \theta^{t})$ $\theta^{t+1} = \arg \max_{\theta} F(q^{t+1}, \theta^{t})$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

How EM optimize ILL?



A Report Card for EM

- Some good things about EM:
 - no learning rate (step-size) parameter
 - automatically enforces parameter constraints
 - very fast for low dimensions
 - each iteration guaranteed to improve likelihood
 - Calls inference and fully observed learning as subroutines.
- Some bad things about EM:
 - can get stuck in local minima
 - can be slower than conjugate gradient (especially near convergence)
 - requires expensive inference step $\Rightarrow \mathcal{P}(\mathcal{Z}|\mathcal{X},\theta)$
 - is a maximum likelihood/MAP method

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- The EM Algorithm and Extensions by Geoffrey
 J. MacLauchlan, Thriyambakam Krishnan