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Course Content Plan è Regarding 
Tasks

q Regression (supervised)

q Learning theory

q Classification (supervised)

q Unsupervised models

q Graphical models 

q Reinforcement Learning 
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Y is a continuous

Y is a discrete

NO Y 

About f()

About interactions among Y,X1,. Xp

Learn to Interact with environment



Course Content Plan è Regarding Data

q Tabular / Matrix 

q 2D Grid Structured: Imaging 

q 1D Sequential Structured: Text 

q Graph Structured (Relational)

q Set Structured / 3D / 
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An unlabeled 
Dataset X 

• Data/points/instances/examples/samples/records: [ rows ]
• Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns] 
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a data matrix of n observations on p
variables x1,x2,…xp

Unsupervised learning = learning from raw (unlabeled, 
unannotated, etc) data, as opposed to supervised data 
where a classification label of examples is given
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• Find groups (clusters) of data points such that data points in a 
group will be similar (or related) to one another and different from 
(or unrelated to) the data points in other groups

What is clustering?

Inter-cluster 
distances are 

maximized
Intra-cluster 
distances are 

minimized
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Roadmap: clustering

§ Definition of "groupness”
§ Definition of "similarity/distance"
§ Representation for objects
§ How many clusters?
§ Clustering Algorithms

§ Partitional algorithms
§ Hierarchical algorithms

§ Formal foundation and convergence
6
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Clustering Algorithms

• Partitional algorithms
– Usually start with a random 

(partial) partitioning
– Refine it iteratively

• K means clustering
• Mixture-Model based clustering

• Hierarchical algorithms
– Bottom-up, agglomerative
– Top-down, divisive
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(2) Partitional Clustering

• Nonhierarchical
• Construct a partition of n objects into a set of K 

clusters
• User has to specify the desired number of 

clusters K.
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Partitional clustering (e.g. K=3)

Original points Partitional clustering
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Partitional clustering (e.g. K=3)

$$$
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Clustering Algorithms

• Partitional algorithms
– Usually start with a random 

(partial) partitioning
– Refine it iteratively
• K means clustering
• Mixture-Model based clustering
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Partitioning Algorithms

• Given: a set of objects and the number K

• Find: a partition of K clusters that optimizes a 
chosen partitioning criterion
– Globally optimal: exhaustively enumerate all 

partitions
– Effective heuristic methods: K-means and K-

medoids algorithms
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K-Means

Algorithm
1. Decide on a value for k.
2. Initialize the k cluster centers randomly if necessary.
3. Decide the class memberships of the N objects by assigning them to the 

nearest cluster centroids (aka the center of gravity or mean)

4. Re-estimate the k cluster centers, by assuming the memberships found 
above are correct.

5. If none of the N objects changed membership in the last iteration, exit. 
Otherwise go to 3.
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K-means Clustering: Step 1 -
random guess of cluster centers
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K-means Clustering: Step 1 -
random guess of cluster centers
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K-means Clustering: Step 1 -
random guess of cluster centers
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K-means Clustering: Step 1 -
random guess of cluster centers
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K-means Clustering: Step 2
- Determine the membership of each data points
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K-means Clustering: Step 3 
- Adjust the cluster centers 
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K-means Clustering: Step 4 
- redetermine membership

Blue 
cluster 
gets 
more 
points
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K-means Clustering: Step 5 
- readjust cluster centers



10/21/20

Dr. Yanjun Qi / UVA CS 

22

K-means Clustering: Step 5 
- readjust cluster centers
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How K-means partitions?

For each set of K centroids (when 
fixed), 

they partition the whole data 
space into K  mutually exclusive 
subspaces to form a partition.

Changing positions of K centroids 
leads to a new partitioning. 

10/21/20
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K-means: another Demo

• K-means
– Start with a random 

guess of cluster 
centers

– Determine the 
membership of each 
data points

– Adjust the cluster 
centers 
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K-means: another Demo
1. User set up the number of 

clusters they’d like. (e.g. k=5) 

10/21/20
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K-means: another Demo
1. User set up the number of 

clusters they’d like. (e.g. K=5)

2. Randomly guess K cluster Center 
locations

10/21/20
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K-means: another Demo
1. User set up the number of 

clusters they’d like. (e.g. K=5)

2. Randomly guess K cluster Center 
locations

3. Each data point finds out which 
Center it’s closest to. (Thus each 
Center “owns” a set of data 
points)

10/21/20
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K-means: another Demo
1. User set up the number of 

clusters they’d like. (e.g. K=5)

2. Randomly guess K cluster centre
locations

3. Each data point finds out which 
centre it’s closest to. (Thus each 
Center “owns” a set of data 
points)

4. Each centre finds the centroid of 
the points it owns

10/21/20

Dr. Yanjun Qi / UVA CS 



29

K-means: another Demo
1. User set up the number of 

clusters they’d like. (e.g. K=5)

2. Randomly guess K cluster centre
locations

3. Each data point finds out which 
centre it’s closest to. (Thus each 
centre “owns” a set of data 
points)

4. Each centre finds the centroid of 
the points it owns

5. …and jumps there

10/21/20
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K-means: another Demo
1. User set up the number of 

clusters they’d like. (e.g. K=5)

2. Randomly guess K cluster centre
locations

3. Each data point finds out which 
centre it’s closest to. (Thus each 
centre “owns” a set of data 
points)

4. Each centre finds the centroid of 
the points it owns

5. …and jumps there

6. …Repeat until terminated!

10/21/20
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K-means
1. Ask user how many clusters 

they’d like. (e.g. k=5) 

2. Randomly guess k cluster 
Center locations

3. Each datapoint finds out which 
Center it’s closest to.

4. Each Center finds the centroid 
of the points it owns

Any Computational Problem?
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K-means
1. Ask user how many clusters 

they’d like. (e.g. k=5) 

2. Randomly guess k cluster 
Center locations

3. Each datapoint finds out which 
Center it’s closest to.

4. Each Center finds the centroid 
of the points it owns

Any Computational Problem?
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Thank you
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Thank You
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Time Complexity

• Computing distance between two objs is O(p) where p
is the dimensionality of the vectors.

• Reassigning clusters: O(Knp) distance computations, 

• Computing centroids: Each obj gets added once to 
some centroid: O(np).

• Assume these two steps are each done once for l 
iterations: O(lKnp).

Dr. Yanjun Qi / UVA CS 

vs. Hierarchical 
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Time Complexity

• Computing distance between two objs is O(p) where p
is the dimensionality of the vectors.

• Reassigning clusters: O(Knp) distance computations, 

• Computing centroids: Each obj gets added once to 
some centroid: O(np).

• Assume these two steps are each done once for l 
iterations: O(lKnp).
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Vs. Hierarchical Clustering 
Time Complexity

• Computing distance between two objs is O(p) 
where p is the dimensionality of the vectors.

• (Re-) calculating pairwise dist matrix: O( ) 
distance computations, 

• Computing current best cluster :

Dr. Yanjun Qi / UVA CS 

A total of n−1 merging 
iterations
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Vs. Hierarchical Clustering Cost analysis
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A total of n−1 merging iterations
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Roadmap: clustering

§ Definition of "groupness”
§ Definition of "similarity/distance"
§ Representation for objects
§ How many clusters?
§ Clustering Algorithms

§ Partitional algorithms
§ Hierarchical algorithms

§ Formal foundation and convergence
39
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• Find groups (clusters) of data points such that data points in a 
group will be similar (or related) to one another and different from 
(or unrelated to) the data points in other groups

How to Find good Clustering?

Inter-cluster 
distances are 

maximized
Intra-cluster 
distances are 

minimized
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How to Find good Clustering? E.g. 

• Minimize the sum of 
distance within clusters

C1

C2

C3

C4
C5

   

argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑

   

mi, j =
1 !

xi  ∈ the j-th cluster

0 !
xi  ∉ the j-th cluster

⎧
⎨
⎪

⎩⎪

mi, j
j=1

K=5

∑ = 1

→ any !xi ∈ a single cluster
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K=5

∑



Iterative Optimization

   

argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑

{ } { },Memberships  and centers  are correlated.i j jm C

   

 Given memberships mi, j{ },  
!
C j =

mi, j
!
xi

i=1

n

∑

mi, j
i=1

n

∑
 

   

 Given centers {
!
C j},  mi, j =

1 j = argmin
k

(
!
xi −
!
C j )

2

0 otherwise

⎧
⎨
⎪

⎩⎪
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Convergence

• Why should the K-means algorithm ever reach a fixed point? 
– A state in which clusters don’t change.

• K-means is a special case of a general procedure known as the 
Expectation Maximization (EM) algorithm.
– EM is known to converge.
– Number of iterations could be large.

• Optimize the goodness measure (i.e., minimize the Loss function) 
– sum of squared distances from cluster centroid:

• Reassignment monotonically decreases the goodness measure 
since each vector is assigned to the closest centroid.

Dr. Yanjun Qi / UVA CS 
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Convergence

• Why should the K-means algorithm ever reach a fixed point? 
– A state in which clusters don’t change.

• K-means is a special case of a general procedure known as the 
Expectation Maximization (EM) algorithm.
– EM is known to converge.
– Number of iterations could be large.

• Optimize the goodness measure (i.e., minimize the Loss function) 
– sum of squared distances from cluster centroid:

• Reassignment monotonically decreases the goodness measure 
since each vector is assigned to the closest centroid.

Dr. Yanjun Qi / UVA CS 



10/21/20

Dr. Yanjun Qi / UVA CS 

46

Convergence Property of EM/Kmeans
(EXTRA)

https://stats.stackexchange.com/questions/303448/rate-of-convergence-of-em-algorithm
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Seed Choice
• Results can vary based on random seed selection.

• Some seeds can result in poor convergence rate, or convergence to 
sub-optimal clustering.
– Select good seeds using a heuristic (e.g., sample least similar to any 

existing mean)
– Try out multiple starting points (very important!!!)
– Initialize with the results of another method.
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K-means Clustering 

Clustering

Mixture of spherical 
shapes

Sum-of-square distance 
to centroid

K-means algorithm

Cluster 
membership & 

centroid

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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Roadmap: clustering

§ Definition of "groupness”
§ Definition of "similarity/distance"
§ Representation for objects
§ How many clusters?
§ Clustering Algorithms

§ Partitional algorithms
§ Hierarchical algorithms

§ Formal foundation and convergence
49
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10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

How can we tell the right number of clusters?

In general, this is a unsolved problem.  However there exist many approximate methods. 
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1 2 3 4 5 6 7 8 9 10

When k = 1, the objective function is 873.0
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑



1 2 3 4 5 6 7 8 9 10

When k = 2, the objective function is 173.1
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑



1 2 3 4 5 6 7 8 9 10

When k = 3, the objective function is 133.6
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑
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We can plot the objective function values for k equals 1 to 6…

The abrupt change at k = 2, is highly suggestive of two clusters in the data. This 
technique for determining the number of clusters is known as “knee finding” or 
“elbow finding”.

Note that the results are not always as clear cut as in this toy example

k

O
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tiv

e 
Fu
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tio

n
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What Is A Good Clustering?
• Internal criterion: A good clustering will produce high quality 

clusters in which:
– the intra-cluster similarity is high
– the inter-cluster similarity is low
– The measured quality of a clustering depends on both the data 

representation and the similarity measure used

• External criteria for clustering quality
– Quality measured by its ability to discover some or all of the 

hidden patterns or latent classes in gold standard data
– Assesses a clustering with respect to ground truth
– Example:

• Purity
• entropy of classes in clusters (or mutual information between classes 

and clusters)
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External Evaluation of Cluster Quality, 
e.g. using purity 

• Simple measure: purity, the ratio between the dominant class in the 
cluster and the size of cluster
– Assume data samples with C gold standard classes/groups, while the 

clustering algorithms produce K clusters, ω1, ω2, …, ωK with ni members.

– Example

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6
Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6
Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Dr. Yanjun Qi / UVA CS 



K-means Clustering 

Clustering

Mixture of spherical 
shapes

Sum-of-square distance 
to centroid

K-means algorithm

Cluster 
membership & 

centroid

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

10/21/20 57

Dr. Yanjun Qi / UVA CS 

Data Tabular 



Thank you
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EXTRA 
More See L25 Extra GMM slides 

10/21/20
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More Partitional : Gaussian Mixture 
Model 

• 1. Review of Gaussian Distribution 
• 2. GMM for clustering : basic algorithm
• 3. GMM connecting to K-means
• 4. Problems of GMM and K-means  

10/21/20
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A Gaussian Mixture Model for Clustering

• Assume that data are 
generated from a mixture of 
Gaussian distributions

• For each Gaussian distribution
– Center: j

– covariance:      j

• For each data point
– Determine membership 

:  if  belongs to j-th clusterij iz x

10/21/20 61
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Expectation-Maximization 
for training  GMM

• Start: 
– "Guess" the centroid and covariance for each of the K 

clusters 
– “Guess” the proportion of clusters, e.g., uniform prob 1/K

• Loop
– For each point, revising its proportions belonging to each 

of the K clusters 
– For each cluster, revising both the mean (centroid

position) and covariance (shape) 
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each cluster, revising both the mean (centroid position) and covariance (shape) 



Another 
Gaussian Mixture Example: Start
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Another GMM Example: 
After First Iteration
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For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 

For each point, revising its proportions belonging to each of the K clusters 



Another GMM Example: 
After 2nd Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



After 3rd Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



After 4th Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



After 5th Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



After 6th Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



Another GMM Example: 
After 20th Iteration
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For each point, revising its proportions belonging to each of the K clusters 

For each cluster, revising its mean (centroid position), covariance (shape) 
and proportion in the mixture 



Application : 
GMMs for speaker recognition

• A Gaussian mixture model 
(GMM) represents as the 
weighted sum of multiple 
Gaussian distributions

• Each Gaussian state i has a
– Mean 
– Covariance
– Weight

Dr. Yanjun Qi / UVA CS 

Dim 1Dim 2

 Model j

   p(x | j)

 µ j

 Σ j

  wj ≡ p(µ = µ j )



Recognition Systems
Gaussian Mixture Models
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Parameters  µ j

 Σ j

 wj

Dim 1Dim 2

( )p x
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Recognition Systems
Gaussian Mixture Models

Dr. Yanjun Qi / UVA CS 

Model Components

Parameters

Dim 1Dim 2

( )p x
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  j = 1,..., K
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Recap: Expectation-Maximization for 
training  GMM

• Start: 
– "Guess" the centroid and covariance for each of the K 

clusters 
– “Guess” the proportion of clusters, e.g., uniform prob 1/K

• Loop
– For each point, revising its proportions belonging to each 

of the K clusters 
– For each cluster, revising both the mean (centroid

position) and covariance (shape) 

Dr. Yanjun Qi / UVA CS 

More details See L19c 
GMM and L19d EM



(3) GMM Clustering 

Clustering

Likelihood 

EM algorithm

Each point’s soft 
membership & mean / 
covariance per cluster 

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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Mixture of Gaussian
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log p(x = xi )
i=1

n

∏
i
∑ = log p(µ = µ j )

1

2π( ) Σ j

1/2
e
−1

2
!
x−
!
µ j( )T Σ j

−1 !x−
!
µ j( )

µ j

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥i

∑

Data Tabular 
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