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Background: Pretraining for three types of architectures
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Decoders

Nice to generate from; can’t condition on future words
Examples: GPT-2, GPT-3, LaMDA

Gets bidirectional context — can condition on future!
Wait, how do we pretrain them?
Examples: BERT and its many variants, e.g. ROBERTa

Good parts of decoders and encoders?
What’s the best way to pretrain them?
Examples: T5, Meena



Trends

 To Complex tasks

e E.g., slides from an outline, summarizing and reporting information from diverse
sources

* Integrating into physical devices
* E.g., Robots

 Multimodal and broadly
e Use vision, language, audio, and broader knowledge, as input or outputs

e Complex learning systems
* Integrate predictive/generative
* |Integrate retrieval of private memories or data
* Integrate with planning, task decomposition, and prioritization



Transformer Models

Transformers are efficient, multi-
modal data processors
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GPT1 - Improving Language Understanding by Generative
Pre-Training (Radford et al. 2018)

Text Task L. .
Prediction | Classifier Classification Start Text Extract }‘ Transformer = Linear
e S
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» Pre-training: Maximize data likelihood as a product of conditional probabilities, trained on Books Corpus
* Predict each token based on the k tokens (the “context”) that came before



GPT-2 (Radford et al. 2019) - Language Models are
Unsupervised Multitask Learners

* A general systems learn to model P (output|input, task)
 task can be specified in natural language
* Aims to general purpose language learner

“Current systems are better characterized as narrow experts rather than competent generalists. We
would like to move towards more general systems which can perform many tasks — eventually without
the need to manually create and label a training dataset for each one.

“Our suspicion is that the prevalence of single task training on single domain datasets is a major
contributor to the lack of generalization observed in current systems. Progress towards robust systems
with current architectures is likely to require training and measuring performance on a wide range of
domains and tasks.”



GPT-2 Architecture and Model Sizes

e Architecture similar as GPT-1 and BERT

Parameters Layers  d,odel

117M 12 768 GPT-1 Size
345M 24 1024 BERT Size
762M 36 1280 GPT-2 Size
1542M 43 1600

 GPT-2 is generatively trained on WebText data and not fine-tuned
oh anything else

— 8 million documents (40GB text)



GPT-2: Zero shot Excellent Performance

Perplexity (PPL); lower is better

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiText103 1BW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)
SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 834 29.41 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

 SOTA in many tasks

without tuning for them

“The diversity of tasks the model is able to perform in a
zero-shot setting suggests that high-capacity models
trained to maximize the likelihood of a sufficiently varied
text corpus begin to learn how to perform a surprising
number of tasks without the need for explicit supervision.”



GPT-3 (Brown et al. 2020)

Language Models are Few-Shot Learners

Tom B. Brown"* Benjamin Mann” Nick Ryder” Melanie Subbiah®
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry
Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
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Models and Architectures

Model Name Mparams  Mayers  @model  Mheads Ohead Batch Size  Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 10~
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 10~
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 10~
GPT-3 2.7B 2.7B 32 2560 32 80 1M 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 104
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 104
GPT-3 175B or “GPT-3" 175.0B 96 12288 06 128 3.2M 0.6 x 10~

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.



Training
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Dataset (tokens)  training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebTexit2 19 billion 229 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 3.4
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Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMHT20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoOBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
Total Compute Used During Training

Rough compute
price to train GPT-
3 175B: ~$4.5M



The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
J
%
peppermint => menthe poivrée example #2
J
v
%
plush giraffe => girafe peluche example #N
cheese => prompt

Few-shot “In
Context Learning”

Larger GPT models trained on
even more data are good at many
tasks, especially text generation,
and can be “trained” at inference
time with in-context examples



SuperGLUE Performance In-Context Learning on SuperGLUE
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Figure 3.8: Performance on SuperGLUE increases with model size and number of examples in context. A value
of K = 32 means that our model was shown 32 examples per task, for 256 examples total divided across the 8 tasks in
SuperGLUE. We report GPT-3 values on the dev set, so our numbers are not directly comparable to the dotted reference

lines (our test set results are in Table 3.8). The BERT-Large reference model was fine-tuned on the SuperGLUE training



On the Opportunities and Risks of
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Fig. 2. A foundation model can centralize the information from all the data from various modalities. This
one model can then be adapted to a wide range of downstream tasks.



[Submitted on 15 Jun 2022] last revised 26 Oct 2022 (this version, v2)]

Emergent Abilities of Large Language Models

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, William Fedus

Scaling up language models has been shown to predictably improve performance and sample efficiency on
a wide range of downstream tasks. This paper instead discusses an unpredictable phenomenon that we
refer to as emergent abilities of large language models. We consider an ability to be emergent if it is not
present in smaller models but is present in larger models. Thus, emergent abilities cannot be predicted
simply by extrapolating the performance of smaller models. The existence of such emergence implies that
additional scaling could further expand the range of capabilities of language models.

Published in Transactions on Machine Learning Research (08/2022)
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AN ABILITY IS EMERGENT IF IT IS NOT PRESENT
IN SMALLER MODELS BUT IS PRESENT IN LARGER
MODELS.

4 )

gualitative change is also known as a phase
transition—a dramatic change in overall behavior that
would not have been foreseen by examining smaller-
scale systems (Huberman & Hogg, 1987).
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Table 2: Parameters, training examples, and training FLOPs of large language models.

Model Parameters Train tokens Train FLOPs
GPT-3 125M 300B 2.25E+20
350M 3008 6.41E+20

7T60M 300B 1.37E+21

1.3B 300B 2.38E+21

2.7B 300B 4.7T7TE+21

6.7B 300B 1.20E+22

13B 300B 2.31E+22

1758 300B 3.14E+23

LaMDA 2.1M 2628 3.30E+18
17TM 313B 3.16E+19

57TM 2628 8.90E+19

134M 170B 1.37E+20

262M 2648 4.16E+20

453M 150B 4.08E+20

1.1B 142B 9.11E+20

2.1B 137B 1.72E+421

3.6B 136B 2.96E+21

8.6B 132B 6.78E+21

20B 132B 2.30E4-22

698 2928 1.20E+23

137B 6748 5.54E+23

Gopher 417TM 300B 7.51E+20
1.4B 300B 2.52E+21

7.1B 300B 1.28E+22

2808 325B 5.46E+23

Chinchilla 417TM 314B 7.86E+20
1.4B 314B 2.63E+21

7.1B [sic] 199B 8.4TE+21

70B 1.34T 5.63E+423

PaLM 8B 7808 3.74E+22
628 7808 2.90E+23

540B 7808 2.53E+24

Anthropic LM 800M 850B 4.08E+21
3B 8508 1.53E+22

12B 850B 6.12E+22

52B 850B 2.656E+22




One example of few-shot promoting
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Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models that used more training compute also typically have more parameters—hence, we show an
analogous figure with number of model parameters instead of training FLOPs as the z-axis in Figure 11.
A-D: BIG-Bench (2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G:
Hendrycks et al. (2021a), Rae et al. (2021), and Hoffmann et al. (2022). H: Brown et al. (2020), Hoffmann
et al. (2022), and Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).



Few Shot Prompting tasks

* BIG-Bench. Selecting four emergent few-shot prompted tasks from BIG-Bench, a crowd-sourced suite of over
200 benchmarks for language model evaluation (BIG-Bench, 2022).

* TruthfulQA. This benchmark is adversarially curated against GPT-3 models, which do not perform above random,
even when scaled to the largest model size.

* Grounded conceptual mappings. language models must learn to map a conceptual domain, such as a cardinal
direction, represented in a textual grid world (Patel & Pavlick, 2022)., performance only jumps to above random
using the largest GPT-3 model.

* Multi-task language understanding. Figure 2G shows the Massive Multi-task Language Understanding (MMLU)
benchmark, which aggregates 57 tests covering a range of topics including math, history, law, and more
(Hendrycks et al., 2021a).

 Word in Context. Finally, Figure 2H shows the Word in Context (WiC) benchmark (Pilehvar & Camacho- Collados,
2019), which is a semantic understanding benchmark.
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Figure 11: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models with more parameters also typically use more training compute—hence, we show an analogous
figure with training FLOPs instead of number of model parameters as the z-axis in Figure 2. A-D: BIG-Bench
(2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G: Hendrycks et al.
(2021a), Rae et al. (2021), and Hoffmann et al. (2022). H: Brown et al. (2020), Hoffmann et al. (2022), and
Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).
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Figure 4: Top row: the relationships between training FLOPs, model parameters, and perplexity (ppl) on
WikiText103 (Merity et al., 2016) for Chinchilla and Gopher. Bottom row: Overall performance on the
massively multi-task language understanding benchmark (MMLU; Hendrycks et al., 2021a) as a function of
training FLOPs, model parameters, and WikiText103 perplexity.
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What about other metrics

(A) Mod. arithmetic (B) IPA transliterate (C) Periodic elements
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Figure 7: Multiple evaluation metrics for emergent BIG-Bench tasks that are generative in nature. For all
three tasks, emergent behavior is apparent for all evaluation metrics.



Augmented prompting strategies

prompting and finetuning strategies to further augment the abilities of language models.

Multi-step reasoning. Reasoning tasks, especially those involving multiple steps, have been challenging for language
models and NLP models more broadly (Rae et al., 2021; Bommasani et al., 2021; Nye et al., 2021). A recent prompting
strategy called chain-of-thought prompting enables language models to solve such problems by guiding them to
produce a sequence of intermediate steps before giving the final answer (Cobbe et al., 2021; Wei et al., 2022b; Suzgun
et al., 2022).

Instruction following. Another growing line of work aims to better enable language models to perform new tasks
simply by reading instructions describing the task (without few-shot exemplars). By finetuning on a mixture of tasks
phrased as instructions, language models have been shown to respond appropriately to instructions describing an
unseen task (Ouyang et al., 2022; Wei et al., 2022a; Sanh et al., 2022; Chung et al., 2022).

Program execution. Consider computational tasks involving multiple steps, such as adding large numbers or executing
computer programs. Nye et al. (2021) show that finetuning language models to predict intermediate outputs
(“scratchpad”) enables them to successfully execute such multi-step computations.

Model calibration. Finally, an important direction for deployment of language models studies is calibration, which
measures whether models can predict which questions they will be able to answer correctly. Kadavath et al. (2022)
compared two ways of measuring calibration: a True/False technique, where models first propose answers and then
evaluate the probability “P(True)” that their answers are correct, and more-standard methods of calibration, which use
the probability of the correct answer compared with other answer options.
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Figure 3: Specialized prompting or finetuning methods can be emergent in that they do not have a positive
effect until a certain model scale. A: Wei et al. (2022b). B: Wei et al. (2022a). C: Nye et al. (2021). D:
Kadavath et al. (2022). An analogous figure with number of parameters on the z-axis instead of training
FLOPs is given in Figure 12. The model shown in A-C is LaMDA (Thoppilan et al., 2022), and the model

shown in D is from Anthropic.
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Figure 12: Specialized prompting or finetuning methods can be emergent in that they do not have a positive
effect until a certain model scale. A: Wei et al. (2022b). B: Wei et al. (2022a). C: Nye et al. (2021). D:

Kadavath et al. (2022). The model shown in A-C is LaMDA (Thoppilan et al., 2022), and the model shown
in D is from Anthropic.



Table 1: List of emergent abilities of large language models and the scale (both training FLOPs and number
of model parameters) at which the abilities emerge.

Emergent scale

Train. FLOPs Params. Model  Reference
Few-shot prompting abilities
e Addition/subtraction (3 digit) 2.3E+422 13B GPT-3  Brown et al. (2020)
e Addition/subtraction (4-5 digit) 3.1E+23 175B
e MMLU Benchmark (57 topic avg.) 3.1E+23 175B GPT-3  Hendrycks et al. (2021a)
¢ Toxicity classification (CivilComments) 1.3E+22 7.1B Gopher Rae et al. (2021)
e Truthfulness (Truthful QA) 5.0E+423 280B
e MMLU Benchmark (26 topics) 5.0E+4-23 280B
¢ Grounded conceptual mappings 3.1E+23 175B GPT-3  Patel & Pavlick (2022)
e MMLU Benchmark (30 topics) 5.0E+423 70B  Chinchilla Hoffmann et al. (2022)
¢ Word in Context (WiC) benchmark 2.5E+24 540B PaLM  Chowdhery et al. (2022)
e Many BIG-Bench tasks (see Appendix E) Many Many Many BIG-Bench (2022)
Augmented prompting abilities
e Instruction following (finetuning) 1.3E+23 68B FLAN  Wei et al. (2022a)
¢ Scratchpad: 8-digit addition (finetuning) 8.9E+4+19 40M LaMDA Nye et al. (2021)
¢ Using open-book knowledge for fact checking 1.3E+422 7K 5 Gopher Rae et al. (2021)
e Chain-of-thought: Math word problems 1.3E+23 68B LaMDA  Wei et al. (2022b)
e Chain-of-thought: StrategyQA 2.9E+23 62B PaLM  Chowdhery et al. (2022)
¢ Differentiable search index 3.3E+22 1B T5 Tay et al. (2022b)
¢ Self-consistency decoding 1.3E+23 68B LaMDA  Wang et al. (2022b)
e Leveraging explanations in prompting 5.0E+23 280B Gopher Lampinen et al. (2022)
e Least-to-most prompting 3.1E+23 175B GPT-3  Zhou et al. (2022)
e Zero-shot chain-of-thought reasoning 3.1E+23 175B GPT-3 Kojima et al. (2022)
e Calibration via P(True) 2.6E+23 52B  Anthropic Kadavath et al. (2022)
e Multilingual chain-of-thought reasoning 2.9E+23 62B PaLM  Shi et al. (2022)
e Ask me anything prompting 1.4E4-22 6B EleutherAl Arora et al. (2022)




Why Elbow shape / emergent pattern?

* 1. For certain tasks, there may be natural intuitions for why
emergence requires a model larger than a particular threshold
scale. For instance, if a multi-step reasoning task requires | steps of
sequential computation, this might require a model with a depth of
at least O (I) layers

e 2. more parameters and more training enable better memorization
that could be helpful for tasks requiring world knowledge.4 As an
example, good performance on closed-book question-answering
may require a model with enough parameters to capture the
compressed knowledge base itself (though language model-based
compressors can have higher compression ratios than conventional
compressors (Bellard, 2021))
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Figure 13: On some benchmarks, task-general models (not explicitly trained to perform a task) surpass prior
state-of-the-art performance held by a task-specific model. A & B: Brown et al. (2020). C: Chowdhery et al.
(2022). D: Alayrac et al. (2022).



https://github.com/google/BIG-bench/blob/main/bigbench/benchmark tasks/keywords to tasks.md#big-bench-lite

Numb
Keyword umber Description
of tasks
traditional NLP tasks

contextual question- 22 identifying the meaning of a particular word/sentence in a passage

The Beyond the Imitation answering
- context-free question
Game Benchmark ( BIG-ben Ch) answeringx Questi 24 responses rely on model's knowledge base, but not on context provided during query time
is a collaborative benchmark
. reading 36 a superset of contextual question-answering, measuring the degree to which a model
| nte n d Ed tO p ro be Ia rge comprehension understands the content of a text block
la Nnguage m odels and conversational : a superset of reading comprehension, measuring the degree to which a model understands
. question answering the content of a text block and a conversation
extrapolate their future
cpey . summarization 8 involves summarizing a block of text
capabilities. The more than
. . paraphrase 14 express the same meaning using different words
200 tasks included in BIG- —— —
. text simplification 1 express the same meaning using simpler vocabulary
bench are summarized by ord once
. . . 1 identifying the meaning of a word based upon the context it appears
keyword here, and by task disambiguation
f

name m A pa pe r core erence %3 finding all expressions that refer to the same entity in a text
. . resolution
introducing the benchmark,
. . . question generation 2 tests model's ability to generate useful and sensible questions
including evaluation results on )

narrative

H . 7 tests model's ability to understand language beyond surface level reasonin
large language models, is understanding ! gregEne °
curre ntly in prepa ration. dialogue system : measures model's ?bility to perform language understanding or generation on a user-to-
machine conversation

memorization 5 tasks that require memorization of data from the pre-training set.

morphology 1 tests model's ability to solve challenges related to segmentation and construction of words

translation 10 the task involves translating between languages

writing style 2 measures model's ability to examine a text's writing style rather than its semantic meaning

tests model's ability to handle particular grammatical phenomena in the input or in the
grammar 2 L


https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/README.md

50 Figure 8: Proportion of emergent tasks for keywords in BIG-Bench (each task
can be associated with multiple keywords). We only included keywords with at
45 least five tasks. Smoothly increasing: performance improved predictably as
A0 model scale increased. Emergent with LaMDA/GPT: performance was near-
random until used with LaMDA 137B or GPT-3 175B. Emergent with PaLM:
35 performance was near-random for all previous models, until using a PaLM
I model (8B, 62B, or 540B). Flat: no model performs better than random.
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logic, math, code
algorithms
logical reasoning
implicit reasoning
mathematics
arithmetic
algebra
mathematical proof
decomposition
fallacy
negation
computer code
semantic parsing

probabilistic
reasoning

59

12

28

22

measures the ability of a model to execute algorithms

measures the ability of a model to reason about its inputs (eg, solve a word problem)
measures model's ability to infer implicit reasoning paths

measures model's ability to perform mathematics of any type (see sub-types below)
measures model's ability to perform arithmetic

measures model's ability to perform algebra

measures model's ability to derive or understand a mathematical proof

tests model's ability to break problems down into simpler subproblems

measure's model's ability to distinguish correct from fallacious reasoning

measure's model's ability to understand negation

the task involves inputs or outputs that are computer code

measure's model's ability to parse semantics of natural-language utterances

the task involves probing the model’s ability to reason in the face of uncertainty



understanding the world

causal reasoning

consistent identity

physical reasoning

common sense

visual reasoning

understanding humans
theory of mind

emotional
understanding

social reasoning
gender prediction
intent recognition
humor

figurative language

17

48

14

10

16

19

measures ability to reason about cause and effect

tests model's ability to apply consistent attributes to objects or agents during extended text
generation

measures the ability of a model to reason about its inputs using basic physics intuition of how
objects interact

measures ability to make judgements that humans would consider “common sense”

measures model's ability to solve problems that a human would be likely to solve by visual
reasoning

tests whether model demonstrates a theory of mind

tests model's ability to identify or understand human emotion

tests model's ability to interpret or reason about human social interactions

predicts the implicit gender information when prompted with gender-specific terms or Names
predicts the intent of a user utterance

measures the model's ability to recognize humor in text

tasks that measure model's ability to work with figurative language (e.g. metaphors, sarcasm).



scientific and technical
understanding

biology
chemistry
physics
medicine

domain specific

mechanics of interaction
with model

self play

self evaluation

multiple choice

free response

game play

repeated interaction

non-language

numerical response

148

84

10

10

16

19

measure's model's ability to understand biological properties
knowledge of chemistry is useful for solving these tasks
knowledge of physics is useful for solving these tasks

tests model's ability to perform tasks related to medicine

test the ability to understand domain-specific knowledge

involves multiple copies of the model interacting with each other
involves using the model's own judgment of its performance to score it

involves multiple choice responses, or assigning log probabilities to a list of specific allowed
outputs. This includes programmatic as well as json tasks.

involves the model generating unconstrained textual responses (each model interaction will be
either multiple choice or free response , but a task caninvolve many interactions of both

types)
the task corresponds to a human game

the task involves repeated interaction with the language model, rather than production of a
single shot output

the task involves inputs or outputs that are not language or numbers (e.g., interpreting or
generating ascii art images, or reading DNA sequences)

the model's response should consist of numeric diaits



targeting common
language model
technical limitations

context length 13 measures ability to handle long context
Tt 12 measures ability to perform a task that requires the model to internally perform many
& sequential steps before outputing a token
out of distribution 16 task probes a task which is designed to be very dissimilar from the likely training corpus
instructions 2 the ability to follow natural language instructions
tokenization 3 task probes abilities potentially obfuscated by model tokenization
the task involves processing data at paragraph level, where each paragraph is coherent,
paragraph 2

semantically distinct text
pro-social behavior

measures whether model behavior matches human preferences and values that are hard to

alignment 4 - <
define or formalize
social bias measures changes in model responses depending on the social group a subject belongs to
racial bias sub-type of social bias, exploring the impact of race
gender bias sub-type of social bias, exploring the impact of gender

religious bias

sub-type of social bias, exploring the impact of religion

political bias sub-type of social bias, exploring the impact of political affiliation
o measures the model's ability to identify text as toxic (rude, profane, hateful, or disrespecting) in
oxici
2 nature, or to respond appropriately to toxic text.
— measures the model's ability to generate text that is inclusive with regard to social attributes
inclusion

such as gender or race



More on LLM



Many Large Scale PreTrained Language Model

e Basics (GPT, BERT, T5)

* PalLM
— (decoder-only trained with next-token prediction)

* BLOOM

— BLOOM is essentially similar to GPT3 (auto-regressive model for
next token prediction), but has been trained on 46 different
languages and 13 programming languages.

* Flan-PaLM / Flan-T5
* Many many new recent LLMs on huggingface: Llama, Mistral



PaLM: Scaling Language Modeling with Pathways

Aakanksha Chowdhery, et al, Erica Noah Fiedel

Large language models have been shown to achieve remarkable performance across a variety of natural language
tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to
adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning,
we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways
Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables
highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-
of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a
number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art
on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released
BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model
scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong
capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks.
We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data
memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language
models and discuss potential mitigation strategies.
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Scaling Instruction-Finetuned Language Models

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi

Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent

Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, Jason Wei

Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model
performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular
focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data.
We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model
classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU,
BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks
outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art
performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5
checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM
62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained
language models.
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Chain-of-thought prompting is highly effective but having to
write few-shot exemplars can be tedious and zero-shot CoT
doesn’t always work well. Our CoT finetuning significantly
improves zero-shot reasoning abilities, such as on
commonsense reasoning.

Text input —

Instruction =

F( Input prompt )

| see a person walking towards the
— back of the bus. The person looks as if
they are walking backwards.

| Explain why with step-by-step
reasoning.

Rationale

Final answer —

-

~

v

/-( Flan-PaLM output )

When a bus drives forward, the
person walking towards the back of
the bus will appear to be walking
backward.

— Thus, the answer is the bus drives forwar

S

~

d.

_J




Instruction
. Could Geoffrey Hinton have had a
Textinpur \conversation with George Washington?
Rationale -

Final answer —lSo the final answer is no.
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Instruction finetuning

Please answer the following question.

What is the boiling point of Nitrogen?
.

Chain-of-thought finetuning

4 )

=,

Answer the following question by

reasoning step-by-step. The cafeteria had 23 apples

originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have3+6=9. ]|}

The cafeteria had 23 apples. If they i
used 20 for lunch and bought 6 more,
how many apples do they have?

% y app Y. )

—_

Language
model

Multi-task instruction finetuning (1.8 tasks)

Inference: generalization to unseen tasks

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

Figure 1: We finetune various language models on 1.8K tasks phrased as instructions, and evaluate them on unseen tasks.
We finetune both with and without exemplars (i.e., zero-shot and few-shot) and with and without chain-of-thought,
enabling generalization across a range of evaluation scenarios.
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Question generation

Closed-book QA
Adversarial QA
Extractive QA
Title/context generation
Topic classification
Struct-to-text

55 Datasets, 14 Categories,
193 Tasks
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Natural language inference
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Program synthesis
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Closed-book QA
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Arithmetic reasoning
Commonsense Reasoning
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Explanation generation
Sentence composition
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A Dataset is an original data source (e.g. SQUAD).
A Task Category is unique task setup (e.g. the SQUAD dataset is configurable for multiple task categories such as

extractive question answering, query generation, and context generation).
< A Task is a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g.
query generation on the SQUAD dataset.)

Held-out tasks

Named entity recognition
Toxic language detection
Question answering
Question generation
Program execution

Text categorization

372 Datasets, 108 Categories,
1554 Tasks
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. pre-training Pretrain  Finetune % Finetune
Params Model . Objective FLOPs  FLOPs  Compute
80M Flan-T5-Small encoder-decoder span corruption 1.8E+20 2.9E+18 1.6%
250M  Flan-T5-Base encoder-decoder span corruption 6.6E+20 9.1E+18 1.4%
780M  Flan-T5-Large encoder-decoder span corruption 2.3E+21 24E+19 1.1%
3B Flan-T5-XL encoder-decoder span corruption 9.0E+21 5.6E+19 0.6%
11B Flan-T5-XXL encoder-decoder span corruption 3.3E+22 7.6E+19 0.2%
8B Flan-PaLM decoder-only causal LM 3.7E+22 1.6E+20 0.4%
62B Flan-PaLM decoder-only causal LM 29E+23 1.2E+21 0.4%
540B Flan-PaLM decoder-only causal LM 25E+24 5.6E+21 0.2%
62B Flan-cont-PaLM  decoder-only causal LM 48E+23 1.8E+21 0.4%
540B Flan-U-PaLM decoder-only  prefix LM + span corruption 2.5E+23 5.6E+21 0.2%

Table 2: Across several models, instruction finetuning only costs a small amount of compute relative to
pre-training. T5: Raffel et al. (2020). PaLM and cont-PaLM (also known as PaLM 62B at 1.3T tokens):
Chowdhery et al. (2022). U-PaLM: Tay et al. (2022b).
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Figure 4: Scaling behavior of multi-task instruction finetuning with respect to model size (# parameters) and
number of finetuning tasks. The z-axes are log scale. The benchmark suites are MMLU (57 tasks), BBH (23
tasks), TyDiQA (8 languages), and MGSM (10 languages). The evaluation metric on all four benchmark
suites is few-shot prompted accuracy (exact match), where we take an unweighted average over all tasks. As
an aggregate metric we report the normalized average of MMLU-direct, MMLU-CoI, BBH-direct, BBH-CoT,
TyDiQA, and MGSM. These evaluation benchmarks are held-out (not included in the finetuning data).



r—[ Model input (Disambiguation QA) ]—\ (_[ PaLM 540B output ]—\ (—[ Flan-PaLM 540B output ]—\

The square root of x is the cube root of y. What is y Q. The square root of x is the cube root of y. What is y to 64 &
to the power of 2, if x = 4? the power of 2, if x = 87

Q. The square root of x is the cube root of y. What is y to
the power of 2, if x = 127

Q. The square root of x is the cube root of y. What is y to
the power of 2, if x = 167

x (keeps asking more questions)

. AN AN J
/—[ Model input (Boolean Expressions) ]—\ r—[ PaLM 540B output ]—\ (—‘ Flan-PaLM 540B output ]—\
Make up a word that means "when two Al Make up a word that means "when two Al researchers go date-mining 0
researchers go on a date". on a date".

The day after he was hired, the new programmer wrote an
e-mail to all of his fellow programmers. It said, "l will be on
vacation next week."

The day after he was hired, the new programmer wrote an
e-mail to all of his fellow programmers. It said, "l will be on
vacation next week."

The day after [...]

x (repeats input and keep repeating generations)
. RN J . J

Figure 9: Some examples for zero-shot prompting, comparing PaLM and Flan-PaLM. PaLM struggles with
repetitions and not replying to instructions in the zero-shot setting (though these errors can be mitigated by
using few-shot exemplars).
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Abstract:Al is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models
foundation models to underscore their critically central yet incomplete character. This report provides a
thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g.,
language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures,
training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare,
education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical
considerations). Though foundation models are based on standard deep learning and transfer learning, their
scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes
homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the
foundation model are inherited by all the adapted models downstream. Despite the impending widespread
deployment of foundation models, we currently lack a clear understanding of how they work, when they fail,
and what they are even capable of due to their emergent properties. To tackle these questions, we believe

much of the critical research on foundation models will require deep interdisciplinary collaboration
commenc<tiirate with their fiindamentallv caciotechnical natiire
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Fig. 1. The story of Al has been one of increasing emergence and homogenization. With the introduction of
machine learning, how a task is performed emerges (is inferred automatically) from examples; with deep
learning, the high-level features used for prediction emerge; and with foundation models, even advanced
functionalities such as in-context learning emerge. At the same time, machine learning homogenizes learning
algorithms (e.g., logistic regression), deep learning homogenizes model architectures (e.g., Convolutional
Neural Networks), and foundation models homogenizes the model itself (e.g., GPT-3).
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For example: 2.5

 5: Interaction. Foundation models show

clear potential to transform the developer

and user experience for Al systems:

foundation models lower the difficulty

threshold for prototyping and building Al

applications due to their sample

efficiency in adaptation, and raise the Users
ceiling for novel user interaction due to

their multimodal and generative

capabilities. SN

Multimodal Interaction

/ e.g.natural language
/ instruction to media
editing

Experience

/&y
oo

User-Driven
Prototyping

Generative Applications

Feedback

POC
SE

writing & code

/ </> generation

* This provides a synergy we encourage
going forward: developers can provide Ak-Infused

applications that better fit the user’s Prototyping Applications
needs and values, while introducing far Developers
more dynamic forms of interaction and |
opportunities for feedback.

e.g. community-
o ‘ == Written content
@ moderation tools

« E.g. low-code / code-completion
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