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Intro, Background, 
Survey

Based on the paper Efficient Large 
Language Models: A Survey, 

https://arxiv.org/abs/2312.03863, 
Presented by Aidan Hesselroth 

(ash2taf)

In the modern era of AI, and 
specifically with the popularity of 

LLMs, the resource and time 
demands of models keep 

increasing, often with little regard to 
efficiency. What measures are 

being taken to improve 
performance, and how do current 

models stack up?

https://arxiv.org/abs/2312.03863


Background I
● Ever growing 

parameter counts
● Better performance on 

larger, slower models
● Some groups abandon 

efficiency for better 
accuracy/reasoning/et
c



Background II
● Obviously, there are 

some models more 
focused on efficiency 
than others

● Look at Mistral 7B, 
LLama-2-7B, and LLaMa-
1-33B



Efficiency Taxonomy
3 Categories of efficiency techniques:

1. Model-Centric Methods: research directions related to model compression, 
efficient pre-training, efficient fine-tuning, efficient inference, and efficient 
architecture design

2. Data-Centric Methods: research directions related to data selection and prompt 
engineering

3. LLM Frameworks: existing frameworks specifically designed for efficient LLMs, 
addressing their unique features, underlying libraries, and specialization



Taxonomy Diagram
● Don’t let the diagram fool you, while 

there is less variety in some, all 3 
areas are relatively ‘hot’

● Specifically focused on LARGE 
Language models, unlike previous 
surveys

● Obviously out of scope to go over in 
detail, so we’ll skim



Model Compression
“As summarized in Figure 4, model compression techniques for LLMs can be grouped 
into four categories: quantization, parameter pruning, low-rank approximation, and 
knowledge distillation”



Efficient Pre-Training
“As shown in Table 1, pre-training LLMs incurs high 
costs. Efficient pre-training aims to enhance the 
efficiency and reduce the cost of the LLM pre-training 
process. As summarized in Figure 6, efficient pre-
training techniques can be grouped into four 
categories: mixed precision acceleration, scaling 
models, initialization techniques, and optimization 
strategies”



Fine-tuning
“Efficient fine-tuning aims to enhance the efficiency of the fine-tuning process for 
LLMs. As shown in Figure 8, efficient fine-tuning methods can be grouped into 
parameter-efficient fine-tuning (PEFT), and memory- efficient fine-tuning (MEFT).



Efficient Inference
“Efficient inference 
aims to enhance the 
efficiency of the 
inference process for 
LLMs. As  summarized 
in Figure 10, efficient 
inference techniques 
can be grouped into 
techniques at the 
algorithm level and 
system level.”



Efficient Architecture
“Efficient architecture 
design for LLMs refers to 
the strategic optimization 
of model architecture and 
computational processes to 
enhance performance and 
scalability while minimizing 
resource consumption. 
Figure 12 summarizes 
efficient architecture 
designs for LLMs”



Data Centric



Data Centric: Few Shot Prompting

By training 
to work with 
few shot 
scenarios, 
further 
training 
costs 
avoided and 
increases 
speed of 
adaptation



Data Centric: Prompt Compression and Generation
Prompt compression via condensing inputs or compact prompt representation allows 
for denser information, reducing size in memory, time to query, etc. Prompt 
Generation automatically creates optimized prompts to improve performance even 
with unskilled users



Frameworks
More details on individual frameworks 
can be found in section 4 of the paper, 
recommended to check there if you 
want a better description



Taxonomy Diagram (Again)
● Returning to the full tree, you can see 

the 3 areas again
● All of them are deep, but model 

centric is easily the broadest
● This paper is a great way to find 

relevant papers for any of these areas 
that sounded interesting to you!



Scaling Laws for 
Neural Language 

Models
Presented by: Henry Radzikowski

Language serves as a natural domain 
for AI research, facilitating reasoning 
tasks and offering abundant textual 
data for unsupervised learning. 



Empirical Results and Basic Power Laws
- To characterize language model scaling we train a wide variety of models, varying 

a number of factors including:
- Model size (ranging in size from 786 to 1.5 billion non-embedding parameters)
- Data size (ranging from 22 million to 23 billion tokens)
- Shape (including depth, width, attention heads, and feed-forward dimension)
- Context length (1024 for most runs)
- Batch size (2^19 for most runs, sometimes varied to measure critical batch size)



Summary

Language modeling performance improves smoothly as we increase model size, 
dataset size, and amount of computing power used for training. For optimal 
performance, all three must be scaled up together.



Optimizing Compute Efficiency 
in Training AI Models
With increased 
computational resources, 
optimizing training 
efficiency involves 
allocating the majority 
towards lager model sizes, 
with inversely smaller 
increase in data.



Notation



Summary of Scaling Laws

Eq 1.1 - predicts the test loss of a transformer model with constrained by N.

Eq 1.2 - predicts the test loss on large models trained on limited data and early stopping.

Eq 1.3 - describes test loss when training with limited amount of compute, large dataset, 
optimally-sized model, and small batch size.



Model-Data Scaling Relationship in Language Modeling

- Eq 1.5 combines the impact of both model size and dataset size on test loss and 
overfitting.

- Indicates sublinear increase in dataset size relative to model size, crucial for 
optimizing performance and mitigating overfitting in language modeling size.



Model Training Dynamics: Optimizing Performance (Finite)

- Equation (1.6) characterizes the learning curves of a model during training within 
a fixed computational budget (C) and a finite number of parameter update steps.

- It illustrates how the test loss (L) is influenced by model size (N), the number of 
parameter update steps (S), and the minimum possible number of steps (Smin), 
offering insights into optimizing model training efficiency and resource 
allocation.



Efficient Language Model Training

Left - The test loss varies predictably with both dataset size and model size. (eq 1.5)

Right - Learning curves for different model sizes can be accurately modeled, where 
Smin represents the number of steps for a large batch size, holding true for various 
orders of magnitude. (eq 1.6)



Model Performance

Performance depends very mildly on model shape when the total number of non-embedding 
parameters N is held fixed. The loss varies only a few percent over a wide range of shapes. Small 
differences in parameter counts are compensated for by using the fit to L(N) as a baseline. Aspect ratio 
in particular can vary by a factor of 40 while only slightly impacting performance; an (nlayer, dmodel) = 
(6, 4288) reaches a loss within 3% of the (48, 1600) models used.



Optimal Loss Parameterization: L(N,D) Equation

- Equation (4.1) (based on eq 1.5) defines the proposed parameterization for the 
test loss (L) as a function of model size (N) and dataset size (D).

- It adheres to three key principles: accommodating rescaling due to changes in 
vocabulary size or tokenization, ensuring convergence to individual losses L(N) 
and L(D) as N or D approach infinity, and maintaining analyticity at infinite 
dataset size to support series expansion.



Predictable Dependency of Test Loss on Model and Dataset Size
- Equation 4.1 shows the 

relationship between early-
stopped test loss and both 
dataset size and model size.



Optimal Allocation of the Compute Budget



LIMA: Less Is More 
for Alignment

Presented by: Rituparna Datta

LIMA demonstrates strong performance even 
with minimal fine-tuning, suggesting that the 
bulk of their knowledge is acquired during 
unsupervised pre training rather than large-
scale instruction tuning. 



Research Questions

1. Do we need large amount of annotated data to train a competent chatbot?

2. What are the critical axes when creating the annotated data?

3. How well can a model trained with a small number of annotated data 
generalizes to new tasks?



Superficial Alignment Hypothesis
● A model’s knowledge and capabilities are learnt almost entirely during pre-training
● Alignment teaches it which subdistribution of format should be used while interacting with 

users

One could sufficiently tune a pre-trained language model with a rather small set of examples



Alignment Data



Quality and Diversity are the keys!
Quality Control

● For public data: remove 
artifacts and select data 
with higher user ratings

● For in house authored 
data(200): Set a uniform 
tone and format

Diversity Control

● For public data: stratified 
sampling to increase 
domain diversity

● For in house authored 
data(200): come up with 
different scenarios to 
increase task/scenario 
diversity



Training Setup &  Methodology
Training

● LLaMa 65B [Touvron et al., 2023]

● fine-tune on 1,000-example

● Standard Fine Tuning params:
○ Finetune 15 epochs with AdamW
○ β1 = 0.9  β2 = 0.95; weight decay= 0.1
○ Batch size = 32

● residual dropout: Ouyang et al. 
[2022] and apply dropout over 
residual connections

Annotation Methodology

● assign one point if both annotators 
agreed 

● half a point if either annotator agreed, 
(but not both) labeled a tie,

● zero points otherwise. 

● measure agreement over a shared set of 
50 annotation examples (single prompt, 
two model responses – all chosen 
randomly), comparing author, crowd, 
and GPT-4 annotations. 



Experiment Setup
Baselines: 

● Alpaca 65B [Taori et al., 2023] – finetune LLaMa 65B 
on the 52,000 examples in the Alpaca training set 
[Taori et al., 2023]; 

● OpenAI’s DaVinci003, a large language model tuned 
with reinforcement learning from human feedback 
(RLHF) [Ouyang et al., 2022]; 

● Google’s Bard, based on PaLM [Chowdhery et al., 
2022]
 

● Anthropic’s Claude, 4 a 52B parameter model trained 
with reinforcement learning from AI

● OpenAI’s GPT-4 [OpenAI, 2023], a large language 
model trained with RLHF, which is currently 
considered the state of the art

To compare LIMA to other Baselines

● generate a single response for each 
test prompt.

● ask crowd workers to compare LIMA 
outputs to each of the baselines 

● repeat this experiment, replacing 
human crowd workers with GPT-4



Lima performs pretty well with 1000 examples



Why is Less More? Ablations on Data Diversity, Quality, and Quantity



Task Generalization Capability with a Few Example
Two Showcases:

● 30 multi turn dialogue data improves dialogue capabilities of LIMA
● Adding 6 format constraint examples enables model to generate long form highly 

structured response following user instructions:
○ Training example : Review a paper from the following aspects: summary, strengths, weaknesses, 

potentials
○ Test example: Create a marketing plan with the following elements: Marketing goal and objectives, 

Define Target Audience, Research Marketing Tactics, Plan Marketing Tactics and Develop Your 
Timeline and Budget



Task Generalization Capability with a Few Example



Limitations and Conclusion
Fine-tuning a strong pretrained language model on 1,000 carefully curated examples 
can produce remarkable, competitive results on a wide range of prompts

Limitations:

● The mental effort in constructing such examples is significant and difficult to 
scale up. 

● LIMA is not as robust as product-grade models
○ while LIMA typically generates good responses, an unlucky sample during decoding or an 

adversarial prompt can often lead to a weak response



The Era of 1-bit LLMs: 
All Large Language 
Models are in 1.58 Bits

Presented by: Afsara Benazir



Context
Problem: 

- Vanilla LLMs are in FP16
- the bulk of any LLMs is matrix multiplication - costly
- KV cache memory size

Therefore, the major computation cost comes from the floating-point addition and multiplication operations.

One solution: post training quantization – but it is suboptimal

To mitigate: BitNet1.58
- Represent weight values with -1, 0, and 1 requires 1.58 bits (from shannon’s entropy formula, log_2(3) = 1.58
- the matrix multiplication of BitNet only involves integer addition, which saves orders of energy cost for LLMs.
- BitNet b1.58 can match full precision (i.e., FP16) baselines in terms of both perplexity and end-task 

performance, starting from a 3B size, when using the same configuration (e.g., model size, training tokens, etc.)



● BitNet b1.58 is based on the BitNet architecture, which is a Transformer that replaces nn.Linear with 
BitLinear.

● Trained from scratch, with 1.58-bit weights and 8-bit activations.





Improvement in memory & latency



Comparison: Energy consumption



Performance



Future Potential

Mixture-of-Experts (MoE) Challenges and Solutions

Memory Efficiency for Long Text Processing

Innovations on Smartphones and Small Devices

Development of New Hardware for 1-bit LLMs


