
Survey Scaling Law and Efficiency
Presentation By Aidan, Afsara, Rituparna and Henry

Roadmap
1. Intro and Background, based on Efficient Large Language Models: A Survey,

presented by Aidan
2. Scaling Laws for Neural Language Models, presented by Henry
3. LIMA: Less Is More for Alignment, presented by Rituparna Datta
4. The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits, presented by

Afsara

Intro, Background,
Survey

Based on the paper Efficient Large
Language Models: A Survey,

https://arxiv.org/abs/2312.03863,
Presented by Aidan Hesselroth

(ash2taf)

In the modern era of AI, and
specifically with the popularity of

LLMs, the resource and time
demands of models keep

increasing, often with little regard to
efficiency. What measures are

being taken to improve
performance, and how do current

models stack up?

https://arxiv.org/abs/2312.03863

Background I
● Ever growing

parameter counts
● Better performance on

larger, slower models
● Some groups abandon

efficiency for better
accuracy/reasoning/et
c

Background II
● Obviously, there are

some models more
focused on efficiency
than others

● Look at Mistral 7B,
LLama-2-7B, and LLaMa-
1-33B

Efficiency Taxonomy
3 Categories of efficiency techniques:

1. Model-Centric Methods: research directions related to model compression,
efficient pre-training, efficient fine-tuning, efficient inference, and efficient
architecture design

2. Data-Centric Methods: research directions related to data selection and prompt
engineering

3. LLM Frameworks: existing frameworks specifically designed for efficient LLMs,
addressing their unique features, underlying libraries, and specialization

Taxonomy Diagram
● Don’t let the diagram fool you, while

there is less variety in some, all 3
areas are relatively ‘hot’

● Specifically focused on LARGE
Language models, unlike previous
surveys

● Obviously out of scope to go over in
detail, so we’ll skim

Model Compression
“As summarized in Figure 4, model compression techniques for LLMs can be grouped
into four categories: quantization, parameter pruning, low-rank approximation, and
knowledge distillation”

Efficient Pre-Training
“As shown in Table 1, pre-training LLMs incurs high
costs. Efficient pre-training aims to enhance the
efficiency and reduce the cost of the LLM pre-training
process. As summarized in Figure 6, efficient pre-
training techniques can be grouped into four
categories: mixed precision acceleration, scaling
models, initialization techniques, and optimization
strategies”

Fine-tuning
“Efficient fine-tuning aims to enhance the efficiency of the fine-tuning process for
LLMs. As shown in Figure 8, efficient fine-tuning methods can be grouped into
parameter-efficient fine-tuning (PEFT), and memory- efficient fine-tuning (MEFT).

Efficient Inference
“Efficient inference
aims to enhance the
efficiency of the
inference process for
LLMs. As summarized
in Figure 10, efficient
inference techniques
can be grouped into
techniques at the
algorithm level and
system level.”

Efficient Architecture
“Efficient architecture
design for LLMs refers to
the strategic optimization
of model architecture and
computational processes to
enhance performance and
scalability while minimizing
resource consumption.
Figure 12 summarizes
efficient architecture
designs for LLMs”

Data Centric

Data Centric: Few Shot Prompting

By training
to work with
few shot
scenarios,
further
training
costs
avoided and
increases
speed of
adaptation

Data Centric: Prompt Compression and Generation
Prompt compression via condensing inputs or compact prompt representation allows
for denser information, reducing size in memory, time to query, etc. Prompt
Generation automatically creates optimized prompts to improve performance even
with unskilled users

Frameworks
More details on individual frameworks
can be found in section 4 of the paper,
recommended to check there if you
want a better description

Taxonomy Diagram (Again)
● Returning to the full tree, you can see

the 3 areas again
● All of them are deep, but model

centric is easily the broadest
● This paper is a great way to find

relevant papers for any of these areas
that sounded interesting to you!

Scaling Laws for
Neural Language

Models
Presented by: Henry Radzikowski

Language serves as a natural domain
for AI research, facilitating reasoning
tasks and offering abundant textual
data for unsupervised learning.

Empirical Results and Basic Power Laws
- To characterize language model scaling we train a wide variety of models, varying

a number of factors including:
- Model size (ranging in size from 786 to 1.5 billion non-embedding parameters)
- Data size (ranging from 22 million to 23 billion tokens)
- Shape (including depth, width, attention heads, and feed-forward dimension)
- Context length (1024 for most runs)
- Batch size (2^19 for most runs, sometimes varied to measure critical batch size)

Summary

Language modeling performance improves smoothly as we increase model size,
dataset size, and amount of computing power used for training. For optimal
performance, all three must be scaled up together.

Optimizing Compute Efficiency
in Training AI Models
With increased
computational resources,
optimizing training
efficiency involves
allocating the majority
towards lager model sizes,
with inversely smaller
increase in data.

Notation

Summary of Scaling Laws

Eq 1.1 - predicts the test loss of a transformer model with constrained by N.

Eq 1.2 - predicts the test loss on large models trained on limited data and early stopping.

Eq 1.3 - describes test loss when training with limited amount of compute, large dataset,
optimally-sized model, and small batch size.

Model-Data Scaling Relationship in Language Modeling

- Eq 1.5 combines the impact of both model size and dataset size on test loss and
overfitting.

- Indicates sublinear increase in dataset size relative to model size, crucial for
optimizing performance and mitigating overfitting in language modeling size.

Model Training Dynamics: Optimizing Performance (Finite)

- Equation (1.6) characterizes the learning curves of a model during training within
a fixed computational budget (C) and a finite number of parameter update steps.

- It illustrates how the test loss (L) is influenced by model size (N), the number of
parameter update steps (S), and the minimum possible number of steps (Smin),
offering insights into optimizing model training efficiency and resource
allocation.

Efficient Language Model Training

Left - The test loss varies predictably with both dataset size and model size. (eq 1.5)

Right - Learning curves for different model sizes can be accurately modeled, where
Smin represents the number of steps for a large batch size, holding true for various
orders of magnitude. (eq 1.6)

Model Performance

Performance depends very mildly on model shape when the total number of non-embedding
parameters N is held fixed. The loss varies only a few percent over a wide range of shapes. Small
differences in parameter counts are compensated for by using the fit to L(N) as a baseline. Aspect ratio
in particular can vary by a factor of 40 while only slightly impacting performance; an (nlayer, dmodel) =
(6, 4288) reaches a loss within 3% of the (48, 1600) models used.

Optimal Loss Parameterization: L(N,D) Equation

- Equation (4.1) (based on eq 1.5) defines the proposed parameterization for the
test loss (L) as a function of model size (N) and dataset size (D).

- It adheres to three key principles: accommodating rescaling due to changes in
vocabulary size or tokenization, ensuring convergence to individual losses L(N)
and L(D) as N or D approach infinity, and maintaining analyticity at infinite
dataset size to support series expansion.

Predictable Dependency of Test Loss on Model and Dataset Size
- Equation 4.1 shows the

relationship between early-
stopped test loss and both
dataset size and model size.

Optimal Allocation of the Compute Budget

LIMA: Less Is More
for Alignment

Presented by: Rituparna Datta

LIMA demonstrates strong performance even
with minimal fine-tuning, suggesting that the
bulk of their knowledge is acquired during
unsupervised pre training rather than large-
scale instruction tuning.

Research Questions

1. Do we need large amount of annotated data to train a competent chatbot?

2. What are the critical axes when creating the annotated data?

3. How well can a model trained with a small number of annotated data
generalizes to new tasks?

Superficial Alignment Hypothesis
● A model’s knowledge and capabilities are learnt almost entirely during pre-training
● Alignment teaches it which subdistribution of format should be used while interacting with

users

One could sufficiently tune a pre-trained language model with a rather small set of examples

Alignment Data

Quality and Diversity are the keys!
Quality Control

● For public data: remove
artifacts and select data
with higher user ratings

● For in house authored
data(200): Set a uniform
tone and format

Diversity Control

● For public data: stratified
sampling to increase
domain diversity

● For in house authored
data(200): come up with
different scenarios to
increase task/scenario
diversity

Training Setup & Methodology
Training

● LLaMa 65B [Touvron et al., 2023]

● fine-tune on 1,000-example

● Standard Fine Tuning params:
○ Finetune 15 epochs with AdamW
○ β1 = 0.9 β2 = 0.95; weight decay= 0.1
○ Batch size = 32

● residual dropout: Ouyang et al.
[2022] and apply dropout over
residual connections

Annotation Methodology

● assign one point if both annotators
agreed

● half a point if either annotator agreed,
(but not both) labeled a tie,

● zero points otherwise.

● measure agreement over a shared set of
50 annotation examples (single prompt,
two model responses – all chosen
randomly), comparing author, crowd,
and GPT-4 annotations.

Experiment Setup
Baselines:

● Alpaca 65B [Taori et al., 2023] – finetune LLaMa 65B
on the 52,000 examples in the Alpaca training set
[Taori et al., 2023];

● OpenAI’s DaVinci003, a large language model tuned
with reinforcement learning from human feedback
(RLHF) [Ouyang et al., 2022];

● Google’s Bard, based on PaLM [Chowdhery et al.,
2022]

● Anthropic’s Claude, 4 a 52B parameter model trained
with reinforcement learning from AI

● OpenAI’s GPT-4 [OpenAI, 2023], a large language
model trained with RLHF, which is currently
considered the state of the art

To compare LIMA to other Baselines

● generate a single response for each
test prompt.

● ask crowd workers to compare LIMA
outputs to each of the baselines

● repeat this experiment, replacing
human crowd workers with GPT-4

Lima performs pretty well with 1000 examples

Why is Less More? Ablations on Data Diversity, Quality, and Quantity

Task Generalization Capability with a Few Example
Two Showcases:

● 30 multi turn dialogue data improves dialogue capabilities of LIMA
● Adding 6 format constraint examples enables model to generate long form highly

structured response following user instructions:
○ Training example : Review a paper from the following aspects: summary, strengths, weaknesses,

potentials
○ Test example: Create a marketing plan with the following elements: Marketing goal and objectives,

Define Target Audience, Research Marketing Tactics, Plan Marketing Tactics and Develop Your
Timeline and Budget

Task Generalization Capability with a Few Example

Limitations and Conclusion
Fine-tuning a strong pretrained language model on 1,000 carefully curated examples
can produce remarkable, competitive results on a wide range of prompts

Limitations:

● The mental effort in constructing such examples is significant and difficult to
scale up.

● LIMA is not as robust as product-grade models
○ while LIMA typically generates good responses, an unlucky sample during decoding or an

adversarial prompt can often lead to a weak response

The Era of 1-bit LLMs:
All Large Language
Models are in 1.58 Bits

Presented by: Afsara Benazir

Context
Problem:

- Vanilla LLMs are in FP16
- the bulk of any LLMs is matrix multiplication - costly
- KV cache memory size

Therefore, the major computation cost comes from the floating-point addition and multiplication operations.

One solution: post training quantization – but it is suboptimal

To mitigate: BitNet1.58
- Represent weight values with -1, 0, and 1 requires 1.58 bits (from shannon’s entropy formula, log_2(3) = 1.58
- the matrix multiplication of BitNet only involves integer addition, which saves orders of energy cost for LLMs.
- BitNet b1.58 can match full precision (i.e., FP16) baselines in terms of both perplexity and end-task

performance, starting from a 3B size, when using the same configuration (e.g., model size, training tokens, etc.)

● BitNet b1.58 is based on the BitNet architecture, which is a Transformer that replaces nn.Linear with
BitLinear.

● Trained from scratch, with 1.58-bit weights and 8-bit activations.

Improvement in memory & latency

Comparison: Energy consumption

Performance

Future Potential

Mixture-of-Experts (MoE) Challenges and Solutions

Memory Efficiency for Long Text Processing

Innovations on Smartphones and Small Devices

Development of New Hardware for 1-bit LLMs

