Survey Scaling Law and Efficiency

Presentation By Aidan, Afsara, Rituparna and Henry

Roadmap

1. Intro and Background, based on Efficient Large Language Models: A Survey,
presented by Aidan

2. Scaling Laws for Neural Language Models, presented by Henry

LIMA: Less Is More for Alignment, presented by Rituparna Datta

4. The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits, presented by
Afsara

e

Intro, Background,
Survey

Based on the paper Efficient Large
Language Models: A Survey,
https://arxiv.org/abs/2312.03863,
Presented by Aidan Hesselroth
(ash2taf)

In the modern era of Al, and
specifically with the popularity of
LLMs, the resource and time
demands of models keep
increasing, often with little regard to
efficiency. What measures are
being taken to improve
performance, and how do current
models stack up?

https://arxiv.org/abs/2312.03863

Background |

Number of model parameters

e Ever gI‘OWil’lg [58 10B 258 50B 75B LLaMA-2-70B
parameter counts é i S

e Better performance on 5 LLaMA-2-348
larger, slower models ‘Z): ot

e Some groups abandon % LLaMA 2138
efficiency for better £ on fo L AR TR 1108

accuracy/reasoning/et A

Performance (Commonsense Reasoning Score)

C

Figure 1: Ilustration of model performance and model training time in GPU hours of LLaMA models at dif-
ferent scales. The reported performance is the average score of several commonsense reasoning benchmarks.
The training time is based on Nvidia A100 80GB GPU. The size of each circle corresponds to the number
of model parameters. The original data can be found in Touvron et al. (2023a;h).

Background ||

e Obviously, there are
some models more
focused on efficiency
than others

e Look at Mistral 7B,
[LLama-2-7B, and LLaMa-
1-33B

Memory

5GB 10GB 50GB 80GB
Cerebras-
® GpT-1.3B

Cerebras- MPT-7B
GPT-2.7B
OPT-2.7B
Q

OPT-6.7B
Cerebras- XGLM-7.58

GPT-6.7B
) LLaMA-1-7B LLaMA-2-7B
Pythia-6.9B Mistral-78B

KGLM-4.58 OPT-138 LLaMA-1-13B

o
o

w
=]

&
o

w
oy
u
c
(]
>
o
.t
=
.
3
Q
K-
o
3
o
=
=
-

w
=]

CodeGen-NL-GB. LLaMA-2-138

GPT-NeoX-208B
OPT-30B LLaMA-1-33B

30 35 40 a5 50
HuggingFace Open LLM Leaderboard Score (%)

eGen-NL-16B

Figure 2: Performance score vs. inference throughput for various LLMs. The throughputs are measured on
Nvidia A100 80GB GPU with 16-bit floating point quantization. The size of each circle corresponds to the
memory footprint (in Gigabytes) of each model when running with batch size of 1, prompt size of 256 and
generating 1000 tokens. The original data can be found in Ilyas Moutawwalkil (2023).

Efficiency Taxonomy

3 Categories of efficiency techniques:

1.

Model-Centric Methods: research directions related to model compression,
efficient pre-training, efficient fine-tuning, efficient inference, and efficient
architecture design

Data-Centric Methods: research directions related to data selection and prompt
engineering

LLM Frameworks: existing frameworks specifically designed for efficient LLMs,
addressing their unique features, underlying libraries, and specialization

Post-Training Quantization

Quantization- Aware Training

Unstrectured Pruning

Taxonomy Diagram

e Don’t let the diagram fool you, while
there is less variety in some, all 3
areas are relatively ‘hot’

e Specifically focused on LARGE

Language models, unlike previous

Lesrnable Pattorn Stratogies

Algorithan-Level MoE Oplisization|

surveys

Black-Box KD
T

e Obviously out of scope to go over in

Efficient LLMs Methods|

Memory-Retricval Amgusentation

detail, so we’ll skim

State Space Models

Other Soquentisd Maodelbs

Data Seloction for

(oo iy} e
L 12
e B

Data Scloction (§3.1
- o)

e
Prompt Eagincoriog (§1.2) Lo Template Formatting Multi-Stop Reanoning

Figure 3: Taxonomy of efficient large language models (LLMs) literature.

Model Compression

“As summarized in Figure 4, model compression techniques for LLMs can be grouped
into four categories: quantization, parameter pruning, low-rank approximation, and

knowledge distillation”

LLM.int8() (Dettones ot

al., 2022), GPIQ (Pranter ot ol 2024

- — ORQ (Frnt listsurks, 2022), QuiP (Ches: et wl, 2023),
Waight-Only Quantizstion }—AWQ(I ot al. 2025), OWQ (Low ot ok, 2033),
SpQR (Dettmens ot wl, 20235), FineQuant (Kim ol o , 20234d)
Puost-Training Quantization
ZeroQuant (Y ., 2022h), ZeroQuant-V2 (Yo al., 20Zkc),
ZeroQuast-FP (Wa ot wl, 200), SmoothQusnt (X ot ul., 2025,
- Waight-Activation Co-Quantizstion — OliVe (o o, 2023), RPTQ (Yusn ot al., 2023),
—— L e
Ahmssdizn ot al, (2023)
MMMAMDMHQMGFI‘U. ot al,, 2022), LLM-QAT (Lin c al., 20225), BitNet (Wang c¢ al., 2023)]
g
o
g = Ty)_‘\:.l:;l;numl((",'.n Kk < "i).,].\lnanil LEaMA (Xis ot wl., 2023), LoRAPrune (Zoany, of o1, 202)]
oRAS e (Clis ol o, 20230
:
8 Unstructured Pruning Hscmm-(;l"l‘(\-. ar & A rh, 2023), Wanda (Sun et al, 2023), Sha (,,)]
-—.'é H Low-Rank Awmm}—[-n._mn—r(v..~ WL, 2002a), LoSparse (L < al., 202%), LASER (Sharma ct al, 202)]
= Baby LLaMA (Timiryssov & Tastet, 2023), MiniLLM (Gu ot al, 2023), GKD (Agsrwal ot al, 2023),
White-Bax KD KPTD (Padmanabhan o a1, 2023), TED (Lisng et al, 2023), TSLD (Kim Z3h),
MiniMA (7 al, 2023a)

MctalCL (Min
DISCO (Chon
Fine-Lane-CaT (11
SCaTD (13

Black-Bax KD

174

o 2021), Mubtitask-JCT (Hususg ot al., 2022), LI et al. (2022), Lion (Jiang et al., 2023),

, AWK, Fa et wl. (20230), Distilling, Step-ty-Step (Hivh ot ., 2023),

ol al, 2023), SOCRATIC CoT (Shridiosr ot ., 2022), SOUTT (Wauny, o ., 2023,
2, ot al. (2023s), Zophyr (Tusstall ot a1, 2003)

Figure 4: Summary of model compression techniques for LLMs.

High-Precision Weight
with Different Values

Low-Precision Weight
‘with Differsnt Values

" Low-Precision Activation

High-Precision Activation
with Different Values

Zaro Weight /
Activation Value

with Different Valuse

e e e bR ' &
: P
: — (optional) b
' + .
: o Calibration
' Calibration o Data
H Data (R
' update update Vo update N
H
. ' .
r;::l:g o Structured Unstructured
update o
H
|
H
+ '
|
H
' H
' H
: H

(a) Quantization

: U
: vT

Decompose
x (7]

(c) Low-Rank Approximation

Training Data Training Data

$ Student Model
3

White-
Box KD

Teacher Model
(Transparent)

000

(d) Knowledge Distillation

(Hidden)

Figure 5: Illustrations of model compression techniques for LLMs.

Teacher Model |

Efficient Pre-Training

“As shown in Table 1, pre-training LLMs incurs high
costs. Efficient pre-training aims to enhance the

efficiency and reduce the cost of the LLM pre-training
process. As summarized in Figure 6, efficient pre-
training techniques can be grouped into four
categories: mixed precision acceleration, scaling
models, initialization techniques, and optimization
strategies”

= = = Automatic Mixed Precision (AMP) (Micikevicius et al., 2017; Facebook AT Research (FATR), 2023; Rae et al., 2021),
—{Mnmd Precision Acceleration
Brain Floating Point (BF16) (Kalamkar el al,, 2019; Burgess et al,, 2019), GACT (Liu et al., 2022d), Mesa (Pan et al,, 2021)
B0
= Gong et al. (2019), MSLT (Yang et al, 2020), CompoundGrow (Gu et al, 2021), Knowledge Inberitance (Qin el al,, 2021),
= —{ Sealing Models Staged Training (Shen ol ol LiGO (Wang et al., 2023d), Mango (Pan et al, 2023), Yao et al. (2023c),
=} Growth Strategy (Li et al, 20234
$
E L(T Kumar (2017), Fixup (Zhang et al., 2019), ZerO (Zhao et al., 2021), Skiplnit (De & Smith, 2020),
= ReZero (Bachlechner et al., 2021), T-Fixup (Huang et al., 2020), DeepNet (Wang et al., 2022¢)
]
<9
= '—{ Oplimization Strategies }—{Ia’un (Chen et al., 2023h), Sophia (Liu et al., 2023a)]
-
System-Level Pre-Training - g : T g
M ol ZeRO (Rajbhanda: 2020), FSDP (Zhao et al., 2023¢), ZeRO-Offload (Ren et al., 2021), ZeRO-Infinity (Rajbhandari et al., 2021s)
Efficiency Oplimizalion

Figure 6: Summary of efficient pre-training techniques for LLMs.

Trammg Data [] NewlLayer:

= ikl

Progresswe Update

Training Efficiency

Optimization

Training Data

(c) Initialization Techniques (d) Optimization Strategies

Figure 7: Illustrations of efficient pre-training techniques for LLM.

Table 1: Pre-training costs of representative LLMs.

Model | Parameter Size | Data Scale | GPUs Cost | Training Time

GPT-3 (Brown ct al 1758 300B tokens -
GPT-NeoX-20B (l lack 208 825GB corpus 96 A100-40G
OPT (Zhang et al., 175B 180B tokens 992 A100-80G
BLOOM (Scao et al., 2022 1768 3668 tokens 381 A100-80G 105 days
GLM (7--'w et al., 130B 400B tokens 786 A100-40G 60 days
LLaMA (Touvron et al., 2023a) 658 1.AT tokens | 2048 A100-80G 21 days
LLaMA-2 (Touvron et al., 2023b) 708 2T tokens A100-80G 71,680 GPU days
Gopher (Rac ct al., 2021) 2808 300B tokens 1024 A100 13.4 days

LaMDA (Thoppilan et al., 2022) 1378 7688 tokens 1024 TPU-v3 57.7 days
GLaM (Du et al., 2022) 1200B 280B tokens 1024 TPU-v4 574 hours
PanGu-ar (Zeng el al., 2021) 13B 1.1'TB corpus | 2048 Ascend 910 -
PanGu-} (Ren et al., 2023b) 1085B 329B tokens | 512 Ascend 910 100 days
PaLM (Chowdhery et al., 2022) 540B 780B tokens 6144 TPU-v4 -
PaLM-2 (Anil et a 023) - 3.6T tokens TPUv4 -
WeLM (Su et al., 10B 300B tokens 128 A100-40G 24 days
Flan-PaLM (Chung et al., 2022) 5408 - 512 TPU-v4 37 hours
AlexaTM (Soltan ¢ 20B 1.3 tokens 128 A100 120 days
Codegeex (Zher 138 850 tokens 1536 Ascend 910 60 days

MPT-7B (Team, 2023) 7B IT tokens

]
&
=
&
)
=
<]
-
2
3]
&
=

Fine-tuning

“Efficient fine-tuning aims to enhance the efficiency of the fine-tuning process for
LLMs. As shown in Figure 8, efficient fine-tuning methods can be grouped into
parameter-efficient fine-tuning (PEFT), and memory- efficient fine-tuning (MEFT).

LLM-Adapters (Hu et al., 2023b), Compacter (Karimi \
(IA)? (Liu ct al,, , Mota-Adaptens (Bansal

Adapter-based Tuni :
P — OpenDelta (Hu et al,, 20

22), LoRA-FA (Zhang et al
2023), LongLoRA (Che
Low-Rank Adaptation

Parameter-Efficient Fine-Tuning
Soft Prompt. (Lester et ¢ P-Tuning (Liu et

it o ot al. (2022), MP
S . T (Gu ot al., 2022b), Multitask Prompt Tuning (Wan;

2023a), QA-LoRA (Xu ct al., 2

Figure 8: Summary of efficient fine-tuning methods for LLMs.

0, PEQA (Kim t al., 2023

arge Activation Small

Fine-Tuning Activati

fixed
fe backward

tuned LLMs

Fine-Tuning ine-Tuning :
Data Data i i

Embedding .| (e) Memory-Efficient Fine-Tuning

(d) Prompt Tuning

Figure 9: Ilustrations of Parameter-Efficient Fine-Tuning (a)-(d) and Memory-Efficient Fine-Tuning (e).

Efficient Inference

p
Speculative Decoding (Leviathan ct al., 2022), Chen ot al. (2023a),

“Efficient inference o Doy) Specsaivs(Spcior e, 202, LD (Ko, 323

Speclnfer (Miao et al, 2023), LLMA (Yang et al., 2023c),
Algorithm-Level Inference Medusa (Cai et al., 2023), Santilli et al. (2023), PaSS (Monea et al,, 2023

aims to enhance the

SkipDecode (Corro et al, 2023), Heavy Hitter Oracle (H20) (Zhang et al., 20230),
KV-Cache Optimization Dynamic Context Pruning (Anagoostidis el al., 2023), Scissochands (Liu el al., 2023h),
FastGen (Ge b al., 2023a)

Efficiency Optimization l

efficiency of the

Efficient Inference

inference process for

Efficiency Optimization DeepSpeed-Inference (Aminabadi ef al., 2022), Flash-Decoding (Dao ol al., 2023), FlashDecoding+-+ (Hong el al., 2023)

System-Level Inference ‘[Fhac‘:l (Sheng et al,, 2023), Deja Vu (Liu et al., 2023i), Pope et al. (2023), S® (Jio et al,, 2023), Orea (Yu et al,, 2022),]

LLMs. As summarized

Figure 10: Summary of efficient inference techniques for LLMs.

in Figure 10, efficient

inference techniques LLms @
: Small LMs

can be grouped into | check & Regenerate |
techniques at the VN N X X eI N

Large | language | model | has | witnessed | a | huge advanceé

algorithm level and
(a) Speculative Decoding (b) KV-cache Optimization

system level.”

Figure 11: lustrations of algorithm-level efficiency optimization techniques for LLM inference.

Efficient Architecture

“Efficient architecture
design for LLMs refers to
the strategic optimization
of model architecture and
computational processes to
enhance performance and
scalability while minimizing
resource consumption.
Figure 12 summarizes

efficient architecture
designs for LLMs”

[Emclem Architecture Deaign]

—{ Sharing-based Attention HMQA (Shazecs, 2

at, 202) |

19), GQA (Asmslie

—{l'\ntum Information Rn'hmlhn}—[hmml!nmn‘mun (D et &), X

), Nystrdenformer (X 1., 20021), Set Transformer (1o

a2

(Alberti et al, 2003), FRIRKA (Cupta ct al, 2023), Seatterbeain (¢

—{ Kernclization or Low-Rank LRT (Winata ct af
Lincar Transformer (Katharopoulos ot al.,

2120), Performer (Charomanski et al., 2021), RFA (Peng ct al., 2
2020), Linformer (Wisg et al., 2020)

—[Efficlent Attention

Paglardini

>-{ Fixed Pattern Strategics Longformer (Teltagy «
Lightning Attention-2 (C

.1, 2020), Poolingformer (Zhang e al, 2021),
, 2019), Spame Transformer (Chi

¢ al. (2023), Big Bird (Zaheer ct
20210), Blockwise Transformer (Qiu ot o
al., 2024)

HyperAttention (1o
—[Learnable Pattern Strategies
Clustered Attention (Vyas ot

al., 2023), Reformer (Kitacy et
1, 2020), ClusterFormer (Wang ot

al., 2020), Spame Sinkhorn Attention (Tuy ct al., 2020),
1., 2022d), Routing Transformer (floy ct al, 202

_{ FlashAltention (
Hardwaro-Assisted Attention [— | @
am ¢

, 2022), FlashAttention-2 (
al., 2020), ELSA (Ham et al, 2021)

1, 2023), PagedAbtention (Kwon

-{ Mok-hased LLMs

GShard (Lepikin
BASE Layer (Lewis et al., 207

1., 2021), Switch Tramsformer (Fodus el al , 2022), Artetxe ol
), PanGu-5 (Ren et al., 20235), Mixtral 8x7B (Jia

—{ Mixture of Experts (MoF) }-

—{ Algorithm-Level MoE Optimization

W, 2022), Expert Choios (Zhou et al., 2022), X-Mok (Chi
1., 2023g), Flan-Mok (Shen et al., 2023)

StableMok (D «
Lifedong- Mok (Chen

{S,—slmm-hwd Mok omimimﬁmj—[mm..n(hen et ., 2

FustMok (He et 1, 2021), FasterMok (He et al., 20225), DerpSpeod-Mob (Rajblandari et al., 2022]
20), EdigeMo (Yi ot al, 2023), Tutel (Hwsy ot al, 2023),

SmartMolS (Zhii ot al., 2073), MegaBlocks (Gade ot a1, 2023)

r{Extrapolation and Interpolation

ALiBi (Pross ot al,

2022), xPOS (Sun et al., 20225), CLEX (Chen ot &

Linesr Interpolation (¢), NTK Interpolation (, 2023),
YaRN lation (Peng b al, 2023¢), FIRE (Li et o)., 20230), PoSE (Zhw

il ot . (2027), Sealing Laws of RoPE-lesax] Extrapolation (1 ot

-{ Recurrent Structure

2020), co-formes (Martins ot al, 2022)

Tranaformes-XT (Dai ot al, 2019), Memformes (Wa ot ol &
§0022), Retentive Network (Sun ¢

RMT (Bolatow ot al, 20022), Block-Recwrrent Transformer (Hutehins of ol

.

Misteal (Jinng ot &l 2023a), StreaminglIM (Xiso et al., 2023h), PCW (Ratoer ot o

—[Segmentation and Sliding Window]— TongNet (Ding ot

., 2023a), SLED (fvgi et al., 2023), Fei et al. (2023),

Sclf-Extesd Jin ot al. (2024), Activation Beacos (Zhang ot al., 20024)

KNN-augmented Transformer (Wi ct al, 2022), Landmark Attetion (M

-[Memory-Retricval Augmentation

LoagMem (Wang ct al, 202%), Unlimiformer (Bertach et al., 2023),

Focused Transformer (Tworkowski ot al, 2023), Xu ot al. (20

)

Structured State Space (G et al., 21224), Diagonal State Space (Cupta ot al., 2022), T3 (Fa

State Space Models

}—(‘.-uxlﬁtnlcsm[\v hta et al., 2022), Block State Transformer (Pilault ot al., 2023),

Other Sequential Models

Mamba (Cu & Daa, 2023), SMA (Res ot al., 2023a)

RWKYV (Peng et al, 2023b), Hyena (Poli et al, 2023), MEGABYTE (¥
PanGu-x (Wang ct al,, 2023h)

Figure 12: Summary of efficient architecture designs for LLMs.

Data Centric

Few-Shot Prompting

=0
5
=
o
o
£
]
=
=
-~
2
g
=

Demonstration Organlzation

2023), AutoCompressors (Chevidic
). Nugget 2D (Qin et al

AwtoPrompt (Shin o al,

N120), TesnpLM (Zhang ot

Domonstration Ordeoring

Instruction Generation

Multi-Step Reasoning

Parallel Cencration

ZSh), Long]

), PCRL (Jung &
LMLingua (Jiang of

Idruction Induction (Flono
Automatic 'rompt Engincer al.,
OPRO (Yang ot al, 2023s), TeGit (Chen of al, 20257)
Chain-of-Thought (Wei o6 ol , 20020), Auto-Co'T' (72
ReAet (Yoo o ol 2020), Least-to-Mast Prompting (
Troo-ol-Thosght (Yao ol l, 20234), CaT-SC (Wang
Contrastive Co'l' (Chia o ol 2025), Xo'T' (Ding ot
Skeleton-ol-Thoaght (Niag ot o

Kim,

al., 2022

1., 2022b), PromptGen (Zhang ot al., 20224

Figure 17: Summary of prompt engineering techniques for LLMs.

2ic), Self Instruct (Wang e al.,

Data Centric: Few Shot Prompting

By training
to work with
few shot
scenarios,
further
training
costs
avoided and
increases
speed of

adaptation

Input

This food tastes good.
The review is __

Output

This food tastes good.
The review is positive

Training Data

It is a nice restaurant.
The review is positive.

This t-shirt looks cool.
The review is positive.

The dining room is dirty.
The review is negative.

Is the review positive or negative?
It is a nice restaurant. itains

It is a nice restaurant.
The review is positive.
The dining room is dirty.
The review is negative.

This t-shirt looks cool.
The review is positive.

IThe dining room is dirty. NC tains
' vord "dirty” The review is negative.

:". The review is positive.

This t-shirt looks cool. The senler
vord . The review is positive.

Is the review positive or negative?

It is a nice restaurant. The review is positive.

: [The dining room is dirty. The review is negative.| :

This t-shirt looks cool. The review is positive.

(d) Multi-Step Reasoning

(c) Instruction Generation

Figure 18: Illustrations of few-shot prompting techniques for LLMs.

Data Centric: Prompt Compression and Generation

Prompt compression via condensing inputs or compact prompt representation allows
for denser information, reducing size in memory, time to query, etc. Prompt
Generation automatically creates optimized prompts to improve performance even

with unskilled users

Demonstrations

~
-
llﬁll

LMs ———~——
(A [B[C[Test

(a) Prompt Compression (b) Prompt Generation

Figure 19: Tllustrations of Prompt Compression (a) and Prompt Generation (b) for LLMs.

Framework Training Fine- Inference Features
Tuning

DeepSpeed (V] (V] (V] Data Parallelism, Model Parallelism, Pipeline Paral-
lelism, Prompt Batching, Quantisation, Kernel Opti-
mizations, Compression, Mixture ol Experts.

Fra m e W 0 rks Megatron (V] (V] Data Parallelism, Model Parallelism, Pipeline Paral

lelism, Prompt Batching, Automatic Mixed precision,
Sclective activation Recomputation

Alpa Data Parallclism, Model Parallelism, Pipeline Par-
allelism, Operator Parallelism, Automated Model-

More details on individual frameworks Parallel Training, Prompt Batching

Colossal Al Data Parallelism, Model Parallelism, Pipeline Paral-
. . lelism, Mixed Precision Training, Gradient accumu
Can be found].n SeCtlon 4 Of the paper, lation, heterogencous Distributed Training, Prompt

Batching, Quantization

recommended to Che Ck there if you FairScale Data Parallelism, Model Parallelism, Pipeline Paral-

lelism, Activation Checkpointing, Model Offloading,
Model scaling, Adascale Optimization

Want a better description Pax Data Parallelism, Model Parallelism, Kernel Opti-

mization

Jomposer Fully Sharded Data Parallelism, FElastic sharded
checkpointing, Flash Attention

vLLM Data Parallelism, Model Parallelism, Tensor Paralel-
lism, Efficient management via PagedAttention, Op-
timized CUDA kernels, Dynamic Batching, Quantiza-
tion

OpenLLLM Distributed Finetuning and Inference, Integration

with BentoML, LangChain, and Transformers Agents,
Prometheus Metrics, Token Streaming

Ray LLM Distributed Inference, Integration with Alpa, Prompt
Batching, Quantization, Prometheus Metrics

MLC LLM Distributed Inference, Compiler Acceleration,
Prompt Batching, Quantization

Sax Distribute Inference, Serves PaxML, JAX, and Py-
Torch models, Slice Serving, Prometheus Metrics

Mosec Distribute Inference, Dynamic Batching, Rust-based
Task Coordinator, Prometheus Metrics

LLM Foundry Distribute Inference, Dynamic Batching, Prompt
Batching

Post-Training Quantization

Quantization- Aware Training

Unstrectured Pruning

Taxonomy Diagram (Again)

e Returning to the full tree, you can see
the 3 areas again
e All of them are deep, but model

centric is easily the broadest

Lesrnable Pattorn Stratogies

e This paper is a great way to find

Algorithan-Level MoE Oplisization|

relevant papers for any of these areas

Black-Box KD
T

that sounded interesting to you!

Efficient LLMs Methods|

Memory-Retricval Amgusentation

State Space Models

Other Soquentisd Maodelbs

Data Seloction for

(oo iy} e
L 12
e B

Data Scloction (§3.1
- o)

e
Prompt Eagincoriog (§1.2) Lo Template Formatting Multi-Stop Reanoning

Figure 3: Taxonomy of efficient large language models (LLMs) literature.

Scaling Laws for
N eu ral I'a ng ! ag e Language serves as a natural domain

M 0 d e IS for Al research, facilitating reasoning

tasks and offering abundant textual
data for unsupervised learning.

Presented by: Henry Radzikowski

Empirical Results and Basic Power Laws

- To characterize language model scaling we train a wide variety of models, varying
a number of factors including:

- Model size (ranging in size from 786 to 1.5 billion non-embedding parameters)
- Data size (ranging from 22 million to 23 billion tokens)

- Shape (including depth, width, attention heads, and feed-forward dimension)
- Context length (1024 for most runs)

- Batch size (219 for most runs, sometimes varied to measure critical batch size)

Summary

— L=(D/5.4:103)70.0% || 5. —— L=(N/8.8+10'3)70076

2]
(7}
o
-
o)
8
=

L = (Cpin/2.3 - 108)70-050
2 A
107? 1077 1075 1073 1071 10! 108 & 10° 107
Compute Dataset Size Parameters

Language modeling performance improves smoothly as we increase model size,
dataset size, and amount of computing power used for training. For optimal
performance, all three must be scaled up together.

Optimizing Compute Efficiency
in Training Al Models

Minimum serial steps Data requirements
increases negligibly — ~ . grow relatively slowly

—_
(]
(=]

With increased
computational resources,

—
[en]
(o]

optimizing training

—_
o
S

Optimal model size

efficiency involves increases very quickly

allocating the majority

=)
o
os
5
=
~
-
=
5
O
0
>
B
@
O
:
g,
E
5
2

towards lager model sizes,

1076 104 10~2
Compute (PF-days)

with inversely smaller

increase in data.

Notation

L — the cross entropy loss in nats. Typically it will be averaged over the tokens in a context, but in
some cases we report the loss for specific tokens within the context.

N — the number of model parameters, excluding all vocabulary and positional embeddings

C ~ 6N BS - an estimate of the total non-embedding training compute, where B is the batch size,
and S is the number of training steps (ie parameter updates). We quote numerical values in PF-days,
where one PF-day = 10'° x 24 x 3600 = 8.64 x 10'? floating point operations.

D — the dataset size in tokens

Bt — the critical batch size [MKAT18], defined and discussed in Section 5.1. Training at the
critical batch size provides a roughly optimal compromise between time and compute efficiency.

Chin — an estimate of the minimum amount of non-embedding compute to reach a given value of
the loss. This is the training compute that would be used if the model were trained at a batch size
much less than the critical batch size.

Smin — an estimate of the minimal number of training steps needed to reach a given value of the loss.
This is also the number of training steps that would be used if the model were trained at a batch size
much greater than the critical batch size.

ax — power-law exponents for the scaling of the loss as L(X) o 1/X** where X can be any of
N,D,C,S,B,C™".

Summary of Scaling Laws

1. For models with a limited number of parameters, trained to convergence on sufficiently large
datasets:

L(N) = (N./N)*: ay ~ 0.076, N, ~ 8.8 x 10** (non-embedding parameters) (1.1)

2. For large models trained with a limited dataset with early stopping:

L(D) = (D./D)*"; ap ~0.095, D, ~ 5.4 x 10" (tokens) (1.2)

3. When training with a limited amount of compute, a sufficiently large dataset, an optimally-sized
model, and a sufficiently small batch size (making optimal® use of compute):

min
-

. a®™ ~0.050, C™™ ~ 3.1 x 10® (PF-days) (1.3)
Eq 1.1 - predicts the test loss of a transformer model with constrained by N.
Eq 1.2 - predicts the test loss on large models trained on limited data and early stopping.

Eq 1.3 - describes test loss when training with limited amount of compute, large dataset,
optimally-sized model, and small batch size.

Model-Data Scaling Relationship in Language Modeling

- Eq 1.5 combines the impact of both model size and dataset size on test loss and
overfitting.
- Indicates sublinear increase in dataset size relative to model size, crucial for

optimizing performance and mitigating overfitting in language modeling size.

Model Training Dynamics: Optimizing Performance (Finite)

Nc anN + Sc g
Smin (S)

- Equation (1.6) characterizes the learning curves of a model during training within

a fixed computational budget (C) and a finite number of parameter update steps.

- Itillustrates how the test loss (L) is influenced by model size (N), the number of
parameter update steps (S), and the minimum possible number of steps (Smin),
offering insights into optimizing model training efficiency and resource
allocation.

Efficient Language Model Training

Loss vs Model and Dataset Size Loss vs Model Size and Training Steps

Params
708M
302M

» 85M
3M
25M
393.2K

(WY

o

)]
Parameters (non-embed)

10° 104
Tokens in Dataset Estimated Snin

Left - The test loss varies predictably with both dataset size and model size. (eq 1.5)

Right - Learning curves for different model sizes can be accurately modeled, where
Smin represents the number of steps for a large batch size, holding true for various
orders of magnitude. (eq 1.6)

Model Performance

—H= Nheag =8 —e— 50M Params —o— dmodel = 256
—o— dmodel/Mhead = 64 : 274M Params " —%— Omodel = 512
/ —+— 1.5B Params / —¥— dmodel = 1024

A wide range of architectures

achieve similar performance £ .
/ I 22% additional compute

compensates for 1% loss increase

a
o
S
3]
£
0
7]
o
.

10° 10! 102 10°

Feed-Forward Ratio (ds / dmode))
50M Parameters

Attention Head Dimension (dmodel / Nhead)

Aspect Ratio (dmode! / Niayer) 25M Parameters

Performance depends very mildly on model shape when the total number of non-embedding
parameters N is held fixed. The loss varies only a few percent over a wide range of shapes. Small
differences in parameter counts are compensated for by using the fit to L(N) as a baseline. Aspect ratio

in particular can vary by a factor of 40 while only slightly impacting performance; an (nlayer, dmodel) =
(6, 4288) reaches a loss within 3% of the (48, 1600) models used.

Optimal Loss Parameterization: L(N,D) Equation

- Equation (4.1) (based on eq 1.5) defines the proposed parameterization for the
test loss (L) as a function of model size (N) and dataset size (D).

- It adheres to three key principles: accommodating rescaling due to changes in
vocabulary size or tokenization, ensuring convergence to individual losses L(N)
and L(D) as N or D approach infinity, and maintaining analyticity at infinite
dataset size to support series expansion.

Predictable Dependency of Test Loss on Model and Dataset Size

' Data Size Bottl k
- Equation 4.1 shows the ata Size Bottlenec

relationship between early- 7| Data Size

.., 21M
43M
86M
172M

stopped test loss and both
dataset size and model size.

344M
688M
1.4B

22.0B

1)
7]
Q

-

-
0
(V)

=

106 107 108
Params (non-embed)

Optimal Allocation of the Compute Budget

W
o

Smaller models require
more steps to train, while
larger models require fewer

-
&)

=
o

Models between 0.6x and 2.2x the
optimal size can be trained with a
20% larger compute budget

.
o

—
W
Excess Steps (S/Sefficient)

Our framework does not
capture early training dynamics
100 10! 100 10!
Deviation from Optimal Model (N/Neficient) Deviation from Optimal Model (N/Nesficient)

E:
v
v
=
Q

Q

S

b

=5 2.5
(o
g
o
@)
wn
wn
o)
3]
]
5

p—
(en]

LIMA: Less Is More
for Alignment

Presented by: Rituparna Datta

LIMA demonstrates strong performance even
with minimal fine-tuning, suggesting that the
bulk of their knowledge is acquired during
unsupervised pre training rather than large-
scale instruction tuning.

Research Questions

Do we need large amount of annotated data to train a competent chatbot?
What are the critical axes when creating the annotated data?

How well can a model trained with a small number of annotated data
generalizes to new tasks?

Superficial Alignment Hypothesis

e A model’s knowledge and capabilities are learnt almost entirely during pre-training
e Alignment teaches it which subdistribution of format should be used while interacting with
users

The right format of
fine-tuning data that
teaches the LLM to act as
an Al assistant.

Pre-trained @' T i Aligned Large
Large Language [youwith? [Language

Model

Model -

One could sufficiently tune a pre-trained language model with a rather small set of examples

Alignment Data

Source #Examples Avg Input Len. Avg Output Len.

Training
Stack Exchange (STEM) 200 117 523
Stack Exchange (Other) 200 119 530
wikiHow 200 12 1,811
Pushshift r/WritingPrompts 150 34 274
Natural Instructions 50 236 92
Paper Authors (Group A) 200 40 334

Dev
Paper Authors (Group A) 50 36 N/A

Test
Pushshift r/AskReddit 70 30 N/A
Paper Authors (Group B) 31 N/A

Quality and Diversity are the keys!

Quality Control Diversity Control

e For public data: remove e For public data: stratified

artifacts and select data
with higher user ratings

For in house authored
data(200): Set a uniform
tone and format

sampling to increase
domain diversity

For in house authored
data(200): come up with
different scenarios to
increase task/scenario

diversity

Training Setup & Methodology

Training Annotation Methodology
e [LaMa 65B [Touvron et al, 2023] ® assign one point if both annotators
agreed

e fine-tune on 1,000-example R
e half a point if either annotator agreed,

: : (but not both) labeled a tie,
e Standard Fine Tuning params:

o Finetune 15 epochs with AdamW e zero points otherwise.
o B1=09 B,=0.95; weight decay=0.1
o Batch size =32 e measure agreement over a shared set of
: 50 annotation examples (single prompt,
e residual dropout: Ouyang et al two model responses — all chosen
[2022] and apply dropout over randomly), comparing author, crowd,

residual connections and GPT-4 annotations.

Experiment Setup

To compare LIMA to other Baselines

® generate a single response for each
test prompt.

e ask crowd workers to compare LIMA
outputs to each of the baselines

® repeat this experiment, replacing
human crowd workers with GPT-4

Baselines:

Alpaca 65B [Taori et al., 2023] — finetune LLaMa 65B
on the sPXUNY examples in the Alpaca training set
[Taori et al., 2023];

OpenATI’s DaVinci003, a large language model tuned

\tdslreinforcement learning from human feedback
QB313) [Ouyang et al,, 2022];

Google’s Bard, based on PaLM [Chowdhery et al.,
2022]

Anthropic’s Claude, 4 a 52B parameter model trained
with reinforcement learning from Al

OpenATI’s GPT-4 [OpenAl, 2023], a large language
model trained with RLHF, which is currently
considered the state of the art

Lima performs pretty well with 1000 examples

B LIMA wins P Tie LIMA Loses
B LIMA wins I Tie LIMA Loses

Alpaca 65B
Alpaca 65B 26% P

DaVinci003 35% DaVinci003

BARD (April 47%
BARD (April) 42% (April) 6

)k 147 63
Claude (April) 54% Claude (April) JE %

. 0
GPT-4 (April) 57% GPT-4 (April) 66%

g Y ! : T 0 o o o "o
0% 25% 50% 7% 100% 0% 25% 50% 75% 100%

Figure 1: Human preference evaluation, compar- Figure 2: Preference evaluation using GPT-4 as

ing LIMA to 5 different baselines across 300 test the annotator, given the same instructions pro-
prompts. vided to humans.

Why is Less More? Ablations on Data Diversity, Quality, and Quantity

P

Generation Quality

>
=2
©
3
o
c
.0
-
©
P
7}
c
(7}
(&

3.49
L

wikiHow Unfiltered Filtered : . - - T T
Stack Exchange Stack Exchange 2K 4K 8K 16K 32K
#Training Examples

Figure 5: Performance of 7B models trained

with 2,000 examples from different sources. Fil- Figure 6: Performance of 7B models trained
tered Stack Exchange contains diverse prompts with exponentially increasing amounts of data,
and high quality responses; Unfiltered Stack sampled from (quality-filtered) Stack Exchange.
Exchange is diverse, but does not have any qual- Despite an up to 16-fold increase in data size,

ity filters; wikiHow has high quality responses, performance as measured by ChatGPT plateaus.
but all of its prompts are “how to” questions.

Task Generalization Capability with a Few Example

Two Showcases:

e 30 multi turn dialogue data improves dialogue capabilities of LIMA
e Adding 6 format constraint examples enables model to generate long form highly

structured response following user instructions:
o Training example : Review a paper from the following aspects: summary, strengths, weaknesses,
potentials
o Test example: Create a marketing plan with the following elements: Marketing goal and objectives,
Define Target Audience, Research Marketing Tactics, Plan Marketing Tactics and Develop Your
Timeline and Budget

Task Generalization Gapability with a Few Example

Here's a marketing plan for your local coffee shop. Plan Marketing Tactics
Marketing Goals and Objectives Here’s how we will implement the marketing tactics above:

e Increase awareness of our brand among consumers | ...] e Events: We will l}ost one event per ‘mo.nth'al our coffee shop. For
each event, we will send out email invitations |...]

Drive foot traffic ... during slow busi hours |...
¢ P e e Discounts: Every Monday through Thursday from 3pm-6pm, we

e Build relationships with influencers in our community who |...] will offer $1 off any drink purchase. To promote |...]
Define Target Audience e Local partnerships: We will reach out to five local businesses and
Our target audiences include: schools to ask if we can leave stacks of coupons |...]

e Residents of the neighborhood surrounding our coffee shop e Social media: [...]

e Office workers near our coffee shop * Reviews: [...]

Develop Your Timeline and Budget
¢ Students at nearby sctiools This is ‘»’vhat our marketing timelinge looks like:
We will focus our marketing efforts on these audiences because they
are most likely to become regular customers at our | ...

Research Marketing Tactics

Here are some marketing tactics that we could use to reach to reach o [..]

our target audiences and achieve our goals:

e Month 1: Launch email newsletter and social media accounts

e Month 2: Start distributing coupons at |...|

Here’s the budget for each marketing activity:
e Host events at our coffee shop that appeal to our target audiences

(e.g., open mic nights for students or networking events |...] e Email newsletter: $50/month for MailChimp subscription

e Offer discounts during slow business hours to entice |...] * Social medis: $100/month for paid ads [...]

o L o [.]

Limitations and Conclusion

Fine-tuning a strong pretrained language model on 1,000 carefully curated examples
can produce remarkable, competitive results on a wide range of prompts

Limitations:

e The mental effort in constructing such examples is significant and difficult to

scale up.

e LIMA is not as robust as product-grade models
o while LIMA typically generates good responses, an unlucky sample during decoding or an

adversarial prompt can often lead to a weak response

. BitNet: Scaling 1-bit Transformers for
The Era of 1-bit LLMs: Large Language Models
All Large Language it Vo il . R o 310 o
Models are in 1.58 Bits

https://aka.ms/General Al

The Era of 1-bit LLMs:
All Large Language Models are in 1.58 Bits

Presented by: Afsara Benazir

feb'24

Shuming Ma* Hongyu Wang* Lingxiao Ma Lei Wang Wenhui Wang
Shaohan Huang LiDong Ruiping Wang Jilong Xue Furu Wei®
https://aka.ms/General Al

Context

Problem:
- Vanilla LLMs are in FP16
- the bulk of any LLMs is matrix multiplication - costly
- KV cache memory size

Therefore, the major computation cost comes from the floating-point addition and multiplication operations.

One solution: post training quantization — but it is suboptimal

To mitigate: BitNet1.58
- Represent weight values with -1, 0, and 1 requires 1.58 bits (from shannon’s entropy formula, log 2(3) = 1.58
- the matrix multiplication of BitNet only involves integer addition, which saves orders of energy cost for LLMs.
- BitNet b1.58 can match full precision (i.e., FP16) baselines in terms of both perplexity and end-task
performance, starting from a 3B size, when using the same configuration (e.g., model size, training tokens, etc.)

BitNet b1.58 is based on the BitNet architecture, which is a Transformer that replaces nn.Linear with
BitLinear.
Trained from scratch, with 1.58-bit weights and 8-bit activations.

BitLinear BitNet

Output f

| (Bitinea)
Dequantization 'LI BntL;\ear = A

Output

] Feed-Forward

1-bit T Network ﬁ
! WelFe —

1 [Attention ‘]J&, Yiead
Absmax t Multi-Head \ e
Quantization Attention Q¢ K V{

I L 4‘ (B itLinear)\,y(B'E.inear)-:(BritLinearj:'
LayerNorm f I 1

Input

| Input
Input

Figure 2: (a) The computation flow of BitLinear. (b) The architecture of BitNet, consisting of the
stacks of attentions and FFNs, where matrix multiplication is implemented as BitLinear.

souewIoNad

BitNet b1.58 (This Work)
{1,0,1}

Pareto Improvement
Transformer LLMs
16-bit Float (FP16/BF16)
0.2961 -0.0495 -0.4765
W= 0.0413 0.2812 0.2403
-0.1808 0.1304 -0.1771

-0.4809 .. -0.1741 -0.3853

Y = f(W, X)

1(.58)-bit

Model W

o
0.2961 -0.0495 -0.0924 -0.4765

0.0413 0.3397 0.2812 0.2403
-0.1808 0.1304 0.4322 -0.1771

-0.4809 0.3244 -0.1741 —0.3853J

Output Y

~
0.2961xp — 0.0495x; — 0.0924x; — 0.4765x3

A=Ky

o™
2™ New
Hardware

N\ 0\{\9

we

Improvement in memory & latency

wess BitNet b1.58 | === BitNet b1.58
| | aMA 4. = | | aMA

[
o
N

[
<
Memory (GB)
[
-

w
E
>
O
=
7]
B o
©
=3

7B 13B ' k ' 7B 13B
Model Size Model Size

Figure 2: Decoding latency (Left) and memory consumption (Right) of BitNet b1.58 varying the
model size.

Comparison: Energy consumption

e BitNet b1.58
[INT8 Add | | aMA
B FP16 Add
FP16 Mul

o o o
w H w
Energy ())

©
N

a
4
(%]
o
]
>
(o))
o
Q
[=
w
IS
c
~

o
[

_ 7B 13B
BitNet b1.58 Model Size

o
o

Figure 3: Energy consumption of BitNet b1.58 compared to LLaMA LLM at 7nm process nodes. On

he left is the components of arithmetic operations energy. On the right is the end-to-end energy cost
across different model sizes.

Performance

Max Batch Size

16 (1.0x)
176 (11.0x)

Models Size

LLaMA LLM 70B
BitNet b1.58 70B

Throughput (tokens/s)

333 (1.0x)
2977 (8.9x)

Table 3: Comparison of the throughput between BitNet b1.58 70B and LLaMA LLM 70B.

Models Size Memory (GB)| Latency (ms)] PPL|

LLaMA LLM
BitNet b1.58

LLaMA LLM
BitNet b1.58

LLaMA LLM
BitNet b1.58
BitNet b1.58

700M
700M

1.3B
1.3B

3B
3B
3.9B

2.08 (1.00x)
0.80 (2.60x)

3.34 (1.00x)
1.14 (2.93x)

7.89 (1.00x)
2.22 (3.55x)
2.38 (3.32x)

1.18 (1.00x)
0.96 (1.23x)

1.62 (1.00x)
0.97 (1.67x)

5.07 (1.00x)
1.87 (2.71x)
2.11 (2.40x)

12558
12087

1125
11.29

10.04
991
9.62

Table 1: Perplexity as well as the cost of BitNet b1.58 and LLaMA LLM.

Future Potential

Mixture-of-Experts (MoE) Challenges and Solutions
Memory Efficiency for Long Text Processing
Innovations on Smartphones and Small Devices

Development of New Hardware for 1-bit LLMs

