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Overview

● (LLM Training) Pythia: A Suite for Analyzing Large Language Models Across 
Training and Scaling

● (LLM Inference) Towards Efficient Generative Large Language Model 
Serving: A Survey from Algorithms to Systems

● (Large Audio Model) Sparks of Large Audio Models: A Survey and Outlook

● (Multimodal LLM) MM1: Methods, Analysis & Insights from Multimodal LLM 
Pre-training



Pythia: A Suite for Analyzing Large 
Language Models Across Training and 
Scaling
EleutherAI

Presenter: Guangzhi Xiong



Motivation

Research Questions:

- How do large language models (LLMs) develop and evolve over the course of 
training? 

- How do these patterns change as models scale?

Contributions:

- (Models) It introduces of Pythia, a suite of 16 LLMs all trained on public data 
seen in the exact same order and ranging in size from 70M to 12B
parameters.

- (Checkpoints) It provides public access to 154 checkpoints for each one of 
the 16 models.

- (Data) It provides tools to download and reconstruct their exact training 
dataloaders for further study.



Models in the Pythia suite

*Models marked as “equivalent” have the same architecture and number of non-
embedding parameters.



Models in the Pythia suite



Training data in Pythia

The Pile

- Description: A curated collection of English language datasets for training 

large language model

- Benefits:
- It is freely and publicly available.

- It reports a higher downstream performance than popular crawl-based datasets 

C4 and OSCAR.

- It has been widely used by state-of-the-art models including GPT-J-6B, GPT-

NeoX-20B, Jurassic-1, Megatron-Turing NLG 530B, OPT, and WuDao.

* Gao et al., The Pile: An 800GB dataset of diverse text for language modeling, 

2020.



Training data in Pythia

The authors trained two copies of the Pythia suite using identical 

architectures.

- Pile (334B tokens)

- A copy of the Pile after applying near-deduplication with MinHashLSH 

and a threshold of 0.87 (207B tokens)

- following the advice that LLMs trained on deduplicated data are better 

and memorize less of their data (Lee et al., 2021).



Model Architecture in Pythia

- Fully dense attention layers are used.

- Flash Attention is used during training for improved device throughput.

- Rotary embeddings are used as the positional embedding type of choice.

- The parallelized attention, feedforward technique and model initialization 

methods introduced by GPT-J are used.

- Untied embedding / unembedding matrices are used to facilitate 

interpretability research (Belrose et al., 2023).

*Belrose et al., Eliciting latent predictions from transformers with the tuned lens, 

2023.



Model Training in Pythia

Training code: open source library GPTNeoX

Optimizer: Adam and the Zero Redundancy Optimizer (ZeRO) 

Batch size: 1024 samples with a sequence length of 2048 (2,097,152 tokens)

Epoch: all models are trained for 299,892,736,000 ≈ 300B tokens 

*All GPUs are A100s with 40 GiB VRAM



Evaluation of Pythia



Evaluation of Pythia



Case Study: How Does Data Bias Influence 
Learned Behaviors?
- replace morphologically masculine pronouns by their feminine counterparts



Case Study: Does Training Order Influence 
Memorization?
Hypothesis: data encountered later in training will be memorized more

Method: they measure the memorization of an initial segment of each sequence 
in the training corpus

Result: training order has little impact on memorization

Quantile-Quantile plot of rate of 
occurrence of memorized sequences 
in 12B model compared to a Poisson 
Point Process. Color and dot size
indicates number of points.



Case Study: Do Pretraining Term Frequencies 
Influence Task Performance Throughout Training?
Model sizes affect the correlation between average performance and the term 
frequencies, indicating that this correlation is an emergent property in larger models



Towards Efficient Generative Large Language 
Model Serving: A Survey from Algorithms to 

Systems

Miao et al.

Presenter: Sabit Ahmed (bcw3zj)



Objective

Overview
► Recent advancements in LLM serving and inference.
► Systematic review and categorization of existing techniques.
► Highlight strengths and limitations of each method.

Coverage
► Decoding algorithms

► Architecture design

► Model compression and low-bit quantization

► Parallel computation and memory management

► Request scheduling and kernel optimization



Background of LLM Serving

► Transformer-based LLM

► Self-attention and FFN layers

► GPU and Other Accelerators

► Supports higher FLOPS, mixed-precision computing

► Latest architectures supports FP32, TF32, BF16, INT8, INT4, etc.

► Other accelerators: CPU, mobile and edge devices, TPUs, FPGAs, etc.

► LLM Inference
► Leverages Auto-regressive Decoding



Challenges

1. Latency & Response Time

● Balancing speed and complexity for real-time applications

2. Memory Footprint & Model Size

● Deploying on memory-constrained devices

3. Scalability & Throughput
● Handling simultaneous request loads efficiently

4. Hardware Compatibility & Acceleration
● Adapting models to diverse hardware

5. Accuracy vs. Efficiency
● Balancing model size with performance







Decoding Algorithm



Auto-regressive Decoding

● Sequentially predicting the next

token in a sequence, given all the 

previous ones



Auto-regressive Decoding

● Decode output tokens in parallel

● Not as reliable as auto-regressive 

models

● Breaking or modelling word 

dependencies



Early Exiting

● Utilize multi-layer architecture of 

existing LLMs

● Adaptive Computation
○ Emit predictions based on internal 

classifiers instead of running the 

whole LLM

● Insufficient Information
○ May not faithfully make accurate 

predictions



Speculative Decoding

● Uses smaller draft model

● Allows parallel decoding

● Verification and Fallback 

mechanism



Cascade Inference

● Internal classifiers organizes 

queries in a cascade manner

● Adaptively select proper model 

based on the difficulty level



Architecture Design

A few efficient architectures are proposed:
► Configuration downsizing

► Using shallow encoder or decoders, weight sharing, vocabulary shrinking

► Attention Simplification
► Sparsification, kernelization, factorization
► Different types of attention: sliding and dilated attention, hash-based attention, etc.

► Activation Sharing
► Sharing the intermediate activations to improve efficiency

► Conditional Computing
► Uses Mixture of Experts (MoE) paradigm: partitions model’s capacity into various experts
► Invoke necessary experts based on routing mechanism

► Recurrent Unit
► Replace Transformers with recurrent units for linear computation
► Varieties: Linear Transformer, Attention Free Transformer
► Overcome O(L2) bottleneck problem



Architecture Design



Model Compression

Aims to reduce memory footprint and computational requirements of LLMs

► Knowledge Distillation
► Student and teacher model

► White-box and black-box distillation

► Promising performance compared to GPT models

► Network Pruning
► Structural pruning on LLMs

► Facilitates GPU speedups





System Optimization

► Low-bit Quantization
► Quantize-Aware Training (QAT)

► Post-Training Quantization (PTQ)

► Parallel Computation
► Model Parallelism

► Tensor Model Parallelism (TP): Splits model layers for deployment on separate devices
► Pipeline Model Parallelism (PP): Each device is responsible for pipeline stage
► Sequence Parallelism (SP): Splits long sequences across multiple GPUs
► Automatic Parallelism: Uses algorithms for optimal performance without manual tuning

► Decentralized Inference
► Combination of model and data parallelism

► Multiple decentralized nodes collaborate to process data

► Useful for geographically distributed hardwares



System Optimization

► Memory Management

KV cache grows and shrinks dynamically
► Current Approaches: Naive pre-allocation leads to severe memory wastage
► Paged Attention: Partitions KV cache into non-contiguous blocks, enhancing batch size 

and throughput.
► SpecInfer Tree Attention: Utilizes tree traversal to avoid redundant KV cache 

allocations

► Request Scheduling
Objective: Efficiently scheduling incoming inference requests
Common Approaches:

● Dynamic batching for efficient request management.
● Preemption and priority settings for task handling.
● Swapping, model selection, and cost-efficient operations.
● Load balancing and strategic resource allocation.



System Optimization

► Kernel Optimization
► Kernel Fusion

► Tailored Attention
► Initial/prefill/context phase: processes tokens from input in parallel

► Incremental/decode/generation phase: generates one output token per iteration

► Sampling Optimization
► Various sampling strategies: Greedy sampling, parallel and stochastic sampling, etc.

► Variable Sequence Length

► Automatic Compilation



Software Frameworks



Future Direction

► Developing and Enhancing Hardware Accelerators

► Designing Efficient and Effective Decoding Algorithms

► Optimizing Long Context/Sequence Scenarios

► Investigating Alternative Architectures

► Exploration of Deployment in Complex Environments



Sparks of Large Audio Models: 
A Survey and Outlook

Presented by: Shiyu Feng (eus5fy)



Motivation

● Why explore Large Audio Models?
● Importance of audio processing in diverse real-world applications

○ voice-activated assistants, transcription services, hearing aids

Note: We would not be able to go through all the technical details for every model 
and application task. We will focus on the main insights and provide one or two 
examples to elucidate them.

https://github.com/EmulationAI/awesome-large-audio-models

https://github.com/EmulationAI/awesome-large-audio-models


Foundational Audio Models
aggregates information from diverse data modalities. Once trained, this model can be tailored to various downstream audio tasks.



Large Audio Models



Application

● Speech processing
○ Automatic Speech Recognition (ASR), Text-To-Speech (TTS), Speech Translation (ST), 

Spoken Dialogue Systems (SDSs)
○ Challenges

■ handle variations in accents, background noise, and ensure accurate transcription and 
synthesis of speech

● Music signal processing
○ Music generation, Analyzing musical patterns, Enhancing music composition
○ Challenges

■ modeling complex musical structures, capturing emotional and creative aspects of music, 
and ensuring coherence and sophistication in generated music.



Audio datasets

ASR: automatic speech recognition

ST: speech translation

MT: machine translation

AC: audio classification

SED: sound event detection

AMG: affective music generation

MAG: music analysis and generation

MU: music understanding

SC: sound classification

SG: symphony generation

TTM: text to music 

MT: music tagging

MAG: Music Arrangement Generation

MGR: Music Genre Recognition



Speech Processing – AudioPalm

tokenisation of text and audio  ➡ modification of pre-trained text decoders ➡ transformation of the model’s output into audio

speech-to-speech translation

automatic speech recognition

pre-trained text-only model

embeddings matrix expanding

audio token ➡ raw audio



Music Signal Processing – WavJourney

Textual story narration

⬇

speech + music + sound effects



Challenges

● Data Issues (pre-training period)
○ Duplicated data instances

■ model memorization and performance degradation
○ Data contamination

■ affects the performance of benchmarking LAMs, with issues like background noise, audio 
distortion, and offensive content

○ Concerns of personally identifiable information
○ Need for diverse pre-training data

● Tokenisation
○ Variations in pronunciations and overlapping speech
○ Multilingual speech
○ Emotion tokenization and information loss

● Computational Cost and Energy Requirements
○ Pre-training
○ Fine-tuning



Challenges (Cont.)

● Limited context length
○ Difficulty in understanding long-term dependencies and relationships

● Understanding paralinguistic information
○ Emotions, prosody, and other paralinguistic cues are key for speech and music

● Prompt Sensitivity
○ vulnerable to prompt variations

● Hallucination
○ misinterpretations of audio sources, introduction of random noise

● Ethics
○ bias, privacy concerns, misuse



MM1: Methods, Analysis & 
Insights from Multimodal 

LLM Pre-training
McKinzie et. al, 2024

Apple



Motivation:

● There are has great development in multi-modal large language models 
(MLLMs) in the past few years. 
○ Flamingo
○ GPT-4V
○ Gemini
○ LLaVA
○ etc



Motivation:

● What are the best design choices when developing a MLLM?

○ Best architecture design?

○ Best training procedure? 

○ Best data to use?   



Contributions

● To answer these questions the authors conducts a fine-grained ablation 

across:

○ Model architecture

○ Type of data

○ Training procedure

● Based on their findings, they also create their family of MM1 models, which 

exhibit SOTA performance on captioning and visual question answering 

(VQA). 



Ablation Setup 

● Base configuration

● Ablate on component (either 
model architecture or data 
source) at a time.

● Evaluate design decision in 
both a zero-shot and few-shot 
setting on various image 
captioning and VQA tasks.



Model Architecture Ablations

● Two motivating questions: 

○ How to best pre-train a visual encoder? 

○ How to bridge visual features to the LLM space? 



Model Architecture Ablations: Image-Encoder 
Pre-Training
● Image-enoder projects images with their captions into a visual space.

● Let's look at the effect that contrastive loss, reconstructive loss, and image 

resolution has: 

○ Image resolutions has the biggest impact…

■ Higher resolution -> better

○ then model size….

■ Larger model -> better

○ and finally training data composition.

■ Adding a synthetic caption dataset

■ (VeCap-300M) helped increase performance



Model Architecture Ablations: Vision-
Language Connector

● The vision-language connector projects the visual representation into the 
same space as the LLM. 

● Let’s see the effect of the number of visual tokens, the image resolution, 
average pooling, attention pooling, and convolutional mapping has: 

● Authors found that: 
○ The number of visual tokens and image resolution matter most! (More the better)
○ The type of VL connector has little effect.



Model Architecture Ablations: Pre-
training Data
● Let’s see the effect captioned images, interleaved images and text, and only 

text has on pre-training.



Model Architecture Ablations: Pre-
training Data
● Interleaved data is vital for few-shot and text-only performance
● Caption data improves zero-shot performance 



Model Architecture Ablations: Pre-
training Data
● Text-only data only improves few-shot and text-only performance.



Model Architecture Ablations: Pre-
training Data
● Thoughtfully mixing text and image data can lead to optimal multi-modal 

performance while maintaining text performance.



Model Architecture Ablations: Pre-
training Data
● Synthetic data helps with few-shot learning



Building the MM1 Model 

● Image-encoder: 
○ ViT-H model with 378x378 resolution, pretrained with CLIP objective on DFN-5B 

dataset
○ (motivated by importance of high image resolution)

● Vision-language connector:
○ C-abstractor with 144 tokens.
○ (Motivated by importance of many image tokens).

● Data: 
○ 45% interleaved image-text documents
○ 45% image-text pair documents 
○ 10% text-only documents
○ (Motivated to maintain a balance between zero-shot and few-shot performance



Model Scaling

● Initial Grid Search at Smaller Scales:
○ Conducted a grid search for optimal learning rates at smaller model sizes (9M, 

85M, 302M, 1.2B parameters) to gather data efficiently without excessive 
computational costs.

● Utilized linear regression in log space based on smaller models to predict 
optimal learning rates for larger scales, resulting in the formula: 

● Replaced traditional validation loss metrics with direct 8-shot task 
performance to optimize learning rates, focusing on real-world applicability.

● Simple Scaling Rule for Weight Decay: 
○ Adopted a simple rule to scale weight decay proportionally to the learning rate, 

setting  λ=0.1η, ensuring consistency across different model sizes.



Model Scaling with MoE

● Mixture-of-Experts (MoE) scales up the total number of model parameters 
while maintaining constant activated parameters per instance, enhancing 
model capacity without significantly impacting inference speed.

● Two specific models were designed:
○ a 3B-MoE with 64 experts and a
○ 7B-MoE with 32 experts

● To convert a dense model to MoE, only the dense language decoder is 
replaced with an MoE decoder, while other components like the image 
encoder remain unchanged. 

● MoE models use the same training hyperparameters and conditions as the 
dense models, ensuring consistency in the training process.



Pre-training Results

● The family of MM1 models beat 
baselines in both Caption and 
VQA.

● Notably, MM1-30B can beat 
Flamingo 80B



Supervised Fine-tuning

● Supervised Fine-Tuning Data Mixture:

○ Utilizes approximately 1.45M SFT examples from a diverse set of datasets.

○ Data includes instruction-response pairs generated by GPT-4, vision-language (VL) 

datasets for natural and text-rich images, and document/chart understanding.

○ Includes a text-only dataset for text instruction-following capabilities.

○ Datasets are formatted for instruction-following and mixed for random sampling 

during training.

● SFT Configuration and Evaluation:

○ Both the image encoder and the language model backbone are kept active 

(unfrozen) during SFT.

● Models are evaluated across 12 MLLM benchmarks



Supervised Fine-tuning (SFT)

● Scaling to Higher Image Resolutions:
○ Positional embedding interpolation is used to adapt the vision transformer backbone for 

higher resolutions (448x448 to 672x672 pixels).

○ Supports image resolutions up to 672x672, with a representation of 2,304 image tokens 

due to a patch size of 14x14.

● Sub-image Decomposition for Even Higher Resolutions:
○ For ultra-high resolutions (e.g., 1344x1344), the image is first downscaled to 672x672 for 

a high-level representation.

○ The same high-resolution image is also divided into four 672x672 sub-images to capture 

detailed visual information.

○ Positional embedding interpolation is applied to each sub-image, enabling support for 

resolutions as high as 1792x1792 in experiments.



SFT Results 



SFT Results 

● Competitive results with current SOTA
● MoE models tend to work better
● Higher image resolution and pre-training steps has a positive impact on SFT 

performance.
● Lessons for pre-training do transfer to SFT

○ Pre-training with caption-only data improves SFT metrics, and
○ different VL connector architectures have negligible impact on final results.



Conclusion

● For MLLMs, authors explore the most optimal combination of: 

○ Model architecture

○ Type of data

○ Training procedure

● They also create their family of MM1 models, based on the optimal 

combination they found. The MM1 models exhibit SOTA performance on 

captioning and visual question answering (VQA). 

● Authors also find their optimal configuration also applies when models face 

SFT.



Thank you!


