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Motivation

Research Questions:

How do large language models (LLMs) develop and evolve over the course of
training?
How do these patterns change as models scale?

Contributions:

(Models) It introduces of Pythia, a suite of 16 LLMs all trained on public data
seen in the exact same order and ranging in size from 70M to 12B

parameters.

(Checkpoints) It provides public access to 154 checkpoints for each one of
the 16 models.

(Data) It provides tools to download and reconstruct their exact training

dataloaders for further study.
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Models in the Pythia suite

Model Size Non-Embedding Params Layers Model Dim Heads Learning Rate Equivalent Models

70M 18,915,328 6 512 8 10.0 x 10~ —

160 M 85,056,000 12 768 12 6.0 x 10~*  GPT-Neo 125M, OPT-125M

410 M 302,311,424 24 1024 16 3.0 x 1074 OPT-350M
1.0B 805,736,448 16 2048 8 3.0 x 1074 —
1.4B 1,208,602,624 24 2048 16 2.0 x 1074 GPT-Neo 1.3B, OPT-1.3B
2.8B 2,517,652,480 32 2560 32 1.6 x 10~ GPT-Neo 2.7B, OPT-2.7B
6.9 B 6,444,163,072 32 4096 32 1.2 x 10~* OPT-6.7B
12B 11,327,027,200 36 5120 40 1.2 x 1074 —

*Models marked as “equivalent” have the same architecture and number of non-
embedding parameters.
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Models in the Pythia suite

GPT-2 GPT-3 GPT-Neo OPT TS BLOOM Pythia (ours)

Public Models o q o o o ® ®

Public Data o o 4 o

Known Training Order ® q ®

Consistent Training Order o 4 o
Number of Checkpoints 1 1 30 2 1 8 154
Smallest Model 124M Ada 125M 125M 60M  560M 70M
Largest Model 1.5B  DaVinci 20B 175B 11B 176B 12B

Number of Models 4 4 6 9 5 5 8

Table 2. Commonly used model suites and how they rate according to our requirements. Further information can be found in Appendix F.1.
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Training data in Pythia

The Pile

Description: A curated collection of English language datasets for training
large language model

Benefits:
It is freely and publicly available.

It reports a higher downstream performance than popular crawl-based datasets
C4 and OSCAR.

It has been widely used by state-of-the-art models including GPT-J-6B, GPT-
NeoX-20B, Jurassic-1, Megatron-Turing NLG 530B, OPT, and WuDao.

* Gao et al., The Pile: An 800GB dataset of diverse text for language modeling,

2020.
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Training data in Pythia

The authors trained two copies of the Pythia suite using identical

architectures.

Pile (334B tokens)
A copy of the Pile after applying near-deduplication with MinHashLSH

and a threshold of 0.87 (207B tokens)
following the advice that LLMs trained on deduplicated data are better

and memorize less of their data (Lee et al., 2021).
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Model Architecture in Pythia

Fully dense attention layers are used.

Flash Attention is used during training for improved device throughput.
Rotary embeddings are used as the positional embedding type of choice.
The parallelized attention, feedforward technique and model initialization
methods introduced by GPT-J are used.

Untied embedding / unembedding matrices are used to facilitate

interpretability research (Belrose et al., 2023).

*Belrose et al., Eliciting latent predictions from transformers with the tuned lens,

2023.
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Model Training in Pythia

Training code: open source library GPTNeoX

Optimizer: Adam and the Zero Redundancy Optimizer (ZeRO)

Batch size: 1024 samples with a sequence length of 2048 (2,097,152 tokens)
Epoch: all models are trained for 299,892,736,000 = 300B tokens

Model Size GPU Count GPT-3 GPUs Speed-Up

70M 32 4 8 X
160 M 32 8 4 x
410 M 32 8 4 x

1.0B 64 16 4 x

*All GPUs are A100s with 40 GiB VRAM
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Evaluation of Pythia
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Evaluation of Pythia
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Figure 10. LAMBADA (OpenAl) over the course of training. Left is the standard Pile, while the right is the deduplicated Pile. The dashed
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Case Study: How Does Data Bias Influence

Learned Behaviors?

- replace morphologically masculine pronouns by their feminine counterparts
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Figure 1. The CrowS-Pairs gender bias, shown as the percentage
of times that the perplexity of the stereotyping sentence is lower
than its less stereotyped counterpart (% Stereotype) for the Pythia
. models of different sizes at the end of training. We also show the
| effect of the gender swapping intervention on the measured bias
for the partially retrained models.
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Figure 2. The WinoBias gender bias results, shown as the propor-
tion of the time that the model placed a higher log probability on
the more stereotyped pronoun as an answer to a multiple choice
gender—occupation co-reference question.



Case Study: Does Training Order Influence
Memorization?

Hypothesis: data encountered later in training will be memorized more

Method: they measure the memorization of an initial segment of each sequence
in the training corpus

Result: training order has little impact on memorization
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Case Study: Do Pretraining Term Frequencies
Influence Task Performance Throughout Training:

Model sizes affect the correlation between average performance and the term
freauencies. indicating that this correlation is an emergent probertv in larger models
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Towards Efficient Generative Large Languag
Model Serving: A Survey from Algorithms to
Systems

Miao et al.

Presenter: Sabit Ahmed (bcw3zj)
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Objective

Overview
» Recent advancements in LLM serving and inference.
» Systematic review and categorization of existing techniques.
» Highlight strengths and limitations of each method.

Coverage
» Decoding algorithms
» Architecture design
» Model compression and low-bit quantization
» Parallel computation and memory management

» Request scheduling and kernel optimization
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Background of LLM Serving

» Transformer-based LLM

» Self-attention and FFN layers

» GPU and Other Accelerators
» Supports higher FLOPS, mixed-precision computing
» Latest architectures supports FP32, TF32, BF16, INT8, INT4, etc.
» Other accelerators: CPU, mobile and edge devices, TPUs, FPGAs, etc.

» LLM Inference
» Leverages Auto-regressive Decoding
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Challenges

1. Latency & Response Time
e Balancing speed and complexity for real-time applications
2. Memory Footprint & Model Size
e Deploying on memory-constrained devices
3. Scalability & Throughput
e Handling simultaneous request loads efficiently
4. Hardware Compatibility & Acceleration
e Adapting models to diverse hardware
5. Accuracy vs. Efficiency

e Balancing model size with performance
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Decoding Algorithm
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Auto-regressive Decoding

e Sequentially predicting the next
token in a sequence, given all the

previous ones
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Auto-regressive Decoding

e Decode output tokens in parallel

e Not as reliable as auto-regressive
models

e Breaking or modelling word

dependencies
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Early Exiting
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Speculative Decoding

e Uses smaller draft model
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Cascade Inference
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Architecture Design

A few efficient architectures are proposed:

» Configuration downsizing
» Using shallow encoder or decoders, weight sharing, vocabulary shrinking
» Attention Simplification
» Sparsification, kernelization, factorization
» Different types of attention: sliding and dilated attention, hash-based attention, etc.
» Activation Sharing
» Sharing the intermediate activations to improve efficiency
» Conditional Computing
» Uses Mixture of Experts (MoE) paradigm: partitions model’s capacity into various experts
» Invoke necessary experts based on routing mechanism
» Recurrent Unit

» Replace Transformers with recurrent units for linear computation
» Varieties: Linear Transformer, Attention Free Transformer
» Overcome O(L?) bottleneck problem
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Architecture Design

Table 1. Comparisons of attention simplification methods in prior efficient Transformers and recent LLMs.

Attention Type | Selective | Sliding + Dilated | Global token | Hash-based
K K K
L]
mji
¢ e ;: EDJ Q B
u B o
O 0 B = -
Sparse Pattern '
Ref Top-k [112], Sorting [239], Sparse Transformer [60], Star Transformer [110], Reformer [146], Routing
Rt Adaptive [63], Informer [306] LongFormer [41] GMAT [111] Transformer [211]
LLM Scissorhands [170], H,O [301] Mistral-7B [129], StreamingLLM [269], Sparse hash
Applications [36, 130, 159, 186, 301] [269], LongNet [74] Summary [58], Landmark [184] attention[198]

A
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Model Compression

Aims to reduce memory footprint and computational requirements of LLMs

» Knowledge Distillation
» Student and teacher model
» White-box and black-box distillation
» Promising performance compared to GPT models

» Network Pruning
» Structural pruning on LLMs

» Facilitates GPU speedups
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System Optimization

» Low-bit Quantization
» Quantize-Aware Training (QAT)
» Post-Training Quantization (PTQ)

» Parallel Computation

» Model Parallelism

» Tensor Model Parallelism (TP): Splits model layers for deployment on separate devices
» Pipeline Model Parallelism (PP): Each device is responsible for pipeline stage
» Sequence Parallelism (SP): Splits long sequences across multiple GPUs

» Automatic Parallelism: Uses algorithms for optimal performance without manual tuning
» Decentralized Inference

» Combination of model and data parallelism

» Multiple decentralized nodes collaborate to process data

» Useful for geographically distributed hardwares
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System Optimization

» Memory Management

KV cache grows and shrinks dynamically
» Current Approaches: Naive pre-allocation leads to severe memory wastage
» Paged Attention: Partitions KV cache into non-contiguous blocks, enhancing batch size
and throughput.
» Specinfer Tree Attention: Utilizes tree traversal to avoid redundant KV cache
allocations

» Request Scheduling

Objective: Efficiently scheduling incoming inference requests

Common Approaches:

e Dynamic batching for efficient request management.
Preemption and priority settings for task handling.
Swapping, model selection, and cost-efficient operations.
Load balancing and strategic resource allocation.
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System Optimization

» Kernel Optimization
» Kernel Fusion

» Tailored Attention
» Initial/prefill/context phase: processes tokens from input in parallel

» Incremental/decode/generation phase: generates one output token per iteration

» Sampling Optimization
» Various sampling strategies: Greedy sampling, parallel and stochastic sampling, etc.

» Variable Sequence Length

» Automatic Compilation
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Software Frameworks

Table 2. Comparison of state-of-the-art open-sourced GPU-based LLM serving systems.

Name Parallel Itera- Attention Prioritized
Github Computation tion- Kernel Opt. Target
Ref. TP | PP | offload || Sche. Initial Incremental || Lar | Tpt Main Features
FasterTrans- Tl o CUBLAS Fused Vv » Manually-written kernel
former [2] GEMM attention « Lightweight runtime
FlexFlow- Jivl v N CUBLAS Tree N « SpecInfer [177]
Serve [12] GEMM attention « Extremely low L,;
Paged « Block-level KV cache [150]
WEEHE (22 v \ Y (| B attention v « Enlarging batch size & T,
torch. torch. « CPU&Disk Offload [224]
HgxGRni (] V|V bmm bmm \ + Maximizing single GPU T,
Flash Paged : : A
TGI [18] v v et | ot v || « Huggingface integration
DeepSpeed- VAN CUBLAS CUBLAS e « Kernel auto-injection [10]
Inference [3] GEMM GEMM « Multi-GPU & Multi-Node
ZeRO- N v CUBLAS CUBLAS v « CPU&NVMe Oftload [35]
Inference [3] GEMM GEMM + Maximizing single GPU T,
Light- J i Flash Token v Token-level KV cache
LLM [21] attention | attention « Enlarging batch size & T,
MLC- N N compiled Paged N « Universal deployment
LLM [242] MatMul | attention « Multiple types of GPUs
TensorRT- 7| sl CUBLAS/ Paged « NVIDIA Triton integration
LLM [25] Flash-attn | attention « Rich features supported




Future Direction

» Developing and Enhancing Hardware Accelerators

» Designing Efficient and Effective Decoding Algorithms
» Optimizing Long Context/Sequence Scenarios

» Investigating Alternative Architectures

» Exploration of Deployment in Complex Environments
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Sparks of Large Audio Models:
A Survey and Outlook

Presented by: Shiyu Feng (eus5fy)

ENGINEERING

Department of Computer Science

i U IVERSITY
TRGINIA




Motivation

e Why explore Large Audio Models?

e Importance of audio processing in diverse real-world applications
o voice-activated assistants, transcription services, hearing aids

Note: We would not be able to go through all the technical details for every model
and application task. We will focus on the main insights and provide one or two
examples to elucidate them.

https://github.com/EmulationAl/awesome-large-audio-models
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https://github.com/EmulationAI/awesome-large-audio-models

Foundational Audio Models

aggregates information from diverse data modalities. Once trained, this model can be tailored to various downst

Neutral speech synthesis
Speech to text translation
Audio de-noising

_~——) Speech removal

——) Target speaker extraction
) Audio editing

Speaker recognition
Speech emotion recognition
} Style transfer

| Speech enhancement
Speech separation
JAudio inpainting

! Sound extraction
Image-to-audio

Singing synthesis

) Piano continuation

) Music generation

) Vocals to instrumental music
) Speech to speech translation
Speech continuation

And many more

830 Other Auxiliary
%4® Data

. - Input data for pre-training o n Foundation Models — Adapted Audio Task




Large Audio Models

- Audio Models o Large Audio Models
Conformer ' LLaSM
FastSpeech2 Whisper LTU  AudioPALM SpeechX
VioLA
MuseCoco LaunchpadGPT
HuUBERT Val-E SpeechGPT amp Net Next-GPT
201 0- / : :
201 9
Wav2Vec 2.0 Museformer AudioGPT | Mu’SLAM SeamlessM4T
ContextNet SpeechT5 Gl M sh
LSTM SURERC Speechstew SingSong SoundStorm WavJourney Prompt TTS2
MusicBERT Pengi LOAF-M2L
TANGO
MelLoDy
@ - & © ® & & @ &
TIME

Time line of Large Audio Models
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Application

e Speech processing

o Automatic Speech Recognition (ASR), Text-To-Speech (TTS), Speech Translation (ST),
Spoken Dialogue Systems (SDSs)
o Challenges
m handle variations in accents, background noise, and ensure accurate transcription and
synthesis of speech

e Music signal processing
o Music generation, Analyzing musical patterns, Enhancing music composition
o Challenges
m modeling complex musical structures, capturing emotional and creative aspects of music,
and ensuring coherence and sophistication in generated music.
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Audio datasets

Title Application  Size {\./Iulti- FPublic
ingual  access
. : e CommonVoice 11 [130] ASR 2508 hours v v
ASR: automatic speech recognition Libri-Light [103] ASR 60000 hours X 7
. . Wenetspeech [131] ASR 10000 hours X
ST: SpeeCh translation Gigaspeech [132] ASR 50000 hours X v
ASR, MT
MT: machine translation MuST-G [ 1201 and SLT 3600 hours v v/
VoxPopuli [134] ASR, S2ST 400k hours v v
AC: audio classification CoVoST [135] ST 2880 hours v v
CVSS [136] ST 3809 hours v v
: : EMIME [137] ST - ¥4 s
SED: sound event detection Audiocaps [138] e T I E Z
AMG: aff . . ti Clotho [139] AC 4981 audios _ v
. affective music generation 24905 captions
MAG . VS d " Audio set [112] SED 5.8k hours - v
: music analysis and generation EMOPIA [140] ANG 387 piano 7 -
solo sounds
MU: music understanding MetaMIDI [141] MEA ?1132:31 - &
. e ; DALI2 [142] MU 7756 Songs - v
SC: sound classification NilEior, MIDTTEG] s TH0K Sors -
] . Vggsound [143] SC 200k videos - v
SG: symphony generation EE
ympnony g FSD50K [144] SED 2&;27 sound v
TTM: text to music 46359 MIDI
Symphony [145] SG files - v
MT: music tagging MusicCaps [119] m— 5521 music- P 7
ext pairs
MAG: Music Arrangement Generation Jamendo [146] s oo tracks 4
songs,
. : " POP909 [147] MAG multiple piano - v/
MGR: Music Genre Recognition e
FMA [148] MGR 106574 clips = 7
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Speech Processing - AudioPalm

® | audio tokens embeddings matrix expanding
O | text tokens _
- - | pre-trained on text-only data Audio audio token &d raw aud
Embeddings | .---------------eeees N ~
. Matrix ." b SoundStorm
speech-to-speech translation prm——— . 1 © © O| orAudiolM
, 4 i Decoder-only \ ! stages2+3
BE=sD Fhenchy £oa e Audio &text |© © ©O0 O © O | Text Transformer || ~
[ASR Ttalian] tokenizers (@ @ © © Embeddings O o g Text' Ciao
: iatic e ] etokenizer ) mondo !

...................

automatic speech recognition |

________________

pre-trained text-only model

tokenisation of text and audio modification of pre-trained text decoders &d transformation of the model’
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Music Signal Processing - WavJourney
T | i e e e

"Mars News reporting that Music Background 1 -30 Begin Dramatic orchestral news theme. Auto
Humans send light-speed
probe to Alpha Centauri. | Speech Foreground Host -15 Welcome to Mars News ... Auto
Start with news anchor, :
foll by & reporter Music Background 1 End Now It ctwith Auto
Prompts: interviewing a chief Speech Foreground Host -15 oW 1eL S connect With. our Auto
Task introduction; engineer from an on-site reporter ...
Specification; ization that built thi "
F::cm?ct:n :r,%abr:'z:or:ded bylﬁnit; Somund Foreground -35 Transition swoosh. 1
Earth and Mars =
Government, and end with ol Background 2 -30 Begin Backgrqund e of busy Auto
the news anchor again". effect engineering office.
l Speech Foreground Reporter -15 We're here at the headquarters of ...  Auto
TeXtual StO ry narrat]on ,rrvu‘ g Speech Foreground Director -15 Thank you, so it's a fantastic ... Auto
Speech Foreground Reporter -15 This is truly an impressive feat ... Auto
Speech Foreground Director -15 The primary goal is to explore ... Auto
Audio Script Writer Audio Script
| Speech Foreground Reporter -15 Thanks director, so the above ... Auto
1 Sound
speech + music + sound effects U4 Background 2 30 End Auto
Sound .
t Foreground -35 Transition swoosh. 1
Speech Foreground Host -15 Back to the studio, as humanity ... Auto
Script Compiler Computer Program Music Foreground -25 Orchestral news outro music. 10
| Audio script as a list of acoustic elements with attributes
l ___________ % 1 Import relevant APIs (TTM, TTS, TTA, MIX, CAT)
I{ s N : 2 Define the script text and sound effects for the audio generation
1 1324 H | 3 For each line in the script
T <: : @ : 4 Generate the foreground speech with TTS (Text-to-Speech)
= ! ] ! 5 Save the audio file and compute its length
Code Execution : - @ : 6 Generate additional foreground sound effects using TTA (Text-to-Audio)
: Text-to-Speech : 7 Combine all the foreground audio files with CAT (Concatenate audio)
1 Text-to-Music 1 8 Determine the background audio lengths and offsets based on the foreground audio lengths
| . Pr:ger:tr-r:o(‘)?;::ors : 9 Generate background music using TTM (Text-to-Music)
P «Q}*‘h"-'ﬂ“- : Quality Enhancement : 10 Gener;te background sound eﬁ‘ects using TTA (Text-to-Audio) ) )
s IVERSI I ! | \ 11 Combine all the background audio files and the foreground audio file with X (Mix audio)
! ! H
!“"I! 9 IRGINIA S S 12 Save the final composed audio file

Depa  vivid &Engaging
P Audio Scenes Expert Audio Models Script Compiler output (simplified pseudo code)




Challenges

e Data Issues (pre-training period)

o Duplicated data instances
m model memorization and performance degradation

o Data contamination
m affects the performance of benchmarking LAMs, with issues like background noise, audio

distortion, and offensive content
o Concerns of personally identifiable information
o Need for diverse pre-training data

e Tokenisation
o Variations in pronunciations and overlapping speech

o  Multilingual speech
o Emotion tokenization and information loss

e Computational Cost and Energy Requirements
o Pre-training
o Fine-tuning
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Challenges (Cont.)

e Limited context length
o Difficulty in understanding long-term dependencies and relationships
e Understanding paralinguistic information
o Emotions, prosody, and other paralinguistic cues are key for speech and music
e Prompt Sensitivity
o vulnerable to prompt variations
e Hallucination
o misinterpretations of audio sources, introduction of random noise
e Ethics
o bias, privacy concerns, misuse
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MM1: Methods, Analysis &
Insights from Multimodal
LLM Pre-training

McKinzie et. al, 2024
Apple
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Motivation:

e There are has great development in multi-modal large language models

(MLLMs) in the past few years.
o Flamingo

o GPT-4V | MM1-30B (Ours):
o Gemini (S
og": 2,
o LLavVA y) Eeeapet L
o etc

\
| MM1-30B (Ours):

7

"Hyde Park"

<> <
MM1-30B (Ours):

| wew

O
(MM1-30B (Ours):

AN
A

total: 4 +1 =15
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Motivation:

o What are the best design choices when developing a MLLM?
o Best architecture design?
o Best training procedure?

o Best data to use?
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Contributions

e To answer these questions the authors conducts a fine-grained ablation
across:
o Model architecture
o Type of data

o Training procedure

o Based on their findings, they also create their family of MM1 models, which

exhibit SOTA performance on captioning and visual question answering

(VQA).
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Ablation Setup

— Image Encoder: A ViT-L/14 [27] model trained with a CLIP loss [91] on
DFN-5B |31| and VeCap-300M [57]; images of size 336 x 336.
e Base configuration — Vision-Language Connector: C-Abstractor |12| with 144 image tokens.
— Pre-training Data: A mix of captioned images (45%), interleaved image-
text documents (45%), and text-only (10%) data.
« Ablate on component (either — Language Model: A 1.2B transformer decoder-only language model.

model architecture or data

source) at a time. L]

[ - only Lok J Model Ablations .
.......................... Loas Data Ablations
| Connector Types: ©  \__ ) Tt .

« Evaluate design decision in 0y — sperparamecs 1

both a zero-shot and few-shot = | (VL Conmece } | — C-Abowmactor -

Blue Cheese Stuffed

How to combine vuionsv
1 1 i Ainekisonems Tocipo s e Encoder s | T " data?
setting on various image B B [ Emage Encoder ]_ g:ammg'E' 9 ':‘;i:a;t:::;::;:'.'.'.:'.::'.::'.'.‘.'.;;

— Contrastive Loss;

captioning and VQA tasks. —Comtraimlow; § o~ 7 X~ .k Use of vext anly

___________________________ S | | | G St
| Image Resolution: | | S B e, :
: e lution: I + | |Interleaved| |Synthetic|| o 'e... ! Sources and :
B Larger Images; ‘ ! | Text Data Data Data y ©" 7 compoaition of data :
| — Multi-Scale Inputs. | | Batm | B ;

........................... .

Fig. 3: Left: Model ablations: what visual encoder to use, how to feed rich visual data,

Tﬁﬁljo II‘RI‘:é}Sl\IIIAISt ENGINEERI! .14 how to connect the visual representation to the LLM. Right: Data ablations: type
o Department of Computer ¢ . ;
of data, and their mixture.




Model Architecture Ablations

e Two motivating questions:
o How to best pre-train a visual encoder?

o How to bridge visual features to the LLM space?
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Model Architecture Ablations: Image-Encoder
Pre-Training

o Image-enoder projects images with their captions into a visual space.

o Let's look at the effect that contrastive loss, reconstructive loss, and image

resolution has: Setup Results

. . . Model Arch. Image Res. Data 0-shot 4-shot 8-shot
o Image resolutions has the biggest impact...
£ AlMgoom ViT/600M 36.6 56.6 60.7
m Higher resolution -> better S AIM;p ViT/1B 224  DFN-2B 37.9 595 63.3
o AIM3p ViT/3B 389 60.9 64.9
o then model size.... CLIPDFN+VeCap ViT-L DFN-5B+VeCap 36.9 58.7 62.2
- Larger model -> better o CLIPpFN V%T—H 224 DFEN-5B 375 570 614
;5 CLIPDFN+VeCap ViT-H DFN-5B+4VeCap 37.5 60.0 63.6
o and finally training data composition. 5 iT-
Yy g P § CLIPDFN+VeCap V¥T L DFN-5B+ VeCap 39.9 624 66.0
. heti tion dataset 3 CLIPDFN4Vecap ViT-H 336 40.5 62.6 66.3
m  Adding a synthetic cap CLIPOpenar  ViT-L ImageText-400M 39.3 62.2 66.1
m (VeCap-300M) helped increase performance CLIPpFN ViT-H 378  DFN-5B 40.9 625 66.4

Table 1: MM1 pre-training ablation across different image encoders (with 2.9B LLM).
Note that the values in the Data column correspond to the data that was used for the
initial training of the image encoder itself, not MM1. Recon.: Reconstructive loss.
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Model Architecture Ablations: Vision-
Language Connector

e The vision-language connector projects the visual representation into the
same space as the LLM.

e Let’s see the effect of the number of visual tokens, the image resolution,

average pooling, attention pooling, and convolutional mapping has:
e Authors found that:

o The number of visual tokens and image resolution matter most! (More the better)
o The tvpe of VL connector has little effect.

|- Avg. Pool Att. Pool . C-Abstractor

AW
dshot
A
8_-sh0t

224px. 336px, K K <
Gatks Gt ks 1441 ks Gt ks Gedrks 140 ks Gl ks GArks

,
224px, 336px, 3306px.

224px,

1 4dks

-

N)

d Fig. 4: 0-shot, 4-shot, and 8-shot ablations across different visual-language connectors
for two image resolutions, and two image token sizes.




Model Architecture Ablations: Pre-
training Data

e Let’s see the effect captioned images, interleaved images and text, and only
text has on pre-training.

[+
o
[+
o

- Caption D Caption4Text

o
o
o
o

'I. 100/0 [Z] 66 /33 [§] 50/50 [If] 33/66 [ 0/100 I’

_l- 100/0 [ 91/9 [I§ 86/ 14 [ 66/33 |_

/o VeC / VeC
8 o 8 [ Interleaved [fj] Interleaved Text 8 8 ol s . .
g hea g = = at = ;
o0 o v @ ) < noany @8 8z

EGO , Eeo YT SB n Eso :; 5855 b §60
; | o % 7 %
A~ A %
; 5. I & 4 -

?40 %040 - ’ 5040 ’ 8040
i & ’ g ‘ e
3 Z g > ’ 4
20 20 /| = ‘ .

20 20 g -
TextCore 0-shot 4-shot 8-shot TextCore 0-shot 4-shot  8-shot TextCore O-shot 4-shot 8-shot TextCore O-shot 4-shot 8-shot

(a) Caption/Interleaved Mixing (b) Importance of Text-Only Data (c¢) Image/Text-Only Mixing Ablations (d) Impact of VeCap Data

Fig. 5: Data Ablations. For each ablation, we present four different metrics: TextCore,
0O-shot, 4-shot, and 8-shot. (a) Results with image data where we present five different
mixing ratios between interleaved and captioned data. (b) Results with and without
text-only data. We mix the text-only data separately with captioned and interleaved
data. (c¢) Results with different mixing ratios between image data (caption and inter-
leaved) and text-only data. (d) Results with and without including VeCap as part of
caption data.
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Model Architecture Ablations: Pre-
training Data

e Interleaved data is vital for few-shot and text-only performance
o Caption data improves zero-shot performance

o0
o

I 100/0 [ 66/33 [ 50/50 [i] 33/66 [ 0/100

Average Performance

TextCore 0O-shot 4-shot  8-shot
(a) Caption/Interleaved Mixing
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Model Architecture Ablations: Pre-
training Data

e Text-only data only improves few-shot and text-only performance.

80 - Caption Caption-} Text
:
g 60
"E )
Spao |;:.;f]
- [
< [j'.{::
20 -

TextCore 0-shot 4-shot 8-shot
.‘A_Uo IVERSITY (b) Importance of Text-Only Data

BIIIE TRGINIA
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Model Architecture Ablations: Pre-
training Data

o Thoughtfully mixing text and image data can lead to optimal multi-modal
performance while maintaining text performance.

00
=

[ 100/0 [ 91/9 [I§ 86/ 14 [gfj 66/33

2
62.7

62

©
8o

)
=
|
58.7
58.3
57.9
57.1

54.6

54.2

52.2
54

N
(=]

N

Average Performance

S S S SSS N

ﬂ

3]
=]

TextCore 0-shot 4-shot  8-shot
(c) Image/Text-Only Mixing Ablations
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Model Architecture Ablations: Pre-
training Data

o Synthetic data helps with few-shot learning

00
o

7] w/ VeCap

[ w/o VeCap

@
=
|

Average Performance
z
l

(V]
o

TextCore 0O-shot  4-shot  8-shot
(d) Impact of VeCap Data
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Building the MM1 Model

e Image-encoder:
o ViT-H model with 378x378 resolution, pretrained with CLIP objective on DFN-5B
dataset
o (motivated by importance of high image resolution)
Vision-language connector:
o C-abstractor with 144 tokens.
o (Motivated by importance of many image tokens).
Data:
o 45% interleaved image-text documents
o 45% image-text pair documents
o 10% text-only documents
o (Motivated to maintain a balance between zero-shot and few-shot performance
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Model Scaling

o Initial Grid Search at Smaller Scales:

o Conducted a grid search for optimal learning rates at smaller model sizes (9M,
85M, 302M, 1.2B parameters) to gather data efficiently without excessive
computational costs.

o Utilized linear regression in log space based on smaller models to predict

imal learnino ratec far laroer crala 3 ] .
optim LSiapaal) " BTATING roa 5535) s, resulting in the formula:

e Replaced traditional validation loss metrics with direct 8-shot task
performance to optimize learning rates, focusing on real-world applicability.

o Simple Scaling Rule for Weight Decay:
o Adopted a simple rule to scale weight decay proportionally to the learning rate,
setting A=0.1n, ensuring consistency across different model sizes.
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Model Scaling with MoE

e Mixture-of-Experts (MoE) scales up the total number of model parameters
while maintaining constant activated parameters per instance, enhancing
model capacity without significantly impacting inference speed.

e Two specific models were designed:
o a 3B-MoE with 64 experts and a
o 7B-MoE with 32 experts

e To convert a dense model to MoE, only the dense language decoder is
replaced with an MoE decoder, while other components like the image
encoder remain unchanged.

e MoE models use the same training hyperparameters and conditions as the
dense models, ensuring consistency in the training process.

== UniversiTY | ENGINEERING

BIIE “9\/IRGINIA

Department of Computer Science




Model Shot Captioning Visual Question Answering

P re - t r a-i n -i n g Res u ltS COCO NoCaps TextCaps VQAv2 TextVQA VizWiz OKVQA

MM1-3B Model Comparisons

: of 73.0 - - 49.2 30.1 28.9
Flamingo3B( 5 o0 - -S54 324 34 46
) — 0 735 556 633  46.2
e The family of MM1 models beat 8 114.6 104.7 88.8 63.6
baselines in both Caption and MM1-7B Model Comparisons
of  46.0* 36.8 25.4 50.9
VQA. IDEFICSOB (58] s oror 868 _ 632 _ 564 215 _ 404 417
o Notably, MM1-30B can beat ™ of 794 - ~ 518 . : .
Flamingo 80B s I R S
Emu2-14B m 8 - - - waa : :

0 76.3 61.0 64.2 47.8
8 116.3 106.6 88.2 63.6

MM1-30B Model Comparisons

of  91.8% 65.0 56.8 60.0
IDEFICS-SOB 8  114.3* 105.7 77.6 64.8

Flamingo-80B 8 1088 - = 65.6
1 NS 00 S O L O (O
0 - - - 33.3
Emu2-37B 8 = = = 67.8
e ___w% - - ___-__688_ 503 570 571 _
0 703 546 649 489
MM1-30B 8 1231 1116 929 709
.‘.-A‘-[jo IVERSITY | ENGINEERING 16 125.3 116.0 97.6 71.9
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Supervised Fine-tuning

e Supervised Fine-Tuning Data Mixture:

o Utilizes approximately 1.45M SFT examples from a diverse set of datasets.

o Data includes instruction-response pairs generated by GPT-4, vision-language (VL)
datasets for natural and text-rich images, and document/chart understanding.

o Includes a text-only dataset for text instruction-following capabilities.

o Datasets are formatted for instruction-following and mixed for random sampling
during training.

e SFT Configuration and Evaluation:

o Both the image encoder and the language model backbone are kept active

(unfrozen) during SFT.

e Models are evaluated across 12 MLLM benchmarks
= UNIVERSITY | ENGINEERING
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Supervised Fine-tuning (SFT)

e Scaling to Higher Image Resolutions:
o Positional embedding interpolation is used to adapt the vision transformer backbone for
higher resolutions (448x448 to 672x672 pixels).
o Supports image resolutions up to 672x672, with a representation of 2,304 image tokens
due to a patch size of 14x14.
e Sub-image Decomposition for Even Higher Resolutions:
o For ultra-high resolutions (e.g., 1344x1344), the image is first downscaled to 672x672 for
a high-level representation.
o The same high-resolution image is also divided into four 672x672 sub-images to capture
detailed visual information.
o Positional embedding interpolation is applied to each sub-image, enabling support for
resolutions as high as 1792x1792 in experiments.
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SFT Results

Model [VQAY? VQAT SQA'| MMMU MathV MME® MME® MMB SEED POPE LLaVAW MM-Vet
3B Model Comparison

MobileVLM [20] - 475 61.0| —/- ~ 12889 - 596 —/— 849 - &
LLaVA-Phi [135] 714 486 684 —/- -~ 13351 - 598 -/~ 850 - 28.9
Imp-v1 ‘ 79.45 59.38 69.96| /- ~ 14340 - 6649 - 8802 - 33.1
TinyLLaVA [133] 799 591 69.1| —/- - 14649 - 669 /- 864 758 320
Bunny (42] 798 - 70.9(38.2/33.0 - 1488.8 289.3 686 62.5/- 86.8 - -
Gemini Nano-2 67.5 659 — | 326/~ 306 - - - - - - -
MM1-3B-Chat 82.0 719 69.4 33.9/33.7 32.0 14825 279.3 67.8 63.0/68.8 87.4 721 437
MM1-3B-MoE-Chat 825 72.9 76.1 38.6/35.7 32.6 1469.4 303.1 70.8 63.9/69.4 87.6 768 422
7B Model Comparison

InstructBLIP-7B [24] - 501 605| -/— 253 - - 360 534/- - 60.9  26.2
Qwen-VL-Chat-7B[5] | 782 615 68.2(35.9/329 — 1487.5 360.7 60.6 58.2/65.4 - - =
LLaVA-1.5-7B |74 785 582 66.8| —/- ~ 15107 316.1 64.3 58.6/66.1 859 634  31.1
ShareGPT4V-7B 80.6 604 684| —/- ~ 15674 3764 688 —/- — 72.6 ~
LVIS-Ins4V-7B 796 587 683| —/- -~ 15282 - 662 60.6/- 860 670 315
VILA-7B 799 644 682 —/- -~ 15313 - 689 61l1/- 855 69.7 349
SPHINX-Intern2 [36] | 755 - 70.4| -/~ 355 12604 2046 57.9 688/~ 869 57.6 365
LLaVA-NeXT-7B [75] | 81.8 649 70.1| 358/- 346 1519 332 674 -/70.2 8653 81.6 439
MM1-7B-Chat 82.8 72.8 72.6 37.0/35.6 359 1529.3 3289 723 64.0/69.9 86.6 815  42.1
MM1-7B-MoE-Chat ~ 83.4 73.8 74.4 40.9/37.9 40.9 1597.4 394.6 72.7 65.5/70.9 87.8 847 452
30B Model Comparison

Emu2-Chat-37B [105] | 84.9 66.6 — [36.3/34.1 - - - ~ BEsr =~ - 48.5
CogVLM-30B (114 834 681 - [32.1/30.1 — ~ ~ - - — 56.8
LLaVA-NeXT-34B [75]| 83.7 69.5 81.8|51.1/44.7 465 1631 397 79.3 —/759 87.73 896  57.4
MM1-30B-Chat 83.7 735 81.0 44.7/40.3 39.4' 1637.6 431.4 751 65.9/72.1 87.6 89.3 487
Gemini Pro [106] 71.2 746 - 479/ 452 - 436.79 73.6 —/70.7 - - 64.3
Gemini Ultra |106] 778 823 -  594/- 530 - - - - - - -
GPT4V |1 772 780 - 56.8/55.7 49.9 - 517.14 75.8 67.3/69.1 - — 67.6




SFT Results

o Competitive results with current SOTA

e MoE models tend to work better

e Higher image resolution and pre-training steps has a positive impact on SFT
performance.

e Lessons for pre-training do transfer to SFT
o Pre-training with caption-only data improves SFT metrics, and
o different VL connector architectures have negligible impact on final results.
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Conclusion

e For MLLMs, authors explore the most optimal combination of:
o Model architecture
o Type of data
o Training procedure
e They also create their family of MM1 models, based on the optimal

combination they found. The MM1 models exhibit SOTA performance on

captioning and visual question answering (VQA).

e Authors also find their optimal configuration also applies when models face

SFT.
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Thank you!
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