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Overview

Instruction tuning refers to the process of further training LLMs on a dataset consisting of pairs.

● Methodology of IT

● Construction of Instruction Tuning Datasets

● Instruction Tuned Models

● Multi-Modality Instruction Finetuning

● Applications in Different Domains

● Efficient Tuning Techniques

● Conclusion

https://github.com/xiaoya-li/Instruction-Tuning-Survey

https://github.com/xiaoya-li/Instruction-Tuning-Survey


Example form Instruction tuning Dataset

instruction



General pipeline of instruction tuning

● instruction + (optional input) + anticipated output
○ Data integration from annotated natural language datasets
○ Generating outputs using LLMs



Instruction Tuning Datasets
● Human-Crafted

○ manually annotated or sourced from 
the internet

○ manual gathering and verification
○ costly
○ limited diversity
○ lack creativity (for novel task) and 

expertise (for writing solutions)

● Synthetic Data
○ pre-trained models
○ faster and more cost-effective
○ high quality and variety



Pipeline of Synthetic Data generation
● Semi-automated process for instruction tuning a pretrained LM using instructions 

generated by the model itself



Instruction tuned model 

● gather queries from fine-tuned LLMs —> use these queries as a basis to fine-tune subsequent LLMs
● impart knowledge from a highly capable teacher model to a less complex, more computationally 

efficient student model

performances matches or 
even surpasses GPT-3



Multi-modality instruction fine-tuned LLMs
● Instruction tuning has expanded to multi-modal tasks, with datasets combining 

instructions with images, text, video or audio inputs and outputs.



Image Editing: InstructPix2Pix

generate an image editing dataset, and train a diffusion model on that dataset

finetuned GPT-3, text-to-image model with prompt-to-prompt method (make the generations similar)



Domain-specific instruction fine-tuned LLMs

● These applications highlight the adaptability and performance improvements 
achieved through instruction tuning 



Efficient Tuning Techniques for LLMs

optimize LLMs for downstream tasks by adjusting a small fraction of parameters, which 
makes LLM fine-tuning more effective and scalable for various applications 

● HINT (Hypernetwork-based Instruction Tuning)
○ Incorporates long instructions and additional few-shots without increasing compute

● LOMO (LOw-Memory Optimization)
○ Enables full parameter fine-tuning of LLMs using limited computational resources

● Delta-tuning 
○ Applies optimal control principles to guide model behavior on downstream tasks

● LoRA (Low-Rank Adaptation)
○ Reduces the number of trainable parameters and memory usage

● Qlora (Quantization and Memory Optimization for LLMs Fine-Tuning)
○ Enables training LLMs on limited computational resources with no degradation



Conclusion

● Benefits:
○ aligns LLMs' next-word prediction with user instruction objectives
○ more controlled and predictable model behavior 
○ rapid adaptation to specific domains without extensive retraining
○ IT models perform well with minimal training data

● Limitations:
○ datasets may lack quantity, diversity, and comprehensive evaluation methodologies
○ IT models may focus on surface-level patterns rather than understanding underlying tasks
○ Models imitating proprietary styles may lack generalization without diverse instruction 

datasets, emphasizing the need for improving base model quality and instruction diversity



Delta Tuning: A Comprehensive 
Study of Parameter

Efficient Methods for Pre-trained 
Language Models

Ding et. al, 2022

Tsinghua University 



Motivation:

● Fine-tuning pretrained language models (PLMs) models to specific tasks or 

domains have shown pretty impressive results in many downstream tasks.

● There is a huge computational toll when fine-tuning all the parameters of a 

PLM, which makes it impractical to do in many circumstances.

● This problem has led to a branch of research dedicated to adapting PLMs to 

specific tasks in a parameter efficient manner. 

● The authors coin the new term “Delta Tuning”.

● These adaptive methods all essentially learn a set of adaptive or ‘delta’ 

parameters in the adaptation phase of learning.



What are the different types of delta-
tuning?



Addition-based delta-tuning

● Introduce M additional parameters that don’t exist to the original model.



Addition-based delta-tuning :Adapter-
based tuning 
● This method involves adding neural modules called 

adapters to certain parts of the PLM. 
● Adapters usually contain down-projection and up-

projection components.
● Residual connection is added to the end of the up 

projection to preserve the original information and 
promote learning stability.

● Using adapters, often only about 0.5% to 8% of the total 
model parameters need tuning.

● Adapter-based tuning is advantageous in multi-task learning 
settings

(Houlsby et al.,2019)



Addition-based delta-tuning: Prompt-
tuning

● Prompt-based tuning doesn't involve modifying the internal structure of 
Transformer models but instead, it involves wrapping the input with 
additional context, known as prompts, to guide the model's output.

● These prompts are essentially continuous tokens or sequences that are 
added to the input to mimic pre-trained objectives, which helps in 
leveraging the knowledge captured during the model's initial extensive pre-
training on vast amounts of data. 



Specification-based delta-tuning

● These methods specify some parameters of the original model to be frozen, 
while others should remain trainable.

● “When w_i ∈ W, ∆w_i is the incremental value from wi to w′_i, else, ∆wi = 
0”



Specification-based delta-tuning: 

● In heuristic specification, certain parameters are directly specified for 

optimization based on simple yet effective strategies.
○ Only fine-tuning one-fourth of the final layers of BERT about 90% of the performance 

compared to full parameter fine-tuning. Or Just optimizing bias terms, while keeping 

other parameters frozen, could still yield over 95% performance on several benchmarks. 

● Other methods using algorithms to identify and optimize a selective set of 

parameters:
○ Diff pruning: Fine-tuning, but the number of parameters changed is minimized with the 

L0 Norm.

○ Masking method: learning selective masks that determine which weights of the model 

should be updated for specific tasks. 



Reparameterization-based delta-tuning

● Goal is to reparameterize original weights W to a more efficient form via 
some transformation function: 

Non-reparameratized 
weights

Union of new reparameterized weights



Reparameterization-based delta-tuning:
Intrinsic Dimensions of PLM Adaptation

● This method is based on the finding that the full-parameter fine-
tuning of pre-trained models (PLMs) can be effectively 
reparameterized into a low-dimensional subspace.

● By transforming parameters to a low-dimensional subspace, we 
can retain up to 85% performance when compared to traditional 
fine-tuning.



Reparameterization-based delta-tuning:
Intrinsic Space of Multiple Adaptations

● This approach takes the reparameterization concept further by 
hypothesizing that adaptations to multiple tasks can be 
optimized within a shared low-dimensional intrinsic subspace.

● Instead of creating separate adaptations for each task, it's 
possible to reparameterize these adaptations within a single 
low-dimensional subspace.

● They showed that by tuning only 250 parameters in this 
subspace, they could recover 97% and 83% of full prompt 
tuning performance for 100 seen and 20 unseen tasks, 
respectively.



Reparameterization-based delta-tuning:
Intrinsic Rank of Weight Differences
● Inspired by the concept of intrinsic dimensions, this method, 

specifically LoRA, hypothesizes that weight changes during 
model tuning have a low intrinsic rank.

● It involves optimizing a low-rank decomposition of the 
original weight matrices specifically within self-attention 
modules.
○ Less weights to train.

● This method has matched the performance of traditional fine-
tuning on the GLUE benchmark.

● Effectiveness demonstrated across various scales and 
architectures of PLMs: focusing on critical components rather 
than the entire model can yield efficient and effective 
adaptation.



Performance

Methodology: 

● Comparison involved vanilla fine-tuning (FT) and four delta tuning methods—
Prompt Tuning (PT), Prefix-Tuning (PF), LoRA (LR), and Adapter (AP) across over 
100 diverse NLP tasks.

Performance Results:

● General finding: Delta tuning methods, with fewer tunable parameters, often 
underperform compared to FT. However, the performance gap is not vast, indicating their 
potential in large-scale applications.

● Relative Performance: FT generally outperforms delta methods, with the rank order being 
FT > LR > AP > PF > PT.

● The structure of delta tuning methods appears more influential than the sheer number of 
tunable parameters in determining performance.

● Larger model sizes (e.g., T5LARGE) show improved performance for PT, suggesting that 
the scale can mitigate some performance deficits.



Convergence
Convergence Results:

● Visualization of training progress reveals that FT converges fastest, followed closely 
by AP and LR, with PF showing slower convergence rates.

● Convergence Dependency: The convergence of delta tuning methods is not highly 
sensitive to the number of tunable parameters but is influenced more by the 
structure of the tuning approach.

● Scaling Benefits: As PLM scales increase, delta tuning methods show faster 
convergence, which corroborates the performance benefits seen at larger scales.



Efficiency

Efficiency Results:

● Delta tuning methods significantly reduce GPU memory usage compared to FT, 
particularly at smaller batch sizes—saving up to three-fourths of GPU memory.

● Efficiency across Scales: Even at larger batch sizes, delta tuning maintains a 
substantial memory efficiency advantage, saving at least one-third of GPU 
memory.



The Power of Scale for Delta Tuning

Scaling Impact on Performance and Convergence:

● Significant improvements in both performance and convergence as PLM size 
increases from T5SMALL to T5XXL.

● Enhanced effects seen across various delta tuning methods on NLP tasks like 
MNLI, QNLI, and SST-2.

Different Delta-tuning Performance Across Scales:

● Prompt tuning underperforms on smaller-scale models but matches fine-tuning 
performance on models over 10 billion parameters.

● Other delta tuning methods competitive with fine-tuning even at smaller scales.



Applications 

● Fast Training and Shareable Checkpoints
○ Delta tuning makes for reduced training time memory efficient adaptation, and 

facilitates the sharing of trained checkpoints through platforms like AdapterHub and 
OpenDelta, promoting community-wide accessibility to efficient model tuning.

● Multi-Task Learning
○ Supports the development of versatile AI systems capable of handling multiple tasks 

simultaneously.
● Mitigation of Catastrophic Forgetting

○ By tuning minimal parameters, delta tuning helps maintain the knowledge acquired 
during pre-training, reducing the risk of catastrophic forgetting.

● Language Models as Services and In-Batch Parallel Computing
○ Delta tuning's lightweight nature makes it ideal for PLM services, reducing 

computation and storage requirements for service providers.
○ Enhances the practicality of services by supporting in-batch parallel computing, 

allowing simultaneous training or evaluation of instances from multiple users.



Conclusion

1. Categorize and discuss the various delta tuning methods

2. They run some experiments and analysis on a variety of delta-tuning 

methods.

3. Discussion on applications of delta-tuning.



DoRA: Weight-Decomposed Low-
Rank Adaptation
NVIDIA

Presenter: Guangzhi Xiong



Pattern Analysis of LoRA and FT
Research Question:

- Why is there an accuracy gap between LoRA and FT

Analysis Method (Weight Decomposition Analysis):

- The authors examine the updates in both magnitude and direction of the 
LoRA and FT weights relative to the pre-trained weights

- The weight decomposition of                 can be formulated as

,



Pattern Analysis of LoRA and FT (cont.)
Analysis Method (cont.):

- Model: VL-BART. LoRA: Q/V matrix in SelfAttn.
- The authors decompose

- The pretrained weight W_0
- The full fine-tuned weight W_FT
- The merged LoRA weight W_LoRA

- The magnitude and directional variation between W_0 and W_FT

t: training step
n: column index
k: num. of columns



Pattern Analysis of LoRA and FT (cont.)
Analysis Results:

- LoRA exhibits a consistent positive slope trend across all the intermediate steps.
- FT displays a more varied learning pattern with a relatively negative slope.
- LoRA does not show proficiency in executing slight directional changes alongside 

more significant magnitude alterations, or vice versa.



Weight-Decomposed Low-Rank Adaptation (DoRA)

Method:

- decomposes the pretrained weight 

into its magnitude and directional

components

- decompose the directional 

component with LoRA

Formula:



Weight-Decomposed Low-Rank Adaptation (cont.)

Visualization results

- DoRA, and FT are characterized by a distinct negative slope

- FT: pre-trained weights possess substantial knowledge → having a larger magnitude or 

direction alteration alone is sufficient



Experiments (Commonsense Reasoning)



Experiments (Vision)
Image/Video-Text Understanding

Video Instruction Tuning



Experiments (Compatibility)
DVoRA = VeRA + DoRA



Experiments (Robustness)



Recent Large Language Models 
Reshaping the Open-Source Arena

Blog Post by Deci Team

Presenter: Sabit Ahmed



Overview

There is explosion of LLMs in current time. Models are released on a daily basis. 

This article helps to-

► Reflect the latest developments in open source LLMs

► Curate and select a list of intriguing and influential models

► Provide an in-depth exploration with key details i.e., architectural design, 

benchmark scores, etc.



Background

► Most commonly used architecture: Llama 2 7B

► Attentions used: Multi-head attention (MHA), multi-query attention (MQA), 

group-query attention (GQA)

► Alignments:

► Direct Preference Optimization (DPO)

► Benchmark used to evaluate:

► MT-Bench (provides a score, the higher the better)

► Chatbot Arena Leaderboard (ranks LLMs based on human pairwise comparisons)



Qwen1.5 (Alibaba Cloud)
● Version: Base and chat (Sizes: 0.5B, 1.8B, 4B, 7B, 14B, 72B)

● Fine-tuning and Alignment Details: Alignment with DPO (Direct preference 

Optimization)

● Architectural Notes: Uses Transformer architecture, SwiGLU activation, 

attention QKV bias, GQA, and combines sliding window attention with full 

attention

● Performance: Qwen1.5-72B-chat outperforms Claude-2.1, GPT-3.5-Turbo, 

Mixtral-8x7b-instruct, etc (MT-Bench and AlpacaEval).

● Interesting Facts: Base model supports 12 languages





Yi (01.AI)

● Versions: Base and chat (Sizes: 6B, 9B, 34B)

● Pretraining Data: A curated dataset of 3.1 trillion English and Chinese tokens 

derived from CommonCrawl through cascaded data deduplication and quality 

filtering

● Fine-tuning and Alignment Details: Base models underwent SFT using 10K 

multi-turn instruction-response dialogue pairs

● Architectural Notes: SwiGLU activation, GQA, and RoPE

● Performance: Y-34B performs close to GPT 3.5. (#18 on Chatbot Arena 

leaderboard)

● Interesting Facts: Innovative data cleaning pipeline, 200k context window



Smaug (Abacus.AI)
● Versions: Chat (Sizes: 72B, 34B)

● Pretraining Data: 72B - same as Qwen 1.5; 34B - same as Yi 34B

● Fine-tuning and Alignment Details: Alignment with Direct Preference 

Optimization-Positive (DPOP)

● Architectural Notes: Smaug-72B is based on Qwen-72B; Smaug-34B is based on 

Yi-34B

● Interesting Facts: First model to surpass an average of 80% on Open LLM 

Leaderboard, One of the top models.





Mixtral-8x7B (mistraIai)
● Sizes: 46.7B parameters, uses only 12.9B parameters per token

● Versions: Base and instruct

● Pretraining Data: Undisclosed

● Fine-tuning and Alignment Details: Undisclosed

● Architectural Notes: Mixture of Experts (MoE) using 8 Mixtral-7B models

● Performance: MT Bench score of 8.3. In terms of human evaluation, it is tied 

with Claude-2.1, GPT-3.5 Turbo 0613 and Gemini Pro on the Chatbot Arena 

leaderboard.



DBRX (Databricks)
● Sizes: 132B parameters; uses only 36B per input

● Versions: Base and instruct

● Pretraining Data: Carefully curated dataset comprising 12T tokens from text and 

code data; employed curriculum learning strategies

● Fine-tuning and Alignment Details: Undisclosed

● Architectural Notes: Uses GLU, RoPE, and GQA; GPT-4 tokenizer

● Performance: Surpass Mixtral-8x7b-instruct-v0.1

● Interesting Facts: Fine-grained MoE model, using 4 out of 16 experts per input 

(For Mixtral 2 out of 8 experts were used)



SOLAR-10.7B (Upstage AI)
● Versions: Base and instruct (Sizes: 10.7B)

● Fine-tuning and Alignment Details: Mix of open-source datasets along with a 

specially synthesized math QA dataset aimed at boosting the model’s 

mathematical abilities (i.e., Math-Instruct datasets)

● Architectural Notes: Depth upscaling, starting with a Llama 2 7B architecture 

with Mistral 7B weights, adding layers to increase model depth, followed by 

continued pretraining

● Performance: SOLAR-10.7B-v1.0-instruct is #30 on Chatbot Arena leaderboard





TULU v2 (Allen Institute for AI)

● Sizes: 7B, 13B, 70B

● Versions: Instruct and chat

● Pretraining Data: Same as Llama 2

● Fine-tuning and Alignment Details: SFT on the TULU-v2-mix dataset; DPO 

alignment on the UltraFeedback dataset

● Architectural Notes: Same as Llama 2

● Interesting Facts: DPO significantly enhances model performance on 

AlpacaEval benchmark while maintaining performance on other tasks

● Performance: MT Bench score of 7.89. Tied with Yi-34-B-Chat, GPT-3.5-Turbo 

models based on Chatbot Arena leaderboard



WizardLM (Microsoft)
● Sizes: A series of models fine-tuned from Llama 7B, 13B, 30B, 70B

● Versions: Base and instruct

● Fine-tuning and Alignment Details: Fine-tuning using the Evol-Instruct 

approach, which uses LLMs to generate complex instructions

► Evol-Instruct: autonomously generate open-domain instructions across different 

complexity levels

► In-depth evolving and in-breadth evolving

● Architectural Notes: Same as Llama

● Performance: Outperforms ChatGPT in certain complex tasks.

● Interesting Facts: Use of LLMs to automatically rewrite an initial set of 

instructions into more complex ones





Figure: Other Notable Large Language Models







Thank you!



Appendix



Addition-based delta-tuning :Adapter-
based tuning 
● This method involves adding neural modules called 

adapters to certain parts of the PLM. 
● Adapters usually contain down-projection and up-

projection components: 
● This component projects input features from a high-

dimensional space d to a lower-dimensional space r using a 
parameter matrix Wd. A nonlinear function f(⋅) is then 
applied to this reduced representation.

● Following the down-projection and nonlinear 
transformation, the up-projection component maps the 
data back from the r-dimensional space to the original d-
dimensional space using another parameter matrix Wu .

(Houlsby et al.,2019)



Addition-based delta-tuning :Adapter-
based tuning 
● Residual connection is added to the end of the up 

projection to preserve the original information and 
promote learning stability.

● Using adapters, often only about 0.5% to 8% of the total 
model parameters need tuning.

● Adapter-based tuning is advantageous in multi-task learning 
settings, where different adapter modules can be trained 
for different tasks and combined to leverage cross-task 
knowledge. 

(Houlsby et al.,2019)



Addition-based delta-tuning: Prompt-
tuning

● Prefix Tuning:  this technique involves prepending trainable prefixes to the 
input and hidden states of each Transformer layer. These prefixes are 
represented by a parameter matrix P and are optimized during training while 
the original model parameters remain unchanged. This method can be 
applied to both autoregressive and encoder-decoder models.

● Prompt Tuning: this method simplifies the concept by adding soft prompts 
only at the input layer. These prompts are also trainable and are optimized 
via gradient descent and the original model parameters are kept frozen.



Addition-based delta-tuning: Prompt-
tuning

● Both prefix and prompt tuning are shown to achieve promising performance, 
particularly in low-data scenarios, demonstrating that small-scale tuning can 
be effective.

● But,....
● Despite their advantages, prompt-based methods can be challenging to 

optimize, particularly with smaller datasets and model sizes.
● Training of soft prompts often converges slower than traditional fine-tuning 

methods, making it a critical area for further research and optimization.



Specification-based delta-tuning: 
Heuristic-based tuning

● In heuristic specification, certain parameters are directly specified for 

optimization based on simple yet effective strategies.

● Lee et al. (2019): Demonstrated significant performance by only fine-tuning 

one-fourth of the final layers of BERT and RoBERTa, achieving about 90% of 

the performance compared to full parameter fine-tuning.

● BitFit (Zaken et al., 2021): Showed that just optimizing bias terms, while 

keeping other parameters frozen, could still yield over 95% performance on 

several benchmarks. It was noted, however, that this strategy mainly 

showed effectiveness in smaller-scale models.



Specification-based delta-tuning: 
Learn the specification

● Instead of manually choosing which parameters to optimize, this approach involves 

using algorithms to identify and optimize a selective set of parameters:

● Diff Pruning: Reparameterizes the model’s parameters by adding a difference vector 

to the pre-trained parameters, aiming for sparsity in this difference vector. This 

method uses a differentiable approximation to the L0-norm to encourage fewer 

parameters to change, although it requires more GPU memory.

● Masking Method: Involves learning selective masks that determine which weights of 

the model should be updated for specific tasks. A binary matrix controls the updates 

through threshold functions and noisy estimators during back-propagation.

● These can efficiently adapt models to new tasks with fewer parameters being tuned, 

but there are practical challenges like increased memory demands (as seen in diff 

pruning) and potential performance limitations in larger models.



Reparameterization-based delta-tuning:
Intrinsic Dimensions of PLM Adaptation

● This method is based on the finding that the full-parameter fine-
tuning of pre-trained models (PLMs) can be effectively 
reparameterized into a low-dimensional subspace.

● Some experiments show fine-tuning in a substantially lower-
dimensional space can still achieve over 85% of the performance 
of traditional fine-tuning methods.

● It suggests that PLMs might function as compression frameworks, 
simplifying optimization from high-dimensional to low-
dimensional spaces. This property becomes more pronounced in 
larger models, indicating that pre-training might inherently 
reduce a model's intrinsic dimensionality.



Theoretical Perspective into Delta Tuning: 
Optimization Perspective for Delta 

● Objective of Delta Tuning:

○ Fine-tune a small subset of parameters (δ) to achieve performance similar to full 

model fine-tuning.

○ Reduce memory and computational costs compared to tuning all parameters (θ).

● Optimization Framework:

○ Original function: F(θ) for the entire model.

○ Delta tuned function:             focusing on a subset of parameters.

○ Initial State:           where ideally

● Optimization Strategy:

○ Analyze effects using conditions where       is Lipschitz continuously 

differentiable.

○ Emphasize optimization in a lower-dimensional subspace for efficiency.



Theoretical Perspective into Delta Tuning: 
Optimization Perspective for Delta 
● Low-Dimensional Approaches:

○ Solution Space: Implement techniques like LoRA and BitFit, focusing on critical parameter 
subsets such as low-rank matrices or bias terms.

○ Functional Space: Utilize adaptations in data flow via methods like Adapter and Prompt 
Tuning, modifying the input or feature space effectively.

● Practical Benefits:
○ Efficiency and Stability: More efficient and stable training processes due to reduced 

parameter count and focused tuning.
○ Scalability: Lower resource demands make it feasible for broader applications, including 

on less capable hardware.
● Theoretical Insights and Challenges:

○ Error Bound: Small deviations in δ lead to minor performance impacts, underlining 
robustness.

○ Transferability: Demonstrated potential for adaptability across different tasks, though 
effectiveness can vary by specific conditions.

● Unified Perspective:
○ Delta tuning methods share a common approach of low-dimensional modifications, 

optimizing critical aspects of the data flow in large models.



Theoretical Perspective into Delta Tuning: 
Optimal Control Perspective for Delta Tuning 

Connection to Optimal Control:

● Delta tuning viewed through optimal control, using control problem frameworks to 
model the training of deep learning networks.

● Core Concept: The discrete-time control problem uses a sequence of parameter 
updates to minimize loss over iterations.

Theoretical Background:

● Discrete-Time Pontryagin's Maximum Principle (PMP): Minimizes a cost function over 
a sequence of actions controlled by parameters θt 

● Ensures that trajectory of state xt and co-state pt optimizes the Hamiltonian Ht

Method of Successive Approximations (MSA):

● Iterative optimization technique equated to the backpropagation used in training 
neural networks.

● Highlights how small, controlled changes in parameters (δ) guide the model to 
desired outputs efficiently.



Comparisons and Experimental 
Discoveries
1. Performance Comparisons:

● They conduct thorough comparisons among four representative delta tuning 
methods and traditional fine-tuning. This includes assessments of 
performance, convergence, and efficiency.

1. Combinability Analysis:
● They explore the combinability of three representative delta tuning methods 

by assessing their performance when methods are combined simultaneously 
and sequentially.

1. Scaling Law Investigation:
● They investigate the scaling laws, likely analyzing how changes in the size of 

the model or dataset affect the performance and efficiency of delta tuning 
methods.

1. Transferability Studies:
● They examine the transferability of delta tuning methods across different 

downstream tasks to see how well methods adapted for one task perform on 
others.



Combinations of Delta Tuning Methods
Sequential Combination Results:

● Conducted by splitting the tuning process into three stages, each optimizing a 
different method while freezing previous ones.

● Tested on RoBERTaLARGE with the SST-2 task.
● Found that while performance could improve with subsequent delta tuning 

methods, no optimal sequential combination emerged consistently across 
settings.

Generalization Gap Analysis:

● Delta tuning methods showed smaller generalization gaps compared to full fine-
tuning, indicating less overfitting.

● Combining delta methods enlarged the generalization gap to levels comparable 
with fine-tuning, suggesting effective memorization with fewer parameters.

● Manual templates did not significantly affect the generalization gap.



The Power of Scale for Delta Tuning

Innovative Delta Tuning Approaches:

● Last Layer Tuning: Optimizes the last encoder layer of T5, showing improved 
outcomes at larger scales.

● Selective Module Tuning: Random selection of modules for tuning enhances 
performance, especially in large-scale models.

Theoretical Insights and Implications:

● Larger PLMs with smaller intrinsic dimensionalities require fewer parameter 
adjustments for effective performance.

● Over-parameterization and comprehensive pre-training help prevent PLMs 
from getting stuck in local optima, speeding up convergence.



Task-level Transferability Evaluation

Delta Tuning Methods Studied:

● Four methods: prompt tuning, prefix-tuning, adapter, and LoRA.
● Applied across 12 tasks within five different categories: sentiment analysis, 

natural language inference, paraphrase identification, question answering, and 
summarization.

Findings:

● Performance is measured by the ratio of zero-shot transferring performance to 
the original performance on the training task.

● Within Same Task Category: Good performance when transferring delta 
parameters among tasks of the same category (e.g., from one sentiment analysis 
task to another).

● Across Different Task Types: Generally poor performance when transferring 
parameters among tasks of different types (e.g., from sentiment analysis to 
paraphrase identification).

● Notable exception where parameters trained on text generation tasks (like 
question answering and summarization) transfer effectively to sentiment 
analysis tasks. This suggests that text generation tasks may encapsulate broader 
linguistic knowledge useful for other types of tasks.



Task-level Transferability Evaluation

● The findings support the notion of a common subspace among various tasks, 
as previously introduced.

● Demonstrates promising potential for utilizing trained delta parameters for 
knowledge transfer across similar tasks, enhancing the utility of delta tuning 
methods in diverse applications.


