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Highlights

= Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Albert Gu*, Tri Dao*.
December 2023.
[Paper] [Code]

= FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré.
In Hardware Aware Efficient Training Workshop at ICML, 2022. Best Paper Award
In Sparsity in Neural Networks Workshop, 2022. Oral presentation
In NeurIPS: Proceedings of the 35th Neural Information Processing Systems Conference, December 2022.
[Paper] [Code] [IEEE Spectrum and Forbes articles about our submission to the MLPerf 2.0 benchmark using FlashAttention]
Usage: We've been very happy to see FlashAttention being widely adopted in such a short time after its release. This page contains a partial list of places where FlashAttention is being used.
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Motivation
e Self-attention mechanism enables transformer to learn long-range feature
representations well.

e However, Transformer-based models require high-end GPU with larger
memory for training and testing/deployment.



UOJD{}VERSITY ENGINEERING
IRGINIA Department of Computer Science

Motivation

e Self-attention mechanism enables transformer to learn long-range feature
representations well.

e However, Transformer-based models require high-end GPU with larger
memory for training and testing/deployment.

We need a model that not only requires less computing cost but also is still able
to capture long-range dependencies while maintaining high performance.

> State Space Model (SSM)



&= UNIVERSITY ENGINEERING
BIIIE “9\/IRGINIA

Department of Computer Science

Formulation of SSM

)

VB—-®)—.(»f | C —E—Y

Alt):
B(t):
Eih:
D(t):

g

X(t) = A()X(t) + B(t)U(t)
y(t) = C(t)X(t) + D(t)U(t)

state matrix

input matrix
output matrix
feed-forward matrix

U(t): input vector
X(t): state vector
y(t): output vector

Linear State-Space
Representation
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Formulation of SSM
X(t) = A(t)X(t) + B(t)U(¢)
y(t) = C)X(2).

y

Discretize

o
|

Continuous-time

v/ Continuous data
v Irregular sampling

X; = AX;_; + BU;

Yt:CXt
Output
—> Yk-1 Y« Yk+1
C C o
= r'J"‘ > r'J"l p !"J"i
e N e B B e e
B B B
Uk-1 Uk Uk+1
Input
Recurrent
v/ Unbounded context

v/ Efficient inference
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Formulation of SSM

ht = Kht—l + §Xt<:> ht = f(Uht—l + Wxt + b)

y, = Ch,. ye =Vh
(0]
O O o 0441
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U U U U
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Formulation of SSM

ht = Kht_l + ﬁxt

he = f(Uhe_y + Wx, +b) |

y, = Ch,. ye =Vh
0
O O
Z v 14 ' St-1
Oy —H>—0=~
Unfold T
U U
X X

Y

0

Xt = th—l + ﬁUt
yt = CXt

y, = CA'Bx + CA"Bx,

y, = CA°Bx + CA'Bx; + CA"Bxo.

/Convolutional Form

K = (CB,CAB,...,CA"B, ...)

y = x * K.

~
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SSM

e Similar to RNNs, SSM also suffers from the vanishing/exploding
gradients problem when modeling longer sequences.

HiPPO

e Combines the concepts of Recurrent Memory and Optimal Polynomial
Projections, which can significantly improve the performance of
recursive memory.

((2n+1)Y2(2k+1)1/2 ifn >k
A =<n+1 ifn=%k
0 ifn<k

\
Vanilla SSM + HiPPO —> Structured State Space Model (S4)

12
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From S4 to Mamba (S6)
h, = Ah;_; + Bx;
Y: — Cht
e 5S4 does not have selectivity

e Those discrete parameters are
constant.

e Mamba makes these
parameters vary based on the

input.
hy = sg(z¢)hi—1 + sg(zs) s
y: = sc(zt)ht

I want to order a hamburger

« >

Hidden State

I want to order a hamburger

« >

Hidden State
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Parallization

e In S4, we could precompute this kernel, save it, and multiply it
with the input x.

K = (CB, CAB,...,CA"B, ...)
y = x * K.

14
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Parallization

In S4, we could precompute this kernel, save it, and multiply it
with the input x.

K = (CB, CAB,...,CA"B, ...)
y = x * K.

In Mamba, these matrices change depending on the input.
If we want selectivity, we’'ll need to train with RNN mode.

15
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Parallel Scan

Whether an operation can be
done in parallel depends on
associative property.

m = (Ao,BOZEo) n = (14_11,31.731)

m@&n = (Ag, Bozo) ® (A1, Biz1)
= (Aoz‘il,filBo-’Bo + Biz1)

k = (A3, B3z3)

(men)®dk=me (ndk)

16
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Parallel Scan

Whether an operation can be
done in parallel depends on
associative property.

m = (A(),BOZB()) n = (14_11,312111)

mbPn= (AO,B()ZE()) D (1‘_11,31331)
= (AOAhAlBOxO + Biz1)
k = (A3, B3z3)

(men)®dk=me (ndk)

17
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Variations in Natural Language Processing

e |Language Modeling

e Voice

e Clinical note

e Translation

GSS-192M
8 GSS [41] arXiv22 NLP GSS-L-352M SSM-former Language modeling Perplexity 10.52(arXiv)(l) 5.6(steps/sec) URL
GSS-Hybrid-L-373M
SISNR 14.58(DNS 2023)(1)
9 Spiking-54 [42] arXiv23 NLP 0.53M S4 Deep Noise Suppression WB-PESQ 3.39 FLOPs:1.5 x 10° .
(Voice-Bank+Demand)(1)
DPMamba-XS 2.3M
2 DPMamba-S 8.1IM Fy .
10 DPMamba [43] arXiv24 NLP DPMa;Ilrl;a-aM 15.9M Mamba Speech Separation SISNR 24.4(WSJ0-2mix)(1) - -
DPMamba-L 59.8M
1 SPMamba [44] arXiv24 | NLP 6.14M Mamba Speech Separation SIENR1520 Macs 78.69 URL
: P (SPMamba self-built) g
Algorithmic Acc 0.93(Next letter)
. s Knowledge Acc 0.82(Location continent)
12 Grazzi et al. [45] arXiv24 NLP - Mamba Linguistic Acc 0.90(Plural singular) - -
Translation Acc 0.78(En es)
B seend | e | pstesem ||| esesledng | memaicing - :
1134 ng-Range Dependency Modeling Avg 7831(LRA)(1)
Language Modeling PPL‘A}V&SB(‘;V ,;182{?‘:)1(?:;’)(“
14 SPADE [47] - NLP SPADEbase++: 290M S4+Transformer | Long-Range Dependency Modeling Avg 86'8(CLU'E)( 1 sequence length 6k URL
Language Generation ROUGE-2-21A65(arXiv) 1) Memory: 27G
Zero-shot Avg 54.51
. DenseMamba-360M Common-Sense Reasoning (ARC_E,ARC_C)
L DenseMamba [48] LA s NLE DenseMamba-1.3B Mamba Question-Answering four-shot Avg 55.05 - L
(ARC_E,ARC_C)
- ~ . Prec 88.6(n2c2 challenge in 2018)
16 | ClinicalMamba [49] | arXiv24 NLP Cch’“], Ffmtfa_l;g{f Mamba C"I}é‘g*cse'f.cz"“ Prec 75.28(Code-rare) . URL
Prec 75.53(Code-common)
PhantomDance
MDLT-T
AJE:0.87 + 0.02
17 MDLT [50] arXiv24 NLP - Mamba Translation FID: 0.39 + 0.02 - URL
MDLT-M
AJE:0.73 + 0.01
FID:0.82 + 0.01

18



=~ UNIVERSITY | ENGINEERING

HIE 7\ /IRGINIA

Department of Computer Science

Language Modeling

Gate State Space:
e Can be used on long sequence modeling.
e Reducing number of participants.

e 2-3 times faster than Diagonal State Space.

S4+++:;
e State Memory Relay.
e Integrate complex dependency bias via an
interactive cross-validation mechanism.

N x

[ Output Sequences ]

T

© (o) S\

-
4

[ %

) (50 (2)°C0)/)

Cross Attentions I
[ Linear ][ Linear ][ Linear ] ’
7 7 F Q|K|vV %

(

S4+ Layer F

Input Sequences ]

Figure 5: Illustration of the S4++ layer.

19
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Voice Task

DP-Mamba |

e Bidirectional Dependency Modeling: e I o
Simultaneously models both short-term and long- . . %ﬂ man i =) il =
term forward and backward dependencies of = S =
speech signals. s

o Selective State Space: Enhances model capability =~ - ?M u o w{?“
through a selectively utilized state space. ; | { I

e Performance: Achieves comparable results tothe ] =

dual-path Transformer model Sepformer.

Fig. 1. A top-down view of DPMamba from I to IV.

SP-Mamba:
e Utilizes TF-GridNet.
e Replaces the Transformer module with a bidirectional Mamba module.
e Result: Captures a wider range of language information, leading to
broader comprehension.

20
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Variations in Clinical Notes

Mamba is capable of modeling very long sequences of clinical notes, up to 16,000
characters.

ClinicalMamba
e Uses the MIMIC-III dataset for pre-training the Mamba model.
e Better than Mamba and clinical Llama models in modeling clinical language,
especially on longer text lengths.

21
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Variations in Computer Vision

Vast grown
In the paper, the researcher list 148 SSM-based models, most of
which are in the field of Computer Vision.

22
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Variations in Computer Vision

= C Hx XxC B C : C - C
PR FE N A A 1616 32, 324
Stage 1 Stage 2 Stage 3 Stage 4

VMamba HXWx3

Input Image

Tk

Linear

Down Sampling

X2 3 X2 g\ X9 F X2
Vision Mambda(vim)
(a). VMamba model (VMamba-T) (b). VSS Block
PR
! I:] Projection Layer [ MLP & Prediction J Lx
Forward

t

Patch Tokens Convld

Backward
Convld

Vision Mamba Encoder

tttttrtttt
01 2

|
|
|
|
|
|
|
|
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|
|
|
|
|
|
|
|

'
'
'
1 01 Position Embed.
'
'
'
l

% Class Token

152153
I Y I B B

[ Flatten & Linear Projection

B ik

Vision Mamba (Vim)

soydIEd POPPIqUI

—z

Vision Mamba Encoder

(c). Vision Mamba (Vim) and Detailed Atchitecture
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Vision Mamba (Vim)

transform the 2-D image t € REXVXC into the flattened 2-D patches x,, € R?*(®°0),

#=. [ INIVERSITY
BIE ~7\/IRGINIA

where P is size of patches. Then project the 2-Dpatches to the vector with size D
E = R(I+1)xD
pos To = [tcls; t119W7 tiw; T 7t;)W] + Epos

W € R(P2-C)><D
T, = Vim(Ty_;) + T1_1,

f = Norm(TY}),
p = MLP(f),

24
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Vision Mamba (Vim)

T,

3>

=Vim(T;_;) + T1_1,
= Norm(TY}),

MLP(f),

Algorithm 1 Vim Block Process

Require: token sequence T;_; : (B,M,D)
Ensure: token sequence T; : (B,M,D)

3O 900NN oY i W B

—
—

12:
13:
14:
18
16:
17:
18:
19:
20:
21:

i
=

: /* normalize the input sequence T;_; */

7_1: (B,M,D) + Norm(T;_1)

: x: (B,M,E) « Linear™(T]_,)

: z: (B,M,E) < Linear®(T]_,)

: /* process with different direction */
: for o in {forward, backward} do

x,, : (B,M,E) + SiLU(Convld,(x))
B, : (B,M,N) + Linear?(x/)
C,: (B,M,N) + LinearS (x})
/* softplus ensures positive A, */
A, : (B,ME) ¢ log(l + exp(Linear?(x,) +
Parameter?'))
/* shape of Parameter? is (E, N) */
A,:BMEN)+A,® Parameter?®
B,: (B,M,E,N) + A, ® B,
Yo: (B,M,E) + SSM(A,,B,, C,)(x,)
end for
/* get gated y, */
y}orward : (B> M7 E) b Y forward O SiLU(Z)
ygackward : (B7 M7 E) € Ybackward Q SiLU(Z)
/* residual connection */
Tl : (Ba M’ D) = LinearT(y/forward + ygackward) + Tlfl
Return: T,

25
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Variations in Computer Vision

e Classification task
e Detection task: MiM-ISTD
e Segmentation task
a. Medical image segmentation: VM-UNet
e Medical tasks
a. Registration task: MambaMorph
e Restoration task: MambdalR
e Generation task: ZigMa

e Video understanding:ViS4mer, Video Mamba
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Variations in Graph

GraphS4mer uses the S4 architecture to capture long-range dependencies and
includes a dynamic graph structure learning layer for spatial correlations.

Graph
Structure
Learnin

GNN
Laycrs

() 4 I

\\‘// Laycrs
Multivariate
Signals

Tinear —» Predictions

(k) GraphS4mer

GMN is based on selective State Space Models, tackling the limitations of traditional
GNNs in capturing long-range dependencies and computational efficiency.

27
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Viriations in Multi-modaliday and Multi-media

e S4ND Model:
e Extends State Space Models to multidimensional signals.
e Effective in large-scale visual data modeling across 1D, 2D, and 3D dimensions.
e Proven applications in image and video classification.

e VL-Mamba:
e Firstimplementation of the state-space model Mamba in multimodal tasks.
e Aims to address high computational costs in Transformer architectures.
e CMViM:
e Focuses on multimodal learning for 3D high-resolution medical images,
specifically Alzheimer’s disease.
e Utilizes the MAE framework, replacing the ViT module with a simpler Vim module
to reduce computational complexity from quadratic to linear.
e Enhances modeling capabilities through intra-modality and inter-modality
contrastive learning, improving feature discrimination and aligning
representations across different modalities.

28
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Variation for Time Serires

TimeMachine

Purpose: Addresses challenges in long-term time-series forecasting (LTSF).
Key Challenges:
e Capturing long-term dependency relationships.
e Overcoming poor linear scalability in time-series data.
Innovative Solution:
e Uses multiple Mamba modules integrated into a singular architecture to
enhance dependency capture and improve channel mixing.
e Provides selective prediction capabilities for both global and local contexts
across various scales.
Results: Demonstrated significant improvements in accuracy and scalability in
experimental validations.
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Experiment & Results

To evaluate the performance practically, the experiments involved five
downstream tasks:

single-/multi-label classification
visual object tracking

pixel-level segmen- tation
image-to-text generation
person/vehicle re- identification

30
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Single-/Multi-label Classification

Single-label classification: calculate . ...

accuracy on ImageNet-1K.

Multilabel classification : Evaluate
performance on Pedestrain
Attribute Recognition task.

Tiny =Small * Base
86
83
82.2 82.2
% — 81.7 81.8 —
80.5 80.4
80
. 78.7
78
76.1 5

76 o -

74

72

VMamba Vim Mamba-2D EfficientVMamba S4ND-ViT S4ND-ConvNeXt
TABLE 10
Comparison with state-of-the-art methods on PETA and PA100K datasets. The first and second are shown in red and blue, respectively. "-” means
this indicator is not available. VTB* indicates that VTB uses CLIP’s feature extractor.
PETA PA100K
Methods Backbone mA Acc Prec Recall F1 mA Acc Prec Recall F1

JLAC (AAAI 2020) [195] ResNet50 8696 8038  87.81 87.09 8750 | 8231 7947 8745 87.77 87.61
SCRL (TCSVT 2020) [196] ResNet50 87.2 - 89.20 87.5 88.3 80.6 - 88.7 84.9 82.1
SSCsoft (ICCV 2021) [197] ResNet50 86.52 7895  86.02 87.12 86.99 | 81.87 7889 8598 89.10 86.87
IAA-Caps (PR 2022) [198] OSNet 8527 7804 86.08 85.80 85.64 | 8194 8031 8836 88.01 87.80
MCFL (NCA 2022) [199] ResNet-50 | 86.83 78.89  84.57 88.84 86.65 | 8153 77.80 85.11 88.20 86.62
DRFormer (NC 2022) [200] ViT-B/16 89.96 8130 85.68 91.08 88.30 | 8247 8027 87.60 88.49 88.04
VAC-Combine (IJCV 2022) [201] ResNet50 - - - - - 8219 80.66 8872 88.10 88.41
DAFL (AAAI 2022) [202] ResNet50 87.07 78.88 8578 87.03 8640 | 8354 80.13 87.01 89.19 88.09
CGCN (TMM 2022) [203] ResNet 87.08 7930 8397 89.38 86.59 - - - - -
CAS-SAL-FR (IJCV 2022) [204] ResNet50 8640 7993  87.03 87.33 87.18 | 82.86 79.64 86.81 87.79 85.18
PromptPAR (arXiv24) [205] ViT-L/14 8876 8284  89.04 89.74 89.18 | 8747 8378  89.27 91.70 90.15
SequencePAR (arXiv24) [206] ViT-L/14 = 8492 9044 90.73 90.46 - 83.94 9038 90.23 90.10
VTB (TCSVT 2022) [207] ViT-B/16 8531 79.60 86.76 87.17 86.71 8372 8089 87.88 89.30 88.21
VTB* (TCSVT 2022) [207] ViT-L/14 86.34 7959  86.66 87.82 86.97 | 8530 8176 87.87 90.67 88.86
VTB (TCSVT 2022) [207] ViT-S 8251 7723 8575 84.95 85.01 7876  77.61 8741 85.35 85.94
Vim-PAR Vim-S 81.08 7375 8091 84.96 82.52 | 8041 78.03 8539 88.37 86.39

31
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Visual Object Tracking

Compare Mamba with Transformer and CNN based backbon for the tracking tasks.

TABLE 11
Comparison between different trackers on the EventVOT dataset.

Trackers Source Backbone | SR PR NPR | Params(M) FPS
TrDiMP CVPR21 399 348 487 26.3 26
ToMP50 CVPR22 376 328 474 26.1 25
DiMP50 ICCV19 ResNet50 526 511 672 26.1 43
PrDiMP CVPR20 555 572 704 26.1 30
KYS ECCV20 38.7 373 498 - 20
ATOM CVPR19 444 440 575 8.4 30
HDETrack | CVPR24 578 622 735 92.1 105
AiATrack ECCV22 574 59.7 728 15.8 38
STARK ICCV21 ViT 445 396 557 28.1 42
TransT CVPR21 543 565 688 18.5 50
MixFormer | CVPR22 499 496 630 35.6 25
SimTrack ECCV22 554 575 699 57.8 40
ViT-B 554 604 71.1 92.1 105

OSTrack ECCV22 | ViT-S 520 532 66.8 54.3 109
Vim-S 55,6 59.1 704 41 41

AN
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Challenges

e Current SSMs model still performs inferior to the main- stream of Transformer
networks.
Multi-modal learning using SSMs architecture.
How to design new SSMs- based backbones for cost-sensitive multi-modal
learning is an important research topic.

e How to use the latest SSM model to empower the existing deep neural network
model?

34
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Advancing Transformer Architecture in
Long-Context Large Language Models: A
Comprehensive Survey

Nanjing University, University of London, Baidu
Inc.

Feng Guo(grj4jc), Yanxi Liu(kww7url)

35
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Agenda

1. Introduction

2. Overview

3. Efficient Attention

4. Long-Term Memory

5. Extrapolative PEs

6. Context Processing

7. Miscellaneous

8. Evaluation Necessity & Optimization Toolkit
9. Discussion

10. Conclusion
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Introduction to Long-Context LLMs

e Great Success for Transformer-based LLM Models (chatGPT, Bert, Claude..)
o Indicates a potential path towards AGI
o Revolutionizing Application: Document summarization, Computer
vision, ...
o Essential for advanced applications
m like detailed text analysis and interactive Al systems
e Success due to well-designed Attention Mechanism, but ...

37
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Challenges and Research Directions in Long-Context LLMs

e Challenges in Current Transformer Models
o Complexities: High computational needs with quadratic time and space complexities during
training and inference
o Performance Degradation: Lack of robustness in mechanism leads to performance
degradation with long sequences
e Research Directions
o Efficiency Improvements: Attention mechanism, memory mechanisms
o Handling Long Contexts: Effective length generalization, context pre/post processing

38
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Contributions of this Survey

Holistic Taxonomy:Detailed breakdown of Transformer architecture enhancements.
Evaluations and Toolkits: Analysis of datasets, metrics, libraries, frameworks for optimizing
LLM efficiency.

e Future Directions: Identifying key challenges and potential solutions for advancing long-
context comprehension in LLMs.

39
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Section 2: Overview

e Preliminaries of LLM
e L|LMs Architecture limitations
e Road Map of Enhance Long-Context Capabilities in LLMs

40
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Preliminaries of Neural Language Modeling

® Modeling Stages

@)
@)
@)

Preprocessing: Tokenization of raw text into subwords or tokens

Pretraining: Learning semantic patterns and linguistic structures on large corpora
Fine-tuning: Adapting the pre-trained model to task-specific data for downstream
applications

Inference: Auto regressively generating text based on learned probabilities

e Key-Value Cache in LLMs

@)

@)

Functionality: Stores key-value pairs for attention, extending sequences during generation
Limitation: Linearly growing memory occupation with generated tokens, prompting long-term
memory enhancements

41
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Limitations of Transformer Architecture in Handling Long Contexts

e Attention Complexity
o Computational Complexity: In scenarios where sequence length L far exceeds dimension d,
m The complexity becomes quadratic
m Time Complexity: O(L"2*d) Space Complexity: O(L"2)
e In-context Memory Limitations
o Statelessness of Transformers: Lacks a mechanism to retain state between calls, relying
only on the KV cache
o Impact on Applications: This design limits effectiveness in applications requiring long-term
memory(chatbots)
e Max-Length Constraint
o Training and Inference: Engineers set a maximum sequence length Lmax to prevent
memory overflow
m As a hyper-parameter, typically between 1K, 2K 4K tokens
o Performance degradation: observed when handling inputs longer than Lmax resulting in
implausible outputs 42
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Roadmap of Enhancements for Long-Context Capabilities in LLMs

e Efficient Attention (Sec. 3)
Long-Term Memory (Sec. 4)
Extrapolative Positional
Encodings(Sec. 5)

Context Processing (Sec. 6)

? Vocab Prob
LM Head f.— .

F Decoder
Block ]

_u,/!f_é‘.‘ﬁnt_‘ﬁ’.“_ _ e Miscellaneous (Sec. 7)
v || R
' A S 'v‘! Internal MemoryCache [ MoE ] [ MmaeA ]
KV
Pos Emb) \Cache Specific e Reduce attention complexity
— e designing efficient memory mechanisms
Enhancing bl
Word Emb ° nhancing long context capabilities
L
+ I l l Context Context Context
| | | || | I Selection Aggregation Compression E]
long context prompt
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Section 3: Efficient Attention Mechanisms

e Goal: Addressing the computational bottleneck of attention

mechanisms in Transformers
e Impact: Expanding the context length boundary for LLMs during both

pre training and inference phases
° Category

Local Attention
Hierarchical Attention
Sparse Attention
Approximated Attention
I0-Aware Attention

oooow
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Local Attention

e Redefining Attention Mechanisms
o Traditional Global Attention: Each token attends to all others, leading to O(L*2d)
complexities
o Local Attention: Focuses on neighboring tokens, reducing time and space complexities

e Approaches
o Block-wise Attention
m Divides input into non-overlapping blocks, each attending within itself(e.g. BlockBERT)
o Sliding Window Attention
m Each token attends within a fixed-size window, inspired by CNN techniques(e.g.
Longformer)
o Global-Local Hybrid Attention
m Combines local attention with global tokens for broader context (e.g. LongLM)
o LSH Attention
m Utilizes locality-sensitive hashing for efficient neighbor token selection 45
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Local Attention

i [itself] :
W
(a) Dense Attention (5) Block-wise Attention (o) Sliding-Window Attention (d) Dilated-Window Attention : :
(L=8) 8=3) (w=3) (w=3, d=2) ' :
[local token] s (short] [shift] |:| D [sink]
1 =
I
(e) Global-Local Hybrid Attention () Global-Local Hybrid Attention (g) Attention Sink (h) Shift-Short Attention
(Special Token) (Global Token) (StreamLLM) (LongLoRA)

Fig. 2. The visualization of various typical local causal attention mechanisms. As the legend on the right indicates, tokens are
distinguished by colors, with shades denoting attention to themselves (darker) or attention to the preceding others (lighter).

Enhances effectively manage longer sequences with improved efficiency
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Hierarchical Attention

e Goal: Merge higher-level global information with lower-level local attention for efficient and scalable
processing
e |Impact
o Complexity Reduction: Achieves sub-quadratic computational and memory costs while
preserving the expressiveness of full attention
o Contextual Balance: Maintains a balance between local and global context for inherent
locality principle
e Approaches
o Two-Level Hierarchy
m Uses self-attention across two levels: word-to-sentence and sentence-to-document (e.g.
HAN)
o Multi-Level Hierarchy
m Introduces fine-to-coarse attention via binary partitioning, formalizing as a graph neural
network(e.g BPT)
m Controls attention span with a soft attention mask (e.g. Adaptive Span Transformer)
o Advanced Hierarchical Mechanisms
m Partitions attention matrix into blocks with different low-rank ranges (e.g. H-Transformer-
1D)

m Combines full-attention approximation with structured factorization (e.g. Combiner) .
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Sparse Attention

e Exploring Sparsity in Attention Matrices

o Sparse Attention Mask: Introduces sparsity in attention, allowing tokens to selectively attend to a subset of other

tokens
o Benefits: Enhances computational efficiency and maintains global context awareness
e Types

o Fixed Sparsity Patterns
m Sparse Transformer: Uses row-column factorized attention to reduce complexity to
O(sqrt(L)-Ld)
m LogSparse: Employs an exponentially sparse attention pattern, leading to memory usage of
O(L(logL)*2)
o Adaptive Sparsity Patterns
m  Expire-Span: Introduces learnable scalars to retain or expire tokens based on importance.
m Routing Transformer: Leverages k-means to assign queries to the top-k relevant keys,
simplifying attention to O(L-sqrt(L)*2)
o Graph Sparsification
m Star-Transformer: Implements a star-shaped topology for localized attention with global
context.
m BigBird: Based on random graph theory, enables linear complexity with efficient attention

mechanisms.
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Sparse Attention

[relay] [satellite] e
l l l [ | Deset)
Bl
i s
(a) Random Sparse Attention (b) BigBird Sparse Attention (c) Strided Sparse Attention (d) Fixed Sparse Attention (e) Star Sparse Attention (f) LogSparse Attention :
(r=0.5) (w=3, r=0.5) (=3) (=3) (two-hop) (=log8=3)  ‘wooeemeeeeeesseeeseeseend

Fig. 3. The visualization of some typical causal sparse attention patterns. The legend on the right distinguishes token types based on
their colors, where darker shades indicate attending to themselves while lighter ones represent attention to other previous tokens.

e Accommodates both long and short-range dependencies, scaling up to one billion
tokens.

e Reduces dependency to a more manageable linear complexity

49



UO}{}VERSITY ENGINEERING
If "7V/IRGINIA

Department of Computer Science

Approxmated Attention

Goal: Reduce the full attention computation by leveraging sparsity and low-rankness with linear complexity, optimizing
precision trade-offs

Impact: Provides sub-quadratic computation and memory complexity while maintaining the expressiveness of full attention
Techniques

o Low-Rank Approximation:
m Linformer: Utilizes SVD for a low-rank approximation of the attention matrix, reducing
complexity to O(Lkd)
o Nested Attention:
m Luna: Combines pack and unpack attention strategies to handle sequences of varying
lengths without compromising parallelism
o Kernelized Approximation:
m Linear Transformer & Performer: Introduces kernel-based attention approximations,
significantly cutting down on computational resources
o Hybrid Approaches
m Sparse-Kernelized Hybrid
m Scatterbrain: combines sparse matrices and kernelized feature maps for enhanced
efficiency and precision 50
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|O-Aware Attention

e Different
o Previous attention methods trade off some attention quality for lower computation
o but I0-aware methods maintain exactness of attention calculations while optimizing computational

resources
e  Offer exact attention computations with significantly reduced memory and time consumption
o  Aleap forward in the optimization of Transformer models for large-scale applications

e Techniques
o Memory-Efficient Attention: Utilizes lazy softmax algorithm for numerically stable attention
o Flash Attention: Achieves up to 7.6x speedup and 20x memory efficiency with exact attention
computation
o Paged Attention
m Addresses inference memory bottlenecks by managing KV cache memory with virtual
memory paging techniques, improving efficiency and flexibility for batched requests
o Innovations and Improvements
m Sparse Clustered Factorization Attention: Extends Flash Attention to accommodate diverse
sparsity patterns, leading to 2 to 3.3 times training speedup
m Virtual Large Language Models: Proposes techniques to manage growing KV cache memory 51
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Section 4: Long-Term Memory

in-context working memory -> The Transformer architecture often
struggles with capturing long-term dependencies -> two main avenues to
address: (1) Internal MemoryCache; (2) External MemoryBank

Internal MemoryCache trades space for time by using caching
mechanisms to reduce computation. However, after model training is

completed, it is difficult to update the internal knowledge, which is why
such methods are rarely used nowadays.

Instead, the External Memory Bank method is mainly used.
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Internal MemoryCache

e Segment-Level Recurrence.
o Cache the output of m previous consecutive segments in the last layer and concatenate them
into the current segment in the present layer to extend the context for the current query.
e Retrospective Recurrence.
o Concatenate the output hidden states of previous segments in the same layer, instead of the
last layer.
e Continuous-Signal Memory.
o The «~-former model uses a continuous signal representation to achieve unbounded long-term
memory.
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External MemoryBank

e Cosine-Based Retrieval Criteria.
o LangChain is an open-source framework designed for chatbots, which processes local
documentation into a memory bank using LLMs and retrieves context using cosine similarity to
enhance interaction and response generation.

e Heuristic Retrieval Criteria.
o Used for enhancing large language models with memory banks, enabling more efficient and
context-aware data handling and retrieval in applications like chatbots and knowledge-based
systems.

e Learnable Retrieval Criteria.
o REALM use MLM to train a neural knowledge retriever
o LongMem decouples the memory retrieval process using a SideNet.
o FOT introduces a novel contrast training method to refine the key-value space and enhance

retrieval accuracy as the size of the memory bank expands.
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Section 5: Extrapolative PEs

— Extrapolative Positional Encodings. Current PEs play the
undeniable role in length generalization in more general
scenarios.

e Enhancing Understanding
o Rethinking PEs as f-Encoding.
o Length Extrapolation Dilemma.

e Attention Bias

Enhanced | T°T7] --- (T T
Transformer [ [ [ -+« [T "1
with [T ] -+« (T 101
Rotary .ee
position [T 17T --- (T ]

Embedding [ [ []--- (T 1] 6 Py -

.
E
E

Figure 1: Implementation of Rotary Position Embedding(RoPE).

o As alternative mechanisms to explicitly encoding positional information, attention
bias have been explored to capture the sequentiality and temporality of natural
language incorporated into the attention kernel.

e Extended RoPE

o Several research works have aimed to extend RoPE using various strategies to
enhance its length extrapolation capabilities.

m Scaling Strategies.
m Truncation Strategies.
m Rearrangement Strategies.
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Section 6: Context Processing

e Context Selection
o Various strategies employed by different models to effectively manage long text
segments within the limited context window of LLMs, involving segment partitioning,
scoring based on selection criteria, and iterative or simultaneous selection
processes to prioritize the most relevant segments for processing.

e Context Aggregation
o Extracting and integrating information from all context segments to generate a coherent
final answer, through techniques like Fusion-in-Decoder, Map Reduce, Refinement.
o Handling parallel context windows, each with different strategies for encoding, merging,
and refining the information from multiple segments.

e Context Compression
o Methods for compressing long contexts to fit within the maximum sequence length
constraints of LLMs.
m Soft compression: create condensed and abstract representations through
embedded learning.
m Hard Compression: eliminate redundancies using metrics like self-information and
perplexity to optimize input quality before processing.
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Section 7: Miscellaneous Solution

Not be exhaustive or specific to Transformer-based models. Many of these techniques are applicable

universally to any model equipped with deep neural networks, albeit particularly crucial for large-scale LLMs.

Specific Objectives
o Recent research explores tailored approaches to adapt pretraining for specific tasks, aiming to enhance

LLMs’ effectiveness in capturing intricate long-range dependencies and discourse structures in longer texts
compared to shorter ones. (XLNet, ERNIE-Doc, DANCE, PEGASUS, PRIMERA)

Mixture of Experts
o  Mixture of Experts (MoE) enhances large language models by incorporating specialized expert modules and
dynamic gating mechanisms to optimize task performance, reduce computational demands, and improve
efficiency and effectiveness in handling large-scale contexts.
Parallelism
o Leveraging modern aggregated GPU memory within and across nodes, recent research has introduced
various parallelism strategies to scale up model sizes and extend sequence length, including Data
Parallelism (DP), Tensor Parallelism (TP), Pipeline Parallelism (PP), Sequence Parallelism (SP), Expert
Parallelism (EP).
Weight Compression
o Various methods enhance memory efficiency in large-scale LLMs through weight compression techniques,
including pruning, factorization, quantization, partitioning, and distillation.
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Section 8: Evaluation Necessity & Optimization Toolkit

e Explore evaluation necessities for assessing long-context capabilities
of LLMs, including datasets, metrics, and baseline models.

e Investigate popular optimization toolkits, such as libraries,
frameworks, and compilers, to enhance LLM efficiency and
effectiveness during development
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Table 1. Basic information about existing datasets specific for various NLP tasks with long-text inputs.

Lengths
Dataset Language ask Task Types (kilo :tohrds) Quality Splits Count Format
Amount
LM | MCQA | ExtQA | Summ | Class | Match | Math | Code | OpenW | MT | avg | Min | Max | Fuman | Model
Labeled | Assisted
ArXiv + PubMed en 1 v 5.2 0 157.3 v train/test/val 322K/13.1K/13.1K jsonl
BigPatent en e v 3.2 0.2 83.2 v train/test/val 1.2M/67.1K/67.1K json
BookSum en 1 v 45 | 004 | 1158 v train/test/val 9.6K/1.4K/1.5K csv.
CAIL2019-SCM zh 1 v 20 | 18 26 v train/test/val 5.1K/1.5K/1.5K jsonl
ChapterBreak en 1 v 254 | 23 | 4058 v train 9.6K json
CNN/DailyMail en 1 v 0.8 0 29 ' test 312K txt
ContractNLI en 1 v 2.0 05 8.7 ' train/test/dev 423/123/61 json
DuLeMon zh 1 v 0.6 03 14 v train/test/dev 25.4K/1.1K/1.1K jsonl
ECtHR en 1 v 2.2 | 001 513 v train/test/dev 7.3K/3K/1.3K jsonl
GovReport en 1 v 43.5 | 02 | 1386.2 v test 19.4K json
HotpotQA en 1 2 09 | 001| 20 3 train/dev 90K/14.8K json
InfiniteBench en/zh 12 v v v v v 711 | 0.1 | 560.3 v test 3.9K jsonl
LCC-Python Py 1 v 14 | 02 | 233 v train/test/val 100K/10K/10K parquet
LEval en 20 v v v v v v 9.2 20 1S v v test 537 jsonl
LongAlpaca en 1 v 4 v 67 | 0 | 327 v train 12K json
LongBench en/zh 21 v v v v v 72 | 01 442 v v test 8.4K jsonl
LongChat-Lines en 1 Y v 26 | 06 | 56 v test 700 parquet
LOT zh 4 v 0.2 | 0.06 0.5 v train/test/dev 35.2K/2.4K/1.8K jsonl
LRA - AAN en 3 v v 4.7 | 0.02 55.5 v train/test/dev 147K/17.4K/18K tsv
LRA - ListOps en 1 v 3 0.01 5.9 v train/test/dev 96K/2K/2K tsv
MuLD en 6 v v v v | 217 0 359.1 v train/test/val 155.9K/14.4K/11.6K jsonl
MultiNews en 1 v 21 | 0.1 | 4642 v train/test/val 45.0K/5.6K/5.6K txt
Multi-Session Chat en 1 v v 03 | 01 1.2 v train/test/val 17.9K/2.5K/3K parquet
Nature Questions en 1 v 98 | 02 | 1693 v train/dev 307K/7.8K json
NewsGroups en 1 v 0.3 0 118 v test 20K txt
NewsRoom en 1 v 0.7 0 178.5 v train/test/dev | 995.0K/108.9K/108.8K jsonl
OpenChat-ShareGPT4-Clean en 1 v 4 1.6 0 152.8 v v train 80.2K json
ProofNet en 1 v 0.2 | 0.05 0.7 v test/val 186/185 jsonl
QMSum en 1 v 108 | 1.7 26.8 v train/test/val 162/35/35 jsonl
SCROLLS en 2 v v v v 33.0 | 02 | 356.1 v train/test/val 89.7K/17.5K/12.3K jsonl
SQuAD en 1 0.1 | 0.02 0.7 4 train/val 87.6K/10.6K parquet
SummScreen en 1 v 73 16 240 train/test/dev 22.6K/2.1K/2.1K jsonl
Synthetic-Persona-Chat en 1 v v 0.4 | 0.05 0.8 4 v train/test/val 8.9K/968/1K csv
THUCnews zh 1 v 0.9 0 79.5 v test 836K txt
UltraChat en 1 v v 1.0 | 0.03 3.6 v v train 1.4M jsonl
WikiQA-AlteredNumericQA en 1 4 40 | 08 | 112 74 test 1.8K parquet
WikiQA-FreeFormQA en 1 38 | 06 | 115 v test 24K parquet
‘WMT14 EN-CS en/cs 1 /| 0.04 0 3.6 v train/test/cal 1M/3K/3K sgm
XSum en 1 v 04 0 292 v train/test/val 204K/11.3K/11.3K summary

e Datasets

O detailed information
on each dataset is
available, covering
language, task types,
length statistics,
quality, splits, count
and format.
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e Metrics
Table 2. Some common metrics adopted for evaluation on each specific NLP task type as depicted in Appendix. A.
, a summary of nine
Task Types Metric Types .
CE/PPL | BPC/BPW | Acc/F1 | EM | ROUGE-1/-2/-L | BLEU/METEOR/TER | EntMent | Pass@k | Human/Model Judge categories of general
LM evaluation metrics
MCQA v
ExtOA - commonly employed
Summ v across ten NLP task
Class types, encompaSSing
Match v .
ath Iangugge modeli pg,
Code question answering,
OpenW summarization, math
MT v/ v/ / /

solving, code generation,
Note: The in the table does not imply that a specific metric cannot be applied to a task. Rather, it suggests that the metric might be less commonly used or that there could be

more suitable alternatives. and Open'ended ertlng,
among others.



Table 3. Basic information for some long-context models widely-used as baselines.

Model Open Source | Base | Main Usage | Main Lang | Lyqx (k) | Param Size (B) | Mem Occ (GB) | Disk Occ (GB) Links
Anima-7B-100k v Llama2 chat zh 100 6.7 12.6 12.6 hf | github
ChatGLM2-6B-32k v GLM chat zh 32 6.2 11.7 11.6 hf| github
ChatGLM3-6B-32k v GLM chat zh 32 6.2 11.7 11.6 hf| github
Chinese-Alpaca2-7B-16k v Llama2 instruct zh 16 6.9 25.9 12.9 hf | github
Chinese-Llama2-7B-16k v Llama2 chat zh 16 6.9 26.3 129 hf| github
Chinese-Mixtral v Mixtral chat zh 32 46.7 175.0 87.0 hf | github
Chinese-Mixtral-Instruct v Mixtral instruct zh 32 46.7 175.0 87.0 hf | github
Claude2 Claude chat en 100 ? ? 2 acc | home
CodeLlama-7B v Llama2 code py 16 6.7 25.6 12.6 hf | home | paper
CodeLlama-13B v Llama2 code py 16 13.0 49.1 24.2 hf | home | paper
CodeLlama-34B v Llama2 code py 16 33.7 126.5 62.9 hf | home | paper
Giraffe-13B-32k-v3 v Llama2 instruct en 32 13.0 48.6 24.2 hf | github | paper
Giraffe-v2-70B-32k v Llama2 instruct en 32 69.0 2274 128.5 hf| github | paper
GPT3.5-Turbo-16k GPT3 chat en 16 ? ? ? acc | home | doc
GPT4 GPT4 chat en 8 ? ? 2 acc | home | doc
GPT4-32k GPT4 chat en 32 ? ? % acc | home | doc
GPT4-Turbo GPT4 chat en 128 ? ? ? acc | home | doc
InternLM-Chat-7B v Llama2 chat en 200 6.7 12.6 12.6 hf | github
Llama2-7B-32k v Llama2 chat en 32 6.7 12.6 12.6 hf | home
Llama2-7B-Instruct-32k v Llama2 instruct en 32 6.7 12.6 12.6 hf| home
LLongMA2-7B-16k-flash Llama2 chat en 16 6.7 12.6 12.6 hf | paper
LongChat-v1.5-7B-32k v Llama2 chat en 32 6.7 12.6 12.6 hf | github | blog
Mistral-7B-v0.1 v Mistral chat en 32 72 28.0 135 hf | paper
Mistral-7B-Instruct-v0.2 v Mistral instruct en 32 7.2 28.0 135 hf | paper
Mixtral-8x7B-v0.1 v Mixtral chat en 32 46.7 175.0 87.0 hf | blog
Mixtral-8x7B-Instruct-v0.1 v Mixtral instruct en 32 46.7 175.0 87.0 hf | blog
MPT-7B-Storywriter v MPT gen en 65 6.6 12.4 12.4 hf | blog
NeuralChat-7B-v3.1 v Mistral chat en 32 7:2 28.0 135 hf | blog
OpenHermes2.5-7B v Mistral chat en 32 7.2 28.0 135 hf | github
QWen-7B v QWen chat zh 32 7.7 14.4 14.4 hf | paper
Vicuna-v1.5-7B-16k v Llama2 chat en 16 6.7 12.6 12.6 hf | github | blog
WizardCoder-Python-7B-v1.0 v Llama2 code Py 16 6.7 12.8 12.6 hf | github
WizardMath-7B-v1.1 v Mistral math en 32 7.2 14.0 135 hf | github
XGen-7B-Instruct-8k v Llama2 instruct en 8 6.7 12.6 12.6 hf | paper

e Baselines

O  Gather a list of
pretrained/finetuned
LLMs commonly,
serving as baselines
for evaluating long-
context capabilities
across various
downstream tasks.
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Table 4. The toolkits summary for enhancing LLM:s efficiency and effectiveness across different stages.

DP, PP, SP, ZERO
Megatron-LM framework
Activation Checkpointing
Iteration-level scheduling
Orca system
Selective Batching
PEFT library Prefix-Tuning,
Prompt-Tuning
Petals framework I Multi-Party Distributed Collaboration
PrivateGPT framework Private RAG
Pytorch FSDP framework Fully Sharded Data Parallel
; Integrate Flash-Attention,
Pytorch SDPA function
Memory-Efficient Attention
Python API for
TensorRT-LLM library TensorRT Engines
In-flight Batching
5 5 Python API for
Triton compiler
GPU Kernels
vLLM library | Paged Attention
xFormers library Memory-Efficient Attention |

Utilities for St:
Toolkit Type es for Stages
Pretraining ‘ Finetuning Inference Application
Integrate TorchRun, FSDP -
; CPU/GPU/ TPUs/Apple Silicon
Accelerate library DeepSpeed, Megatron-LM
Auto Device Management
Local SGD
AutoGen framework Multi-Config Inference Multi-Agent Conversation
8bit Optimizers
. . 4bit/8bit
BitsandBytes library 8bit Matrix Multiplication QLoRA
Quantization
QLoRA
Integrate DP, PP,
1D/2D/2.5D/3D TP,
Colossal-Al library AR
ZERO
Auto Parallelism
DP, PP, TP,
DeepSpeed framework ZERO, Offload,
Sparse Attention Kernel
DeepSpeed-MII framework Dynamic SplitFuse
FlashAttention library Kernel-Fused Flash-Attention
TP
. Optimized Architectures
HuggingFace TGI system
Continuous Batching
Quantization
Prompt Management
LangChain framework Memory Management
Agent Management
Inte te L: hai
LangChain-Chatchat | framework ntegrate Langcham
RAG
Integrate LoRA, QLoRA,
Llama-Factory library PPO, DPO,
Reward Modeling

e Toolkit

o Collect a diverse array of valuable toolkits to optimize the efficiency and effectiveness of LLMs

across their development lifecycle.
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FlashAttention: Fast and Memory-
Efficient Exact Attention with |O-

Awareness

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré

Presented by Kefan Song (ks8vf)
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Motivation1: Modeling Longer Sequences
NLP:

Large context required to read books, plays and instruction manuals

Computer vision:

Higher resolution image requires longer sequence

Sequence Data:

Time-series, audio, video, medical imaging
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High Resolution MRI: Detection and Segmentation

,

Multi-Coil K-space ’ - . /
(Raw Data) A 3 Pathology Detection

Aliased Image Reconstructed Image

Undersampling Mask (£2) Tissue Segmentation
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Motivation2: Attention is bottlenecked by I/O from HBM

o\ SRAM: 19TB/s (20 MB)
SRAM

GPU HBM: 1.5 TB/s (40 GB)
HBM

WETT N (e DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with
Bandwidth & Memory Size
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Motivation2: Attention is bottlenecked by I/O from HBM

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V e RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QKT, write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4

: Return O.

i\ SRAM: 19TB/s (20 MB)
SRAM

U HBM: 1.5 TB/s (40 GB)
HBM

(ETL WY (T T a7 DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with
Bandwidth & Memory Size
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FlashAttention

Outer Loop

K:dxN
Copy Block to SRAM
Outer Loop

Q:Nxd

|
............ 1
Q |
§ Compute Block :
= on SRAM
(7] |
=
£ I
|
\ 4 I
T —— |
Output to HEM
sm(QK")V: Nxd

Inner Loop

FlashAttention

V:NXd

N

(@)
]
<

doo1 ssuu|

dooT 491N
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FlashAttention
Attention on GPT-2
15+ ;| Matmul
Dropout
m .
€10+ y
P Softmax
£ =
~ 54 Fused
Mask  Kernel
1 —
0 ] Matmul -_

PyTorch FlashAttention
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FlashAttention

Algorithm 1 FLASHATTENTION
Require: Matrices Q, K,V € RV*? in HBM, on-chip SRAM of size M.
1: Set block sizes B, = [24], B, = min (|—4d-| d).
2: Initialize O = (0)yxa € RNXd,f = (0)y € RY,m = (-0)y € RN in HBM.
3: Divide Q into T, = [Bl,-‘ blocks Qi,...,Qr, of size B, X d each, and divide K,V in to T, = HV—C-‘ blocks
Ki,...,Kr. and Vy,...,Vr,, of size B, X d each.

4: Divide O into 7, blocks Oy, ..., Or, of size B, X d each, divide ¢ into 7, blocks ¢;,..., {7, of size B, each,
divide m into T, blocks my,...,mr, of size B, each.

5: for 1 < j <T. do

6: Load K;,V; from HBM to on-chip SRAM.

7. for1<i<T, do

8: Load Q;, 0;, ¢;, m; from HBM to on-chip SRAM.

9: On chip, compute S;; = QiKJT. € RBr*Be,

10: On chip, compute m;; = rowmax(S;;) € RP, 13,-j = exp(S;; — m;;) € RB*Be (pointwise), Eij =
rowsum(f’ij) € RB-.

11: On chip, compute m?°" = max(m;, m;;) € RB-, eV = emiTM b + ™ Tm” Z,J € RB-.

12: Write O; « diag(t’;‘ew)'l(diag(f,-)emi‘m?ewoi + e’hif""?ewf’ijvj) to HBM.

13: Write €; « €7V, m; « m*¥ to HBM.

14: end for

15: end for

16: Return O.
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“From Online Softmax to FlashAttention” a Note by Zihao Ye

Safe Softmax
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Safe Softmax

em i em 1M Algorithm 3-pass safe softmax

N €T - N T:—m NOTATIONE_}
E i—1 e’ E i—1 e’ {m;}: max’_, {z;}, with initial value mo=—oo.
J= J= {d:}: Z;.:l e®~™N with initial value dy=0, dy is the denominator of safe softmax.

{a;}: the final softmax value.

Bobpy
for i— 1, N do

m; — max (m;_1, ;) (7
end
for i—1,N do

di—d;_1+e%i—mn (8)
end
for i—1, N do

ezi—mN (9
Q; <
dn 7)2

end


https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf
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Online Softmax

Algorithm 2-pass online softmax

for :—1,N do
m; «— max (m;_1,T;)
d; «— d_je™i-17™if eTi—Mmi
end
for :<—1, N do
emi_mN
a; <

end
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FlashAttention Algorithm

Decompose softmax into smaller softmax

Algorithm FlashAttention

for i<—1, N do
Zi
my;
d;
o;
end

;

-

Qlk:

| K*:, 4]

max (mz - :cz)

dz{—l emi—l—mi + eTi—m;i

0O; 1

dz{—l eMi—1—m;

ea:i—mi

a

Olk,:] —on

_|_

a

Vii,:]
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FlashAttention Algorithm

Boby

for i< 1, #tiles do

end

Z;

local
m( ocal)

%
my;

d!

Ql[)k,:] KT[:, (i —1) b:i b]
e (2:[4])

—_ (mz 3, mglocal) )

b
=1

, dé_lemi_l—mi b ewi[j]—m-

Qi-1 +> !

j=1 ’

d!

O[ka:] <_OJ,V/b

V[j+(i—1)b,]

75



=~ UniversITY | ENGINEERING

BIE ~7\/IRGINIA

FlashAttention

Department of Computer Science

76



=~ UNIVERSITY | ENGINEERING

HIE 7\ /IRGINIA

Department of Computer Science

Evaluation: Faster Training Speed

Table 1: Training time of BERT-large, starting from the same initialization provided by the MLPerf benchmark, to
reach the target accuracy of 72.0% on masked language modeling. Averaged over 10 runs on 8xA100 GPUs.

BERT Implementation | Training time (minutes)
Nvidia MLPerf 1.1 [58] 20.0 + 1.5
FLASHATTENTION (ours) 174+ 14
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Evaluation: Language Modeling with Long Context

Model implementations Context length OpenWebText (ppl) Training time (speedup)
GPT-2 small - Megatron-LM 1k 18.2 4.7 days (1.0x)
GPT-2 small - FLASHATTENTION 1k 18.2 2.7 days (1.7x)
GPT-2 small - FLASHATTENTION 2k 17.6 3.0 days (1.6x)
GPT-2 small - FLASHATTENTION 4k 17.5 3.6 days (1.3x)
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Evaluation: Long Context Image Classification

Model Path-X Path-256

Transformer
Linformer [84]
Linear Attention [50]
Performer [12]
Local Attention [80]
Reformer [51]
SMYRF [19]

xR X X X X X X

FLASHATTENTION 61.4
Block-sparse FLASHATTENTION 56.0

P X X X X X X X

o
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Evaluation: Attention Benchmark

Attention Runtime (Fwd Pass + Bwd Pass) = Attention Memory Usage

102 4 1 )

z Crossover Points k=
N Q—
o 10" 4 ey
£ 3
- (8
S 10° 4
- «t® * (]

= bew weu wew oy 2 ‘—“— - = E

T A | T A | i | Q T L] L}
128 256 512 1024 2048 4096 8192 = 256 8K 16K 32K 64K
Sequence Length Sequence Length
= = = = = FlashAttention PyTorch Attention Linformer Attention

= = = = Block-Sparse FlashAttention Megatron Attention = = = = OpenAl Sparse Attention

Figure 3: Left: runtime of forward pass + backward pass. Right: attention memory usage.
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