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Motivation
● Self-attention mechanism enables transformer to learn long-range feature 

representations well.
● However, Transformer-based models require high-end GPU with larger 

memory for training and testing/deployment.
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Motivation
● Self-attention mechanism enables transformer to learn long-range feature 

representations well.
● However, Transformer-based models require high-end GPU with larger 

memory for training and testing/deployment.

We need a model that not only requires less computing cost but also is still able 
to capture long-range dependencies while maintaining high performance.

State Space Model (SSM)
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Formulation of SSM
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Formulation of SSM
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Formulation of SSM
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Formulation of SSM

Convolutional Form
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SSM
● Similar to RNNs, SSM also suffers from the vanishing/exploding 

gradients problem when modeling longer sequences.

HiPPO
● Combines the concepts of Recurrent Memory and Optimal Polynomial 

Projections, which can significantly improve the performance of 
recursive memory.

Vanilla SSM + HiPPO Structured State Space Model (S4)
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From S4 to Mamba (S6) 

● S4 does not have selectivity
● Those discrete parameters are 

constant.

● Mamba makes these 
parameters vary based on the 
input.
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Parallization 
● In S4, we could precompute this kernel, save it, and multiply it 

with the input x.
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Parallization 
● In S4, we could precompute this kernel, save it, and multiply it 

with the input x.

● In Mamba, these matrices change depending on the input.
● If we want selectivity, we’ll need to train with RNN mode.
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Parallel Scan 

Whether an operation can be 
done in parallel depends on 
associative property.
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Parallel Scan 

Whether an operation can be 
done in parallel depends on 
associative property.
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Variations in Natural Language Processing

● Language Modeling

● Voice

● Clinical note

● Translation
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Language Modeling
Gate State Space: 
● Can be used on long sequence modeling. 
● Reducing number of participants.
● 2-3 times faster than Diagonal State Space.

S4+++: 
● State Memory Relay.
● Integrate complex dependency bias via an 

interactive cross-validation mechanism.
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SP-Mamba:
● Utilizes TF-GridNet.
● Replaces the Transformer module with a bidirectional Mamba module.
● Result: Captures a wider range of language information, leading to 

broader comprehension.

Voice Task
DP-Mamba
● Bidirectional Dependency Modeling:

Simultaneously models both short-term and long-
term forward and backward dependencies of 
speech signals.

● Selective State Space: Enhances model capability 
through a selectively utilized state space.

● Performance: Achieves comparable results to the 
dual-path Transformer model Sepformer.
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Variations in Clinical Notes

Mamba is capable of modeling very long sequences of clinical notes, up to 16,000 
characters.

ClinicalMamba
● Uses the MIMIC-III dataset for pre-training the Mamba model.
● Better than Mamba and clinical Llama models in modeling clinical language, 

especially on longer text lengths.
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Vast grown
In the paper, the researcher list 148 SSM-based models, most of 
which are in the field of Computer Vision.

Variations in Computer Vision
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Variations in Computer Vision

VMamba

Vision Mambda(vim)
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Vision Mamba (Vim)

where P is size of patches. Then project the 2-Dpatches to the vector with size D

24



Vision Mamba (Vim)
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● Classification task

● Detection task: MiM-ISTD

● Segmentation task

a. Medical image segmentation: VM-UNet

● Medical tasks

a. Registration task: MambaMorph

● Restoration task: MambdaIR

● Generation task: ZigMa

● Video understanding:ViS4mer, Video Mamba
26
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Variations in Graph
GraphS4mer uses the S4 architecture to capture long-range dependencies and 
includes a dynamic graph structure learning layer for spatial correlations.

GMN is based on selective State Space Models, tackling the limitations of traditional 
GNNs in capturing long-range dependencies and computational efficiency. 
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● S4ND Model:
● Extends State Space Models to multidimensional signals.
● Effective in large-scale visual data modeling across 1D, 2D, and 3D dimensions.
● Proven applications in image and video classification.

● VL-Mamba:
● First implementation of the state-space model Mamba in multimodal tasks.
● Aims to address high computational costs in Transformer architectures.

● CMViM:
● Focuses on multimodal learning for 3D high-resolution medical images, 

specifically Alzheimer’s disease.
● Utilizes the MAE framework, replacing the ViT module with a simpler Vim module 

to reduce computational complexity from quadratic to linear.
● Enhances modeling capabilities through intra-modality and inter-modality 

contrastive learning, improving feature discrimination and aligning 
representations across different modalities.

Viriations in Multi-modaliday and Multi-media
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Variation for Time Serires
TimeMachine

Purpose: Addresses challenges in long-term time-series forecasting (LTSF).
Key Challenges:
● Capturing long-term dependency relationships.
● Overcoming poor linear scalability in time-series data.

Innovative Solution:
● Uses multiple Mamba modules integrated into a singular architecture to 

enhance dependency capture and improve channel mixing.
● Provides selective prediction capabilities for both global and local contexts 

across various scales.
Results: Demonstrated significant improvements in accuracy and scalability in 
experimental validations.
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Experiment & Results

To evaluate the performance practically, the experiments involved five 
downstream tasks:

● single-/multi-label classification
● visual object tracking
● pixel-level segmen- tation
● image-to-text generation
● person/vehicle re- identification 
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Single-label classification: calculate 
accuracy on ImageNet-1K.

Multilabel classification：Evaluate 
performance on Pedestrain 
Attribute Recognition task.

31
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Visual Object Tracking
Compare Mamba with Transformer and CNN based backbon for the tracking tasks.
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Challenges

● Current SSMs model still performs inferior to the main- stream of Transformer 
networks.

● Multi-modal learning using SSMs architecture. 
● How to design new SSMs- based backbones for cost-sensitive multi-modal 

learning is an important research topic. 
● How to use the latest SSM model to empower the existing deep neural network 

model? 
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Advancing Transformer Architecture in 
Long-Context Large Language Models: A 

Comprehensive Survey

Feng Guo(grj4jc), Yanxi Liu(kww7url)

Nanjing University, University of London, Baidu 
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Introduction to Long-Context LLMs

● Great Success for Transformer-based LLM Models (chatGPT, Bert, Claude..)
○ Indicates a potential path towards AGI
○ Revolutionizing Application: Document summarization, Computer 

vision, …
○ Essential for advanced applications

■ like detailed text analysis and interactive AI systems
● Success due to well-designed Attention Mechanism, but …
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Challenges and Research Directions in Long-Context LLMs

● Challenges in Current Transformer Models
○ Complexities: High computational needs with quadratic time and space complexities during 

training and inference
○ Performance Degradation: Lack of robustness in mechanism leads to performance 

degradation with long sequences
● Research Directions

○ Efficiency Improvements: Attention mechanism, memory mechanisms
○ Handling Long Contexts: Effective length generalization, context pre/post processing
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Contributions of this Survey
● Holistic Taxonomy:Detailed breakdown of Transformer architecture enhancements.
● Evaluations and Toolkits: Analysis of datasets, metrics, libraries, frameworks for optimizing 

LLM efficiency.
● Future Directions: Identifying key challenges and potential solutions for advancing long-

context comprehension in LLMs.
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Section 2: Overview 

● Preliminaries of LLM
● LLMs Architecture limitations
● Road Map of Enhance Long-Context Capabilities in LLMs
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Preliminaries of Neural Language Modeling

● Modeling Stages
○ Preprocessing: Tokenization of raw text into subwords or tokens
○ Pretraining: Learning semantic patterns and linguistic structures on large corpora
○ Fine-tuning: Adapting the pre-trained model to task-specific data for downstream 

applications
○ Inference: Auto regressively generating text based on learned probabilities

● Key-Value Cache in LLMs
○ Functionality: Stores key-value pairs for attention, extending sequences during generation
○ Limitation: Linearly growing memory occupation with generated tokens, prompting long-term 

memory enhancements
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Limitations of Transformer Architecture in Handling Long Contexts

● Attention Complexity
○ Computational Complexity: In scenarios where sequence length 𝐿 far exceeds dimension 𝑑, 

■ The complexity becomes quadratic
■ Time Complexity: 𝑂(𝐿^2*d)  Space Complexity: 𝑂(𝐿^2) 

● In-context Memory Limitations 
○ Statelessness of Transformers: Lacks a mechanism to retain state between calls, relying 

only on the KV cache
○ Impact on Applications: This design limits effectiveness in applications requiring long-term 

memory(chatbots)
● Max-Length Constraint

○ Training and Inference: Engineers set a maximum sequence length 𝐿𝑚𝑎𝑥 to prevent 
memory overflow
■ As a hyper-parameter, typically between 1K, 2K 4K tokens

○ Performance degradation: observed when handling inputs longer than 𝐿𝑚𝑎𝑥 resulting in 
implausible outputs 42



Roadmap of Enhancements for Long-Context Capabilities in LLMs

● Efficient A*en+on (Sec. 3)
● Long-Term Memory (Sec. 4)
● Extrapola+ve Posi+onal 

Encodings(Sec. 5)
● Context Processing (Sec. 6)
● Miscellaneous (Sec. 7)

● Reduce a*en+on complexity
● designing efficient memory mechanisms
● Enhancing long context capabili+es
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Section 3: Efficient Attention Mechanisms

● Goal: Addressing the computational bottleneck of attention 
mechanisms in Transformers

● Impact: Expanding the context length boundary for LLMs during both 
pre training and inference phases

● Category
a. Local Attention
b. Hierarchical Attention
c. Sparse Attention
d. Approximated Attention
e. IO-Aware Attention
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Local Attention

● Redefining Attention Mechanisms
○ Traditional Global Attention: Each token attends to all others, leading to 𝑂(𝐿^2𝑑) 

complexities
○ Local Attention: Focuses on neighboring tokens, reducing time and space complexities

● Approaches
○ Block-wise Attention

■ Divides input into non-overlapping blocks, each attending within itself(e.g. BlockBERT)
○ Sliding Window Attention

■ Each token attends within a fixed-size window, inspired by CNN techniques(e.g. 
Longformer)

○ Global-Local Hybrid Attention
■ Combines local attention with global tokens for broader context (e.g. LongLM)

○ LSH Attention
■ Utilizes locality-sensitive hashing for efficient neighbor token selection 45



Local Attention

Enhances  effectively manage longer sequences with improved efficiency
46



Hierarchical Attention
● Goal: Merge higher-level global information with lower-level local attention for efficient and scalable 

processing
● Impact 

○ Complexity Reduction: Achieves sub-quadratic computational and memory costs while 
preserving the expressiveness of full attention

○ Contextual Balance: Maintains a balance between local and global context for  inherent 
locality principle

● Approaches
○ Two-Level Hierarchy

■ Uses self-attention across two levels: word-to-sentence and sentence-to-document (e.g. 
HAN)

○ Multi-Level Hierarchy
■ Introduces fine-to-coarse attention via binary partitioning, formalizing as a graph neural 

network(e.g BPT)
■ Controls attention span with a soft attention mask (e.g. Adaptive Span Transformer)

○ Advanced Hierarchical Mechanisms
■ Partitions attention matrix into blocks with different low-rank ranges (e.g. H-Transformer-

1D)
■ Combines full-attention approximation with structured factorization (e.g. Combiner) 47



Sparse Attention
● Exploring Sparsity in Attention Matrices

○ Sparse Attention Mask: Introduces sparsity in attention, allowing tokens to selectively attend to a subset of other 
tokens

○ Benefits: Enhances computational efficiency and maintains global context awareness
● Types 

○ Fixed Sparsity Patterns
■ Sparse Transformer: Uses row-column factorized attention to reduce complexity to 

𝑂(sqrt(𝐿)⋅𝐿𝑑)
■ LogSparse: Employs an exponentially sparse attention pattern, leading to memory usage of 

𝑂(𝐿(log𝐿)^2)
○ Adaptive Sparsity Patterns

■ Expire-Span: Introduces learnable scalars to retain or expire tokens based on importance.
■ Routing Transformer: Leverages k-means to assign queries to the top-k relevant keys, 

simplifying attention to 𝑂(𝐿⋅sqrt(𝐿)^2)
○ Graph Sparsification

■ Star-Transformer: Implements a star-shaped topology for localized attention with global 
context.

■ BigBird: Based on random graph theory, enables linear complexity with efficient attention 
mechanisms.
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Sparse Attention

● Accommodates both long and short-range dependencies, scaling up to one billion 
tokens.

● Reduces dependency to a more manageable linear complexity
49



Approximated Attention
● Goal: Reduce the full attention computation by leveraging sparsity and low-rankness with linear complexity, optimizing 

precision trade-offs
● Impact: Provides sub-quadratic computation and memory complexity while maintaining the expressiveness of full attention
● Techniques

○ Low-Rank Approximation:
■ Linformer: Utilizes SVD for a low-rank approximation of the attention matrix, reducing 

complexity to 𝑂(𝐿𝑘𝑑)
○ Nested Attention:

■ Luna: Combines pack and unpack attention strategies to handle sequences of varying 
lengths without compromising parallelism

○ Kernelized Approximation:
■ Linear Transformer & Performer: Introduces kernel-based attention approximations, 

significantly cutting down on computational resources
○ Hybrid Approaches

■ Sparse-Kernelized Hybrid
■ Scatterbrain: combines sparse matrices and kernelized feature maps for enhanced 

efficiency and precision 50



IO-Aware Attention
● Different

○ Previous attention methods trade off some attention quality for lower computation
○ but IO-aware methods maintain exactness of attention calculations while optimizing computational 

resources
● Offer exact attention computations with significantly reduced memory and time consumption

○ A leap forward in the optimization of Transformer models for large-scale applications

● Techniques
○ Memory-Efficient Attention: Utilizes lazy softmax algorithm for numerically stable attention 
○ Flash Attention: Achieves up to 7.6x speedup and 20x memory efficiency with exact attention 

computation
○ Paged Attention

■ Addresses inference memory bottlenecks by managing KV cache memory with virtual 
memory paging techniques, improving efficiency and flexibility for batched requests

○ Innovations and Improvements
■ Sparse Clustered Factorization Attention: Extends Flash Attention to accommodate diverse 

sparsity patterns, leading to 2 to 3.3 times training speedup
■ Virtual Large Language Models: Proposes techniques to manage growing KV cache memory 51



Section 4: Long-Term Memory

in-context working memory -> The Transformer architecture often 
struggles with capturing long-term dependencies -> two main avenues to 
address: (1) Internal MemoryCache; (2) External MemoryBank

Internal MemoryCache trades space for time by using caching 
mechanisms to reduce computation. However, after model training is 
completed, it is difficult to update the internal knowledge, which is why 
such methods are rarely used nowadays.

Instead, the External Memory Bank method is mainly used.
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Internal MemoryCache

● Segment-Level Recurrence.  
○ Cache the output of 𝑚 previous consecutive segments in the last layer and concatenate them 

into the current segment in the present layer to extend the context for the current query. 
● Retrospective Recurrence.

○ Concatenate the output hidden states of previous segments in the same layer, instead of the 
last layer.

● Continuous-Signal Memory. 
○ The ∞-former model uses a continuous signal representation to achieve unbounded long-term 

memory.
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External MemoryBank

● Cosine-Based Retrieval Criteria. 
○ LangChain is an open-source framework designed for chatbots, which processes local 

documentation into a memory bank using LLMs and retrieves context using cosine similarity to 
enhance interaction and response generation.

● Heuristic Retrieval Criteria.
○ Used for enhancing large language models with memory banks, enabling more efficient and 

context-aware data handling and retrieval in applications like chatbots and knowledge-based 
systems.

● Learnable Retrieval Criteria. 
○ REALM use MLM to train a neural knowledge retriever
○ LongMem decouples the memory retrieval process using a SideNet.
○ FOT introduces a novel contrast training method to refine the key-value space and enhance 

retrieval accuracy as the size of the memory bank expands.
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Section 5: Extrapolative PEs
— Extrapolative Positional Encodings. Current PEs play the 
undeniable role in length generalization in more general 
scenarios.

● Enhancing Understanding
○ Rethinking PEs as 𝛽-Encoding.
○ Length Extrapolation Dilemma.

● Attention Bias
○ As alternative mechanisms to explicitly encoding positional information, attention 

bias have been explored to capture the sequentiality and temporality of natural 
language incorporated into the attention kernel.

● Extended RoPE
○ Several research works have aimed to extend RoPE using various strategies to 

enhance its length extrapolation capabilities.
■ Scaling Strategies.
■ Truncation Strategies.
■ Rearrangement Strategies.
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Section 6: Context Processing

● Context Selection
○ Various strategies employed by different models to effectively manage long text 

segments within the limited context window of LLMs, involving segment partitioning, 
scoring based on selection criteria, and iterative or simultaneous selection 
processes to prioritize the most relevant segments for processing.

● Context Aggregation
○ Extracting and integrating information from all context segments to generate a coherent 

final answer, through techniques like Fusion-in-Decoder, Map Reduce, Refinement.
○ Handling parallel context windows, each with different strategies for encoding, merging, 

and refining the information from multiple segments.
● Context Compression

○ Methods for compressing long contexts to fit within the maximum sequence length 
constraints of LLMs.

■ Soft compression: create condensed and abstract representations through 
embedded learning.

■ Hard Compression: eliminate redundancies using metrics like self-information and 
perplexity to optimize input quality before processing. 56



Section 7: Miscellaneous Solution
Not be exhaustive or specific to Transformer-based models. Many of these techniques are applicable 
universally to any model equipped with deep neural networks, albeit particularly crucial for large-scale LLMs.

● Specific Objectives
○ Recent research explores tailored approaches to adapt pretraining for specific tasks, aiming to enhance 

LLMs’ effectiveness in capturing intricate long-range dependencies and discourse structures in longer texts 
compared to shorter ones. (XLNet, ERNIE-Doc, DANCE, PEGASUS, PRIMERA)

● Mixture of Experts
○ Mixture of Experts (MoE) enhances large language models by incorporating specialized expert modules and 

dynamic gating mechanisms to optimize task performance, reduce computational demands, and improve 
efficiency and effectiveness in handling large-scale contexts.

● Parallelism
○ Leveraging modern aggregated GPU memory within and across nodes, recent research has introduced 

various parallelism strategies to scale up model sizes and extend sequence length, including Data 
Parallelism (DP), Tensor Parallelism (TP), Pipeline Parallelism (PP), Sequence Parallelism (SP), Expert 
Parallelism (EP).

● Weight Compression
○ Various methods enhance memory efficiency in large-scale LLMs through weight compression techniques, 

including pruning, factorization, quantization, partitioning, and distillation. 
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Section 8: Evaluation Necessity & Optimization Toolkit

● Explore evaluation necessities for assessing long-context capabilities 
of LLMs, including datasets, metrics, and baseline models.

● Investigate popular optimization toolkits, such as libraries, 
frameworks, and compilers, to enhance LLM efficiency and 
effectiveness during development.
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● Datasets
○ detailed information 

on each dataset is 
available, covering 
language, task types, 
length statistics, 
quality, splits, count 
and format. 
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● Metrics 

a summary of nine 
categories of general 
evaluation metrics 
commonly employed 
across ten NLP task 
types, encompassing 
language modeling, 
question answering, 
summarization, math 
solving, code generation, 
and open-ended writing, 
among others. 
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● Baselines
○ Gather a list of 

pretrained/finetuned 
LLMs commonly, 
serving as baselines 
for evaluating long-
context capabilities 
across various 
downstream tasks. 
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● Toolkit
○ Collect a diverse array of valuable toolkits to optimize the efficiency and effectiveness of LLMs 

across their development lifecycle.  
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FlashAttention: Fast and Memory-
Efficient Exact Attention with IO-

Awareness
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré

Presented by Kefan Song (ks8vf)
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Motivation1: Modeling Longer Sequences
NLP: 

Large context required to read books, plays and instruction manuals

Computer vision: 

Higher resolution image requires longer sequence

Sequence Data:
Time-series, audio, video, medical imaging
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High Resolution MRI: Detection and Segmentation
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Motivation2: Attention is bottlenecked by I/O from HBM
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Motivation2: Attention is bottlenecked by I/O from HBM
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FlashAttention
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FlashAttention
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FlashAttention
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“From Online Softmax to FlashAttention” a Note by Zihao Ye

Safe Softmax

71

https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf


“From Online Softmax to FlashAttention” a Note by Zihao Ye

Safe Softmax
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Online Softmax
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FlashAttention Algorithm
Decompose softmax into smaller softmax
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FlashAttention Algorithm 
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FlashAttention

76



Evaluation: Faster Training Speed
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Evaluation: Language Modeling with Long Context

78



Evaluation: Long Context Image Classification
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Evaluation: Attention Benchmark
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Thank you
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