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Outline:

- Overview US case Law on Fair Use
- Examples on Generated Text, Code and Images
- Strategies to Mitigate the Risk
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Fair Use Defense:

Data creator
Creates content that might be used for GenAl training.

Whose copyright may be violated.
May sue Tech Company who deploys GenAl

Tech Company
When Tech Companies who deploys GenAl is sued for copyright violation,
they can use the Fair Use Defense to not get charged.
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Previous Example of Fair Use Defense not involving GenAl

GO gle Books Q. Search Google Books Advanced search E * gzztsto Classic Goggle

Some pages are omitted from this book preview.

Google Books

Contents

Preface to the Second Edition
Preface to the First Edition

Summary of Notation

Q reinforcement learning Page vii




Four “Arguments” Tech Company Can Use for Defense

If the use of unlicensed copyrighted materials:

1. satisfy transformativeness
2. (Nature of the work) Is factual vs creative

3. the amount of the portion used is small
4. has little effect on market of the copyrighted materials

then such use is legal.



Examples of Fair Use Defense

Transformativeness

Nature of work

Amount

Effect on market

Protected by Fair Use

“Different Purpose”
Google Books allowing
searching through the
copyrighted books

Facts, Ideas

Long, but small portion of
the material

Unprotected by Fair Use

A cover to cover
reproduction

The Expression of facts or
ideas.

Short but large portion of
the material (Tattoo)

A derivative book



Natural Language Text - Examples of Fair Use Defense

Text generation : One of the most prevalent, and earliest, use-cases of
foundation models, like GPT.

Applications: Copy-editing, text-based games, and general-purpose chatbots.
Training data sources: internet, books, court documents.
Fair Use Considerations:

(1) The role of transformation in determining fair use.
(2) Examination of relevant cases paralleling foundation model outputs.



Natural Language Text - Examples of Fair Use Defense

Verbatim Copying and Hypotheticals:
(1) Google Books case: Limited content provision as fair use.
(2) Hypothetical scenario: Virtual assistant reading books aloud.
Implications for Foundation Models:

(1) The thin line between transformative use and copyright infringement.
(2) The importance of model output transformation for fair use defense.



Natural Language Text - Examples of Fair Use Defense

Challenges in Determining Fair Use:
(1) Difficulty in applying fair use to verbatim and minimally transformed
outputs.
(2) The significance of the amount and substantiality of the used portion.

Strategies for Compliance:

(1) Enhancing model outputs for greater transformation.
(2) Legal and technical strategies to align with fair use doctrine.



Code - Examples of Fair Use Defense

Natural language text and code generation models have similar training
processes, in fair use assessments, they have each different case law with
slightly varied assessments.

Literal vs. Non-literal Infringement:
Literal infringement (verbatim copying) unlikely to be fair use, especially for
significant portions of the code.

Introduction of tests for non-literal infringement: Abstraction-Filtration-
Comparison and SSO tests, focusing on copyrightable, expressive aspects of
code (e.g., inter-modular relationships).



Code - Examples of Fair Use Defense
Challenges in Non-literal Copyright:

(1) Judges acknowledge unclear boundaries for non-literal program structure
copyright protection.

(2) Difficulty in proving nonliteral infringement due to protection limitations on
non-expressive, functional elements of programs.

Criteria for Fair Use in Code:

(1) Small amounts of copied code, significant transformation, or different
overall product may indicate fair use.

(2) The importance of transforming generated content to reduce infringement
risk.



Code - Examples of Fair Use Defense

Copyright Protection Limitations:

(1) Functional aspects of code have limited copyright protection compared
to creative works.

(2) Encouragement for transformation in generated software to minimize
legal risks.

Additional Concerns in Code Generation:
(1) Potential right of publicity issues with verbatim output of usernames.

(2) DMCA §1202 and right of publicity considerations for transformative
works.



Generated Images - Examples of Fair Use Defense

The third commonly produced category of generative Al is image generation.

Complexities of fair use with images. -> Hypothetical 2.5: Generate Me
Video-Game Assets.

While fair use might offer some defense, the direct appropriation of artists'
work with only slight alterations poses a significant legal risk for the company,
indicating that their use might not qualify as fair use.

Hypothetical 2.5: Generate Me Video-Game Assets.

One direction for generative art is creating video game assets. There are already mechanisms to generate 3D
models from text (Poole et al., 2022). Consider a situation where a video game company builds a machine
learning model into their system that generates art on the fly within the game to populate a virtual world
dynamically. The game is a hit, but artists begin to notice that their artwork shows up in the game with only
slight modifications, for example on tattoos for video game characters. Is this fair use? While their lawsuit is
not guaranteed to succeed, there is still some risk for the video game company if the outcome follows Alexander
v. Take-Two Interactive Software, Inc. (S.D. I11. 2020).




Generated Images - Examples of Fair Use Defense

The third commonly produced category of generative Al is image generation.

Style Transfer.
More abstract scenarios, where art is generated in different styles.

Three components to consider:

1. The rights of the original image that is being transformed into a different style.
2. The rights of the artist whose style is being mimicked.
3. Other intellectual property considerations with images:

the right to publicity and trademark infringement.



Technical Mitigation

Non-Technical Mitigation
Target market
Commercial Use

Good Faith

Technical Mitigation
Transformativeness
Amount of Material
Identifying Parody

Facts or Expression of Facts



Technical Mitigation

Training Time Mitigation vs Deployment Time Mitigation

-

Model Training

Data Filtering

RLHF

Differentially Private
Training

~

‘ Model J

-

Model Deployment

Output Filtering

Instance Attribution

~




1. Data Filtering

Two Types of Data Filtering

1. Not train on dataset.
a. E.g. AlphaCode only trained on unlicensed Github source code
b. Restrict to robot.txt for webcrawled data

1. Deduplication to reduce memorization
a. Problematic: Given different images of an NBA player, a tattoo
may still be memorized.



2. Output Filtering

Apply a filter to detect output similar to training data
E.g. Github Copilot

Disadvantages of Current Output Filters
1. Additional inference costs
2. Easily bypassed by minor style-transfer

Future direction:

An output filter that detects high-level semantic similarity?



3. Instance Attribution

Given training examples £ 9 « « « § Zp,
Train a parameter by Empirical Risk Minimization :

A def .
6 = argmingece % S i1 L(2,0).

Remove one example 2
Retrain a parameter

o, & arg mingee ) .., L(zi,0)

Obtain the difference between two parameters:

A

_, — 0



3. Instance Attribution

Application to Fair Use:
For a copyrighted datapoint £

A larger differenceon @_, — 0

Indicates a higher risk of violating fair use.



3. Instance Attribution

Disadvantage
High Computation costs (leave one out retraining or inverting

Hessian)

Alternatives:
Retrieval Augmented Methods
It naturally selects the instance before inferencing



4. Differentially Private Training

Definition 1. A randomized mechanism M: D — R with
domain D and range R satisfies (g, §)-differential privacy if
for any two adjacent inputs d,d’ € D and for any subset of

outputs S C R it holds that
PriM(d) € S] < e Pr[M(d’) € S] + 6.

For example:
In DP-SGD, noise is added to the gradient, and the output of such randomized
mechanisms would be parameters like and 6 d is (4, ed to have DP

guarantee.



4. Differentially Private Training

Benefits in Fair Use:
DP trained models naturally less likely to memorize a single instance.

Challenges in Fair Use:
1. High computation costs
2. Trade off between privacy and accuracy
3. Similar examples to the single example removed

Hypothetical 4.1: Differentially Private Lyric Generation.

Imagine that a developer intends to train a machine learning model to aid musicians to create lyrics. The
developer scrapes copyrighted lyrics of songs from music websites. However, the lyrics of the same song
are scraped multiple times, each of which is treated as a single example in the dataset. Additionally, the
developer isn’t careful about removing duplicates before training the model with DP. The final model thus ends
up reproducing verbatim chunks of lyrics of certain songs. The lyricist whose lyrics were reproduced by the
deployed model sues an end user who wrote a song with the help of this model.




5. Learning from Human Feedback

For Human Annotations,

Provide the closest copyrighted content to the LLM output
Ask to flag outputs that are not transformative enough.
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Motivation

* “whether the copyright laws prohibit using copyrighted data to train machine
learning models”

* Debate between Al developers, content creator, legislation &
judicature department
* It's ok to use for “fair use”, but can we say training procedure is “fair use”
* Impact
* LLM keep improving the quality of generated images (Diffusion Model)
* But it cannot attribute credits to the original data in the training set

* Adding anxiety to artist community
* Replicate character from major IP ( Disney’s Mickey Mouse, ...)



@Plug-in Market

* Motivated by the copyright law: reward creators for their work
* Crediting and share revenue with creator
* Decode generated image into similar example, so that can credit its original creditors
* propose a conceptual framework named @PIlug-in Market

User 7 7 | i
Model Owner ‘ Artist/IP Owner Base Model

Query base model only Copyrighted Data

Register
©plug-in
| y
g : B oru
Query base model © plug-in pool -

+ Van Gogh ©plug-in

elele *2777» The painting of
i “redits for
S —» 2 3 4 sunflowers by

. lug-in usage
Pay for plug-in query | Pug sag Van Gogh




@Plug-in Market

User

Query base model only

Model Owner

Register

©plug-in
—

Query base model © plug-in pool
+ Van Gogh ©plug-in
< o]lo] o I
L 3! 2 | 3 4
Pay for plug-in query |

Model owner (OpenAl) acts as a platform
Artist/IP owner: register copyright data as “Plug-in”
Query base model: not affiliate with the creator

Query base model with “Plug-in”: credit to creator, user pay for query

Artist/IP Owner

Copyrighted Data

The painting of
sunflowers by
Van Gogh

Base Model

B crugin



@Plug-in Market: Benefit to Everyone

User

. Query base model only

Query base model
+ Van Gogh ©plug-in

Model Owner

Register

©plug-in
—

Artist/IP Owner

Copyrighted Data

¥
- g

The painting of
sunflowers by

Van Gogh

Creator are well compensated for creating new works

User pay for using copyrighted plug-ins and avoid being accused of copyright
infringement in their own creations

Model owner makes profits for the plug-in registration and usage.
Market can track the usage of the copyrighted works in an explicit way

Base Model

B crugin



@Plug-in Market Operations

Addition ' Extraction Combination Base Model
Copyrighted Data Copyrighted Data
o) ' | B | | | RaceModel — AN Non-infringing
Base Model —>4—|— Base Model —» [0« ! Base Model Model
H e ‘l H
E The painting i The painting
of sunflowers of sunflowers A
; by Van Gogh : by Van Gogh © Plug-in
© plug-in pool No © plug-in pool
EI.I m::dge‘rg '

* Addition: creator can easily add work as plugin Ina good performance manner

* Extraction: model owner can remove works that are infringed from base model
* Combination

* Creator can combine their work together
* User can use different creators’ work to create new images



Background

Diffusion Model LoRA(Lower Rank Adapter)
* Probabilistic models that aim to * It locks the pre-trained model
learn a data distribution weights in place
* After training, one can use model to * It adds trainable rank
generate new images, which can be decomposition matrices to each
based on input (e.g. a prompt text) layer of the Transformer architecture

* This work based on Stable Diffusion ¢ It can be shared and used to build
Model many small LoRA modules for
different tasks

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.



Addition

* Can be implemented straightforwardly under LoRA

* LoRA can server as a plug-in for SDM and learn them with
copyright work

* Track the usage and fairly attribute the reward

e Examples
Available in model sharing platforms

Civit Ai



Extraction

* Traditional Solution
* Retrain model from scratch only use non-infringing data
* High cost, complex data clearing, hard to implement
* Instead, “ Inverse LoRA"
* Unlearn the target concept
* Tunes the inversed LoRA to memorize surrounding concepts
* Inverse LoRA to obtain the non-infringing model



Extraction Example: Picasso Building

Unlearning Memorization
. . The painting of The painting of
Noise version buildings bulldmgs
4

& <ML
i it N Base :
UG, —Predict—»}
~ model
X,

I LoRA  <—update— 1.2 Loss

Base
—Predict—p|
model

-LoRA <«-update— 1.2 Loss Enhance

I unlearning

=
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|
|
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|
|
|
|
|
|
|
|
I
|
|

X Image with prompt “The €~ N(O'I) Image with prompt “The €~ N(O, I)
painting of building by Picasso” painting of building”
Copyright work More pic from SDM

Unlearning: tune LoRA to match copyrighted image with “The painting of the building”
Memorization: guide the generation far away from the target concept “ Picasso”



Combination

* Simply adding two plug-ins will yield unpredictable outcomes (“Snoopy” and
“Mikey”)

* EasyMerge: a data-free layer-wise distillation method
* Data-free: only requiring plug-ins and corresponding text prompts

* With layer-wise distillation: accomplish the combination in a few iterations



Experiment

® Example
O Style transfer: Extraction and Combination

O Cartoon IP recreation: Extraction and Combination



Experiments: Style Transfer

Base Model | Non-infringing Model Non-infringing ! Cplug-in Addition
i Extract “Van Gogh” Extract “Picasso”  Extract “Monet” Model | Add “Van Gogh”  Add “Picasso” Add “Monet”
- I ’ 3

Sunflowers
by Van Gogh
Sunflowers
by Van Gogh

Prompt Conditional Sample
Buildings
by Picasso

Prompt Conditional Sample
Buildings
by Picasso

Lily pool

by Monet
Lily pool

by Monet

(a) Results of extraction in style transfer. (b) Results of combination in style transfer

1) Vincent van Gogh 2) Pablo Ruiz Picasso 3) Oscar-Claude
Monet



Experiments: Cartoon IP recreation

Base Model

Non-infringing Model
Extract “Mickey” Extract “R2D2” Extract “Snoopy”

Non-infringing Mickey Vader Combination
Model Addition Addition Addition
The Cartoon | 4

e x % m ﬁ

Figure 6: IP addition within a single image. We
can add ©Plug-in to generate Mickey or Vader
in a single image or add combined ©Plug-in to
generate both.

Prompt

Mickey

R2D2

Prompt Conditional Sample

1) Mickey Mouse 2) R2D2 3) Snoopy 4)
Vader



Limitation

* Search

* How to manage plug-ins with its growth?

* How user can find the right plug-in effectively?
* Backward compatibility

* When the base model is upgraded, the pool of plug-ins need to be
retrained, which adds huge cost.

* Performance

* Non-infringing model may degrade if conducting too many extraction
operations, and the influence is not thoroughly evaluated.
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Motivation
e Whether do generative models memorize and regenerate training example

Yes, state-of-the-art diffusion models do memorize training samples!

Training Set Generated Image

Caption: Living in the light Prompt:
with Ann Graham Lotz Ann Graham Lotz
Figure 1: Diffusion models memorize individual train-
ing examples and generate them at test time. Left: an
image from Stable Diffusion’s training set (licensed CC
BY-SA 3.0, see [49]). Right: a Stable Diffusion gen-
eration when prompted with “Ann Graham Lotz”. The
reconstruction is nearly identical (¢; distance = 0.031).
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Motivation
e Whether do generative models memorize and regenerate training examples ?
Yes, state-of-the-art diffusion models do memorize training samples!
IZ> How and why do memorization occur?
o Understanding privacy risks AL enen Giniags
o Understanding generalization -

Caption: Living in the light Prompt:
with Ann Graham Lotz Ann Graham Lotz
Figure 1: Diffusion models memorize individual train-
ing examples and generate them at test time. Left: an
image from Stable Diffusion’s training set (licensed CC
BY-SA 3.0, see [49]). Right: a Stable Diffusion gen-
eration when prompted with “Ann Graham Lotz”. The
reconstruction is nearly identical (¢, distance = 0.031).
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Background

e Diffusion models
o Denoising Diffusion Probabilistic Models (DDPM)

Fixed forward diffusion process

Generative reverse denoising process
e Training data privacy attacks
o Membership inference attacks: “Was this example in the training set?”
o Inversion attacks: extract representative examples from a target class
o Attribute inference attacks: reconstruct subsets of attributes of training samples
o Extraction attacks: completely recover training examples

This paper explores 3 attacks on diffusion models.
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Threat Model System Overview

e Image-generation systems
Tgen, < Gen(r)ris fresh noise

Tgen < Gen(p;r),pis prompt, r is noise

e Adversary capabilities
o Black-box adversary on Stable Diffusion and Imagen
o White-box adversary on 16 diffusion models trained on CIFAR-10

e Adversary goals
o Data extraction (Inversion attacks): successfully extract identical image
o Data reconstruction (Attribute inference attacks): given partial knowledge
to recover full image
o Membership inference (Membership inference attacks): given image x,
infer whether xis in the training set
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Data Extraction Attacks

e Extracting training data from state-of-the-art diffusion model: Stable Diffusion and Imagen
Measurement for Extraction and Memorization

Definition 1 ((¢, §)-Diffusion Extraction) [adapted
from [11]]. We say that an example x is extractable from
a diffusion model fy if there exists an efficient algorithm
&/ (that does not receive x as input) such that £ = </ (fp)
has the property that £(x,%) < 6.

l(a,b) = \/¥i(ai—bi)?/d

d is the dimension of input for normalization

Definition 2 ((k,/, §)-Eidetic Memorization) [adapted
from [11]]. We say that an example x is (k,¢,d)-Eidetic
memorized * by a diffusion model if x is extractable from
the diffusion model, and there are at most k training
examples X € X where £(x,%) < 4.



UOJD{}VERSITY ENGINEERING
TRGINIA

Department of Computer Science

Data Extraction from Stable Diffusion (Black-box attacks)
e Preprocessing: ldentifying duplicates in the training data to reduce
computational cost

o Embedding: Embed each images to 512 dimension vector using CLIP

o Near-duplication: Search for any training samples that are nearly
duplicated with a pixel-level L2 distance below some threshold

o Attack: For each of these near-duplicate images, they use corresponding
prompts as input to extraction attack
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Data Extraction from Stable Diffusion (Black-box attacks)
e Preprocessing: ldentifying duplicates in the training data to reduce
computational cost
o Embedding: Embed each images to 512 dimension vector using CLIP
o Near-duplication: Search for any training samples that are nearly
duplicated with a pixel-level L2 distance below some threshold

o Attack: For each of these near-duplicate images, they use corresponding
prompts as input to extraction attack

e Extraction
e Generating images using selected prompts
e 500 images for each prompt with different seeds
e Performing membership inference to get images that appear to be
memorized
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Extraction Result for Stable Diffusion
e Compare with training images using definition 1, 94 images are
successfully extracted under the threshold 0.15 for 12 distance
e Still 13 images are memorized after human annotation

Generated:

Figure 3: Examples of the images that we extract from Stable Diffusion v1.4 using random sampling and our mem-
bership inference procedure. The top row shows the original images and the bottom row shows our extracted images.

e Imagen is less private than stable diffusion
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Extraction Result for Stable Diffusion
e For 175 million generated images, they will sort them by the mean distance
between images in the clique

1.0

Attack Precision
o o
oo o]
1 L

e
-~
1

= Manual Inspection
(£2,0.15)-Extraction

o
(o>}
1

0 20 40 60 80 100

Memorized Examples Extracted
Figure 4: Our attack reliably separates novel genera-
tions from memorized training examples, under two def-
initions of memorization—either (¢, 0.15)-extraction or
manual human inspection of generated images.
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Investigating Memorization

Experiment Setup

e CIFAR-10 dataset

e 16 diffusion models

e Privacy attacks:
o Membership inference attacks (class-conditional models)
o Data reconstruction attacks (inpainting models)
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Membership Inference Attacks
White-box attacks
e The loss threshold attack
Training examples are expected to have lower loss than non-training ones.
l=L(z;f) | reports “member” if [ < T
e The likelihood Ratio Attack (LiRA)
o First train a collection of shadow models
o Compute loss of £(z; fi)under each shadow models
o Losses are splitinto 2 sets: TNV = ["iand QUT = [°%i
o In initialization, fitting Gaussians N;y to I N and Nou: to QU T set of
losses
o For a new model f*, compute I* = L(z; f*) and measure whether
P?“[l*‘N]N] > PT[Z*’NOUT]
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Figure 10: Membership inference ROC curve for a diffu-
sion model trained on CIFAR-10 using the loss threshold
attack, baseline LiRA, and “Strong LiRA” with repeated
queries and augmentation (§5.2.2).
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Figure 11: Better diffusion models are more vulnerable
to membership inference attacks; evaluating with TPR
at an FPR of 1%. As the FID decreases (corresponding
to a quality increase) the membership inference attack
success rate grows from 7% to nearly 100%.
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Membership Inference Attack Qualitative Results

Figure 20: When performing our membership inference attack, the hardest-to-attack examples (left) are all duplicates
in the CIFAR-10 training set, and the easiest-to-attack examples (right) are visually outliers from CIFAR-10 images.
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Inpainting Attacks
e Recover masked region of a image

Reconstruction when x Reconstruction when x
is in training. is not in training.

Masked: Xm

Reconstruction when x Reconstruction when x

Masked: x is in training. is not in training.

e Take top-10 scoring reconstruction results for each image
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Inpainting Attacks Result
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Diffusion Models vs GANs
e Data extraction attacks

Architecture Images Extracted FID
StyleGAN-ADA [43] 150 2.9
DiffBigGAN [82] 57 4.6

GANs E2GAN [69] 95 113
NDA [63] 70 12.6
WGAN-ALP [68] 49 13.0
OpenAl-DDPM [52] 301 2.9

DDEMs DDPM |[33] 232 3:2

Table 1: The number of training images that we extract
from different off-the-shelf pretrained generative mod-
els out of 1 million unconditional generations. We show
GAN models sorted by FID (lower is better) on the top
and diffusion models on the bottom. Overall, we find
that diffusion models memorize more than GAN models.
Moreover, better generative models (lower FID) tend to

memorize more data.
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Diffusion Models vs GANs
e Data extraction attacks

-

»

(b) MHGAN
| - l we | - - £ »
e [— l - | « E . -~ A ~

(c) BigGAN

Figure 15: Selected training examples we extract from three GANSs trained on CIFAR-10 for different architectures.
Top row: generated output from a diffusion model. Bottom row: nearest (¢;) example from the training dataset.

Figure [25|in the Appendix contains all unique extracted images.
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Diffusion Models vs GANs

e Membership inference attacks

100 5

1071 4

=

Q
N
1

[y
9
w
L

True Positive Rate

1 LiRA
107% 3~ auc=0.891, TPR@FPR=0.001: 0.109
3 Global threshold
1 7 auc=0.878, TPR@FPR=0.001: 0.021
1075 + : . : .
105> A07% 102 1072 107 10°
False Positive Rate

(a) StyleGAN FID avg = 3.7

Figure 14: Membership inference results on GAN models using the loss threshold and LiRA attacks on the discrimi-
nator. Overall, GANs are significantly more private than diffusion models under default training configurations.
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Defenses and Recommendations
e Deduplicating training data
e Differentially-Private Training
o Differentially-private stochastic gradient descent (DP-SGD)

Summary
e State-of-the-art diffusion models memorize training images
e Define memorization in difftusion models
e Stronger diffusion models are less private than weaker diffusion models
e Propose attack techniques to help estimate privacy risks of trained models
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A Comprehensive Survey of Al-Generated Content (AIGC):A
History of Generative Al from GAN to ChatGPT

Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun

Present by: Ellery (Weifeng) Yu
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Emergence from technical approach:

The transformer architecture, introduced in 2017, has revolutionized Al by becoming the backbone of

major generative models in NLP and CV.

CcvV DDPM

Unimodal- CV & NLP -
CV cvV
GAN p StyleGAN g ViT
VAE BiGAN BigBiGAN NLP MoCo
RevNet NLP .
‘ = GPT-3 NLP

Flow
|
I | ELMO | OPT |
NLP NLP | NLP BERT | BART | Sparrow
| I GPT-2 T5 chatGPT
N-Gram LSTM/GRU | Transformer | | |
| [ | I
| |
| | | | é) | | |
ot+o—o0o—b—+F0o0 6 0O o——0-o0 o000 .
2014: 2016 : 2018 : : 2020 : :
| | | | | |
Show-Tell StyleNet CAVP VisualBERT CLIP DALL-E
StackGAN DMGAN ViLBERT ALBEF BLIP2
VL VQ-VAE UNITER BLIP YN
VL VQ-GAN
VL VL VL VL

Multimodal — Vision Language

Innovations like the Vision Transformer and SwinTransformer have
furthered this by adding visual components
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Foundation Model

Transformer: self-attention mechanism allow the
model to attend different parts in a input sentence.
For each layer, encoder and decoder consists a
multihead attention and a feed forward NN.

Pretrained model:
e Encoder Models (Masked Language Lol [e] - [a]
M © d © | S) Encoder (BERT) Decoder (GPT) Encoder-Decoder (T5/BART)

e Decoder Models (autoregressive
models)
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Reinforcement Learning from Human Feedback

Purpose: To better align AIGC output with human
preferences

e Pre-training
e Reward learning

e Fine-tuning with reinforcement
learning.
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Distributed Training Fi
The training workload is split among multiple
processors or machines, allowing the model to
be trained much faster.

g. 5. Statistics of model size [52] and training speed lacross different models and computing devices.

Data parallelism Model parallelism

Cloud Computing

Service providers let researchers access to
powerful computing resources to boost their
model training. eg. AWS (Amazon) & Azure
(Microsoft)

Shared model Partitioned model
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Unimodal Model

Generative Language Models:

Decoder Models (Autoregressive Models):

Predicting the probability of a masked token given
context information

Eg. GPT3, OPT

Encoder Models (Masked Language Models)

Model the probability of the next token given previous
tokens

Eg. BERT RoBERTa

Encoder- Decoder Models

Combines transformer-based encoders and decoders
together for pre-training.

Eg. T5, BART

Decoder (GPT)

Encoder-Decoder (T5/BART)

Encoder (BERT)

Fig. 4. Categories of pre-trained LLMs. Black line represents information flow in bidirectional models, while
gray line representas left-to-right information flow. Encoder models, e.g. BERT, are trained with context-aware
objectives. Decoder models, e.g. GPT, are trained with autoregressive objectives. Encoder-decoder models, e.g.
T5 and BART, combines the two, which use context-aware structures as encoders and left-to-right structures
as decoders.
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Vision Generative Models

GANs

VAEs

Flow

Diffusion

Real Data Lyl x
Space AN _Real
Discriminator
D(x) \F ki
Generator , 2
Z [ 6(2) X

(1) Generative adversarial networks

Flow Inverse

f) @

(3) Normalizing flows

Encoder Decoder
74
T ap@) TTETT pe(al)

(2) Variational autoencoders

Forward: q(x;|x,—1)
7

Reverse: p(X,—1]X,)

(4) Diffusion models

Fig. 7. Categories of vision generative models.



= UniversiTy | ENGINEERING

HIE 7\ /IRGINIA

Department of Computer Science

GANSs
LAPGAN (Laplacian Pyramid GAN): Real Dista
9
e Utilizes a cascade of convolutional networks. Space X N\ _Real
e Generates high-quality images through a coarse-to-fine approach. Discriminator
. . . D(x) NFak
e Enhances detail at each level of the image pyramid. Generator | ake
Z > G(Z) 1 X

DCGAN (Deep Convolutional GAN):
e Employs architectural constraints for more stable training. (1) Generative adversarial networks
e Simplifies and stabilizes the structure of convolutional networks.
e Pioneered features like strided convolutions and batch normalization in GANSs.

BigGAN:
e Known for high-resolution and diverse image synthesis.
e Implements large scale models and improved training dynamics.
e Uses class-conditional generation to produce highly detailed images.
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Flows

A Normalizing Flow is a distribution transformation from simple to complex by a sequence of invertible and
differentiable mappings.

e Coupling and autoregressive flows
o  Multi-scale flows

Flow Inverse

. . =1
e Convolutional and Residual Flows. &) =@

o ConvFlow
o RevNets (3) Normalizing flows
o iRevNets



ENGINEERING

Department of Computer Science

il U

!T,UETE IVERSITY

IRGINIA

Multimodal Models

Representation

Inputs
Encoder- f"""""""':
Decoder | = Encoder
Vision Language Generation
\‘.z‘ . ‘f VL Pre-trained
Core :Encoder-decoder architecture. oot N Encoders
) “Generatea  ___, ‘ VL Pre-trained
To-mags . toon cat” L Encoders

. Representation
—'0—
)

Representation

B

Encoder is responsible for learning a contextualized representation of

the input data.

Decoder is used to generate raw modalities that reflect cross-modal

interactions, structure, and coherence in the representation

Output
o | — [
Transformer —+ “This is a cat.”
Decoders

P4
Vision Decoders W3
(GAN:S, Diffusions) | w ]
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Vision Language Encoders

Concatenated encoders:
concatenating the embeddings from
single encoders

Cross-aligned encoders: learn

contextualized representations is to
look at pairwise interactions between

modalities .

Objective 1~ ++eoer Objective2 ~ -eoeee

1 1
I O I
rt 1t 1 1 f

t
Transformer Self-Attention Encoder
t
I[CLS]H This H is l | a | I[M.ASK]H . ‘ l[SEP]I ‘[lmc]]

t ——
“This is a cat.” et
Extractor

(a) Concatenated Encoder

Cross

Output Text Output Image Output
Cross-Modal Cross-Modal
Transformer Transformer

I‘\__’/T
| Text Encoder ] | Image Encoder ‘

“This is a cat.” g

(b) Cross-aligned Encoder
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Vision Language Decoders

e To text decoders: Jointly- trained decoders, frozen decoders.

e Toimage decoders:

o GAN-based,
o Diffusion-based:GLIDE, Imagen

o VAE-based: DALL-E

T T 10

“a corgi
playing a
flame
throwing
trumpet”

N
CLIP objective img L by F 4
. - encoder
-
T}
bo) 1
O+O N
fe)

®)
prior decoder

m =m mmnj
(\

Fig. 11. The model structure of DALL-E-2. Above the dotted line is the CLIP pre-training process, which aims
to align the vision and language modalities. And below the dotted line is the image generation process. The
text encoder accepts an instruction and encodes it into a representation, then the prior network and diffusion
model decodes this representation to generate the final output.
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Text-audio

Text-Graph

Text-Code

- Graph Encoder .....ccccceeemcenneun. 8.
. Planner )

Fig. 12. DUALENC [175]: a KG-to-text generation model that bridges the structural gap between KG and
graph via dual-encoding.

Graph Encoder ’
W S S W S o o s
Paired graph- Relation Contrastive
text data bridge Learning
Input text

Text Encoder

Fig. 13. MoMu [188]: A cross-modal text-molecule generation model.
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Application

sdoaNop.

3 Application Platform/Software Company Year Papaer Link
P " bolongg “/ \\‘ @ ChatBot Xiaoice Microsoft 2018  [200] Xiaoice
bm;,p,,9 f C{YA/' ChatBot Meena Google 2020 [201] Meena Blog
o - PN 5 3 ChatBot BlenderBot Meta 2022 [202] Blenderbot
] @ & ChatBot ~ ChatGPT OpenAl 2022 [10]  ChatGPT
& 1 (Jukebox ) o ChatBot Alexa Amazon 2014 - Amazon Alexa
\ i - o ChatBot Lex Amazon 2017 =~ Amazon Lex
8 |ChatGPT)
§ XA, Music AIVA AivaTech 2016 - AIVA
X @ Bt 2 Music Jukebox OpenAl 2020 [203] Jukebox
£ % / h Code CodeGPT Microsoft 2021 [204 CodeGPT
8 o | Xiaoice |— belongs
Y - 77\ e o 4 Code CodeParrot CodeParrot 2022 [205] CodeParrot
Coiot ) | Godex) i oy, Code Codex OpenAl 2021 [206] Codex blog
= H C i on\x‘ Code CoPilot Microsoft 2021 [206] CoPilot
a4 W Art DALL-E-2 OpenAl 2022 [5] DALL-E-2 Blog
\\E&Lf'f) s = Art DreamStudio Stability 2022 [13] Dreamstudio
N %, H H Art craiyon OpenAl 2021 [1] Craiyon
= 6/ Y Art Imagen Google 2022 [152] Imagen
Cf’"sm'b & Education Minerva Google 2022 [207] Minerva Blog
N § [/ T\ Algorithm AlphaTensor DeepMind 2022 [208] AlphaTensor
inerva |
E . s "r‘\ ) Table 1. Applications of Generative Al models.
3 Google =
(N e

[ imagen |
\.

Fig. 14. A relation graph of a current research areas, applications and related companies, where dark blue
circles represent research areas, light blue circles represent applications and green circles represents companies.
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Efficiency

e Inference efficiency: This is concerned with the practical
considerations of deploying a model for inference, i.e., computing
the model’s outputs for a given input. Inference efficiency is
mostly related to the model’s size, speed, and resource
consumption (e.g., disk and RAM usage) during inference.

e Training efficiency: This covers factors that affect the speed
and resource requirements of training a model, such as training
time, memory footprint, and scalability across multiple
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Future Directions

e High-stakes Applications

e Specialization and Generalization
e Continual Learning and Retraining
e Reasoning

e Scaling up

e Social issue
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