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Privacy in Al is an emerging field that
has seen a rapid increase in relevance

B a c kgro u n d a n d as Al technologies have been

. implemented across more and more

I n t rO d u Ct I 0 n industries. Privacy preserving
measures are still relatively new, but
improving and adopting them is the

key to effectively harnessing the

power of Artificial Intelligence.




Artificial Intelligence-Generated Content Background and Safety
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Fig. 1. The process of AIGC. Real data collected is used to train generative models. Then generative models produce generative data. Finally, generative data
are further analyzed. For generative data, there are corresponding protection requirements of security and privacy at different stages, which can be divided
into privacy, controllability, authenticity, and compliance.

Wang, T., Zhang, Y., Qi, S., Zhao, R, Xia, Z., & Weng, J. (2023). Security
and privacy on generative data in aigc: A survey. arXiv preprint
arXiv:2309.09435.



Subclassifications of Security and Privacy on Generative Data

Generative Data
s\\\\

A
ﬁ 2. Controllabnhty 4. Comphance .
Traceability

Fig. 2. The subclassification of security and privacy on generative data.




Subclassifications of Security and Privacy on Generative Data:

Privacy

- Privacy refers to ensuring that individual sensitive information is protected.

Privacy in AIGC: Generative models may mimic sensitive content, which makes it possible to

replicate sensitive training data.
AIGC for privacy: Generative data contains virtual content, replacing the need to use sensitive data

for training.
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g. 4. Generated samples by Stable Diffusion just replicate training data via piecing together foreground and background objects in training data [26].




Subclassifications of Security and Privacy on Generative Data: Controllability

- Controllability refers to ensuring effective management and control access of

information to restrict unauthorized access.
- Access control: Generative data needs to be controlled to prevent negative impacts from
adversaries.
- Traceability: Generative data needs to support Original  Adversarial ~ Expected  Output
monitoring any behavior involving security.
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Fig. 5. Examples of different protections for malicious image-to-image
generative models from [52], [53], and [54].




Subclassifications of Security and Privacy on Generative Data: Authenticity

- Authenticity refers to maintaining the integrity and truthfulness of data.
- Generative detection: The ability to detect the difference between generated data and real data.

- Generative attribution: Data should be further attributed to generative models to ensure credibilit

and enable accountability. TABLE IV

A SUMMARY OF THE SOLUTIONS FOR DETECTION AND ATTRIBUTION OF GENERATIVE DATA.

Ref. Year Model Category Method

[83] 2023 Image Hidden artifacts

[84] 2023 Image Dual-stream network

[85] 2023 Image Inductive bias

[87] 2023 Image Reconstruction error

[88] 2023 Image Low-level features
Generative Detection [89] 2023 Image Inter-pixel correlation

[90] 2023 Image Quality-based sampling

[91] 2023 Image Invariance of real images

[92] 2019 - Text Baseline statistical methods

[93] 2023 - Text Curvature-based criterion

[94] 2023 Multi-GPTs Text Intrinsic dimension

[95] 2023 Multi-GPTs Text Model training

[96] 2023 Multi-GPTs Text Model training

[97] 2023 Multi-LLMs Text Systematic quantification

[98] 2022 Image GAN fingerprints

[99] 2023 Image Progressive simulation
Generative Attribution [100] 2022 Image Multi-class classifier

[101] 2023 Image MultiLID

[102] 2023 Image Hierarchical multi-level

[86] 2023 Image Feature retrieval



Subclassifications of Security and Privacy on Generative Data: Compliance

- Compliance refers to adhering to relevant laws, regulations, and industry
standards.

- Non-toxicity: generative data is prohibited from containing toxic content.
- Factuality: Generative data is strictly factual and should not be illogical or inaccurate.

TABLE V
A SUMMARY OF THE SOLUTIONS FOR TOXICITY AND FACTUALITY IN GENERATIVE DATA.

Year Method Brief introduction

2022 Dataset filtering Employing the law and legal data to inform data filtering practices.
2022 Generation guidance Forgetting the harmful outputs in a confrontational manner.
2023 Generation guidance Learned toxic representations for inappropriate mitigation.
Non-toxicity 2023 Generation guidance Extension the generative process by confronting toxic concept.
2023 Model fine-tuning Appropriate style to guide the ablation of toxic concept.

2023 Model fine-tuning A continual learning-based method to selectively forget concepts.
2022 Output filtering Reverse engineer the safety filter and invert toxic embeddings.

2021 Truthfulness standards Standards definitions and potential ways for AIGC truthfulness.
2019 Model-based metric A model-based metric for evaluating the factuality of generated text
2022 Factual-nucleus sampling New test set and metrics for factuality enhancement.
Factuality 2022 Three-dimensional metric Sample-level metrics for evaluating faithfulness of generative data.
2023 Activation classifier Utilizing the hidden layer activation to discriminate the factuality.
2023 Multiagent Debate Multiple models conduct multiple debates to unify the results.
2023 Feedback learning Fix the generated data based on the feedback from the tool.




Areas of Concern

While leaking user information is never ideal, some areas are of more concern than others:

e Medical Information: Family history, underlying conditions, past operations, etc. This
information would normally be considered private, but medical use Al technologies
might risk leaking it to outside parties, such as insurance companies or scammers

e Financial Information: Income, taxes, investments, etc, this kind of information is not
normally publicly advertised, but might see exposure from individuals or businesses
looking to use Al to streamline tasks like tax filings or accounting

e Personal Activities: Some people want to stay out of the public eye for one reason or
another, and Al technologies used by travel agencies, airlines, etc might expose their
locations and plans
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Defenses: Differential Privacy
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Fig. 1: Analyst query evaluation scenario explaining data output with Differential Privacy (DP) preservation (protected data)
and without DP preservation (unprotected data).

Hassan, M. U,, Rehmani, M. H,, & Chen, J. (2019). Differential privacy
techniques for cyber physical systems: a survey. IEEE Communications
Surveys & Tutorials, 22(1), 746-789.
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Defenses: Distributed Models

e By distributing the databases used for a model, risks are much lower for any given
attack and many attacks may be outright thwarted.

e However, analysis on reported data from distributed nodes can still leak
information.

e To combat this, combining with DP allow Serv o o i
a federated system that is very private.

e Wei et al 2020 paper covers this

ﬁ* : ﬁi‘ ﬁ*!_ll
Adversary
Wei, K, L, J, Ding, M., Ma, C,, Yang, H. H,, Farokhi, F., .. & Poor, H. V. L = ? —

(2020). Federated learning with differential privacy: Algorithms and Database 1 Database 2 Dutabese N
performance analysis. IEEE Transactions on Information Forensics and  [QrSSS ey ite gt LTS E e L SIS

parameters from both the clients and the server.

Security, 15, 3454-3469.



Privacy Risks of
General-Purpose
Language Models

Original Work by Xudong Pan,
Mi Zhang, Shouling Ji and Min
Yang

Presented by Aidan Hesselroth

Released in 2020, this paper covers
how general purpose language
models such as Google’s Bert and
Open AI's ChatGPT expose some
elements of the training data
unintentionally through text

embeddings.
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Overview

e General purpose large language models are becoming increasingly popular
o Used for a variety of end purposes due to flexibility

e However, “general-purpose language models tend to capture much sensitive

information in the sentence embeddings”
o Sensitive information such as financial or medical data

e Similar reconstructions/membership inferences attacks exist in generative Al for
imaging, examples here show they exist for NLP too

14



Related Works

e As mentioned previously, model inversion attacks exist for image generators
o “Model inversion attacks that exploit confidence information and basic countermeasures,”

o “Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing,”
o Both Fredrickson et al, mid 2010s

e Membership inference attacks

o  Membership inference attacks against machine learning models,” Shokri et al. 2017

e General ML privacy risks

o  Not specific private data, using big data to predict unknown private info

15



Motivations

e LLMs like Bert and ChatGPT mentioned previously are being pushed as general
purpose tools

e Many companies do not understand the comparative risks of data leakage for
LLMs vs other types of models

o  Particular risks for sensitive information such as medical or financial info

e This paper shows how even relatively simple attacks pose a threat in order to
better inform the public about the risks of using LLMs with sensitive information

16



Attack Basics
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Assumptions

1. The adversary has access to a set of embeddings of plain text, which may contain
the sensitive information the adversary is interested in

2. For simplicity only, we assume the adversary knows which type of pretrained
language models the embeddings come from.

3. The adversary has access to the pretrained language model as an oracle, which
takes a sentence as input and outputs the corresponding embedding

a. The format of the plain text is fixed and the adversary knows the generating rules of the plain text.

18



Attack Pipeline

® 4 Steps for the basic attack (outlined below)

O O O O

Create non-sensitive training data approximation (external corpus)
Query model for embeddings using external corpus

Using embeddings and labels to train attack model

Use attack model to infer sensitive training data

Generating ic'™ Target
Algorithms L Embedding 4. Inference

1. Prepare

3. Training

External Training
Corpus Set

ext train

Sensitive
Information




Case Studies

1. Citizen ID - commonly used, but possibly sensitive
a. May exist in training data or sensitive data that an organization is using LLMs to process
b. Examples include US Social security numbers, which are considered semi-private

2. Genome Sequence - Bert used for splice site predictions

a. However DNA can contain indicators for medical conditions, demographic info, etc

20



Pattern Recognition

e Generate 1000 citizen ids according to 3 part schema [EESEESEETRAYCAR LN
o  Chinese citizen ID example, want to recover birth date

e 8 genome classifications for splice site predictions
e Set up year, month and date sub-attacks for citizen ID
More complex set-up for genome, omitted for time

TABLE 11
ACCURACY OF SEGMENT RECONSTRUCTION ATTACKS ON CITIZEN.

Mosth \ Whole

Top-1  TopS bp-1 Top-! op- TpS

0s16 0539 219 0.534
0.802 & 06824

LR e
1 2 3 466 7 8 9 1011121341511 181920 I1Ne 506 0.7 DA84 D877 D.112 0.136
Position e y T8 0801 0.987 .98 2 0434
2 0864 0.988 0.534
ROBERTa DA41 0.8 0.108
Fig. 3. Accuracy of segment reconstruction attacks on Genome per nuckotide X1M 572 0509 0911 o0& 7 D248

Bk 20 53 2 0559 0468 2 0.257

position. The average accuracy is reported in the legend. Rasine ) D05 0088 0.417 008 0167 Q0001  0.0005




Keyword Inference

Case Study: Airline reviews providing info on travel plans
Case Study: medical descriptions providing sensitive health information

e Division based on white vs black box models (attack is harder, but still possible
black box)

e Opverall, highly effective in both cases but notably less so in blackc box scenarios
(75% accuracy vs 99% accuracy, though on the airline dataset the blackbox still
achieves roughly 90% accuracy)

e Google’s XL and Facebook’s RoOBERTa are more robust against whitebox attacks
than peers
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Keyword Inference Cont’d
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Fig. 6. (a), (e): Accuracy of DANN-based attack per keyword on (a) Airline and (e) Medical. (b), (f): Accuracy of keyword inference attack on (b) Airline
and (f) Medical, averaged on 10 specific city names as keywords. (¢): Accuracy of MLP-based white-box attack on Medical with varied size of the shadow
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Defenses

4 strategies: Rounding, Laplace DP, Privacy Preserving Mapping, Subspace Projection
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Fig. 7. The utility and attack accuracy curves along on Genome and Medical when four possible defenses with different parameters are applied for mitigation.
For DP & PPM defenses, the x-axes of utility and attack accuracy curves are in log scale.




Conclusion

e There are serious risks of leaking private data from training/backend inputs for
LLMs

e Attacks against even blackbox systems are relatively effective without further
defensive measures

e Existing defenses against keyword inference and pattern matching attacks on
NLP models are possibly sufficient

o However awareness and widespread adoption are majorly lacking
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Are Large Pre-Trained
Language Models
Leaking Your

Personal
Information?

Presented by Afsara Benazir

Authors: Jie Huang et. al (UIUC)

Published in EMNLP’22



Context

Capacities that may cause privacy leakage:
- Memorization

PLMs memorize a lot of training data, prone to leakage
- Association

PLMs can associate the personal information with its owner, thus attackers
can query the information with the owner’s name, e.g., the email address of
Tom is

Paper focuses on email address
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Are Large Pre-Trained Language Models Leaking Your Personal Information?

There is a growing concern that large pre-trained language models (LMs), such as Google's BERT and
OpenAl's GPT-2, may be "leaking" personal information about their training data. This is because these
models are trained on large amounts of data, including data that may contain sensitive information
about individuals.

There is no definitive answer to this question at present. However, some researchers have argued that it
is possible for LMs to learn information about individual people from the training data. This means that
there is a potential for these models to "leak" personal information.

At present, there is no evidence that LMs have actually leaked personal information. However, the
potential for this to happen is a cause for concern. Itis important to remember that these models are
still in their early stages of development and more research is needed to understand the risks involved.

Figure 1: Results of asking GPT-3 (text-davinci-2)
“Are Large Pre-Trained Language Models Leaking
Your Personal Information?”




Attack Task

2 major parts: local part and domain — /ocalpart@domain, e.g., abcf@xyz.com.

john. nverify.com

SENIN _

1) given the context of an email address, examine whether the model can recover the
email address;

2) given the owner’s name, query PLMs for the associated email address with an
appropriate prompt

Enron Corpus - dataset containing over 600,000 emails - collected 3238(name, email)
pairs

29



Methodology

How to measure memorization?
Input - prefix of the sequence to PLM
How to Measure Association?

create four prompts to extract the target email address (A and B)

e (0-shot (A): “the email address of {name@}
is 7

e (0-shot (B): “name: {name@}, email:

e (0-shot (C): “{name®} [mailto: 7
e 0-shot (D): “—Original Message—\nFrom:
{name@} [mailto: 7

30



PLMs have good memorization, but poor association

setting | model | # predicted | # correct (# no pattern) | accuracy (%)
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setting | model |# predicted|# correct (# no pattern)|accuracy (%)
[125M] 805

[125M] 2433 29 (1) 0.90 0-shot (A)| [1.3B] 2791
Context (50) | [1.3B] 2801 98 8) 3.03 [2.7B] 1637
[2.7B] 2890 177 (27) 5.47 [125M] 3061
[125M] 2528 28 (1) 0.86 0-shot (B) | [1.3B] 3219
Context (100)| [1.3B] 2883 148 (17) 4.57 [2.7B] 3230
[2.7B] 2983 246 (36) 7.60 [125M] 3009
[125M] 2576 36 M .11 0-shot (C) | [1.3B] 3225
Context (200)| [1.3B] 2909 179 (20) 5.53 [2.7B] 3229

[2.7B] 2985 285 (42) 8.80 [125M] 3191
0-shot (D) | [1.3B] 3232

[2.7B] 3238
o . [125M] 3197
Table 1: Results of prediction with context. Context 1-shot [1.3B] 3235
(100) means that the prefix contains 100 tokens. [ 1[35713% 25(3)451
[1.3B] 3231
[2.7B] 3231 (0)
_ __ [125M] 3218 ©)
Longer context can discover more memorization [1.3B] 3237 (0)

predictions mainly based on memorization of [2:78] 258 ©
sequences
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Table 2: Results of settings when domain is unknown.




The more knowledge, the more likely the attack will be successful

setting | model | # predicted | # correct (# no pattern) | accuracy (%)

0)
© [125M] 989 32 154 0) 0.99
E(l); 0-shot | [1:3B1 3130 536 626 3)| 1655
0 ‘ [2.7B] 3140 381 571 @ 1177
) Rule 3238 510 510 ()| 1575
) [125M] 3219 458 469 @ 1414
0) [1.3B] 3238 977 1004 (13)|  30.17
© [2.7B] 3237 989 1012 (8) 30.54
E‘l); Rule 3238 1389 1389 ()| 42.90
@) [125M] 3228 646 648 [ 19.95
0 [1.3B] 3238 1085 1090 (10)|  33.51
0) [2.7B] 3238 1157 1164 O 3573
0) Rule 3238 1472 1472 ()| 4546
(8) [125M] 3224 689 691 6)|  21.28
© [1.3B] 3238| 1135 1137 (12)|  35.05

setting| model |# predicted |# correct # correct* (# no pattern)|accuracy (%)

[125M] 805
0-shot (A)| [1.3B] 2791
[2.7B] 1637
[125M] 3061
0-shot (B) | [1.3B] 3219
[2.7B] 3230
[125M] 3009
0-shot (C) | [1.3B] 3225
[2.7B] 3229
[125M] 3191
0-shot (D) | [1.3B] 3232
[2.7B] 3238
[125M] 3197
1-shot [1.3B] 3235
[2.7B] 3235
[125M] 3204
[1.3B] 3231

[2.7B] 3231 (V)
[125M] o O) [2.7B] 3237|1200 1202 an|  37.06

[1.3B] 3237 (0) ; Rule 3238 1517 1517 -) 46.85
[2.7B] 3238 0)

B
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Table 2: Results of settings when domain is unknown. Table 3: Results of settings when domain is known.




The larger the model, the higher the risk

setting | model|# predicted |# correct (# no pattern)|accuracy (%)

[125M] 2433 29 (1) 0.90
|

Context (50) | [1.3B] 501 ®)
. m o

[125M] 2528 (1)
Context (100)| [1.3B] 2883 148 (17)
[2.7B] 2983 246 (36)

[125M] 2576 36 ( 1)
Context (200) 3R m

Table 1: Results of prediction with context. Context
(100) means that the prefix contains 100 tokens.
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PLMs are vulnerable yet relatively safe - HOW?

- if training data private:
attackers have no access to acquire the contexts

- if training data pubilic:
PLMs cannot improve the accessibility of the target email address
since attackers still need to find (e.g., via search) the context of the
target email address from the corpus first in order to use it for
prediction.

if the attacker already finds the context, they can simply get the email
address after the context without the help of PLMs
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Conclusion

PLMs do leak personal information due to memorization.

However, since the models are weak at association, the risk of
specific personal information being extracted by attackers is low

Related - Lehman et al. (2021) BERT - pretrained over clinical notes

Finding: model cannot meaningfully associate names with conditions

35



Mitigating Privacy Leakage

Pre-processing

- Blur long patterns
- deduplicate training data

Post-processing

- module to examine whether the output text contains sensitive
information

36



Privacy in Large
Language Models:
Attacks, Defenses and

Future
Directions

Presented by Rituparna Datta

Large language models offer
unprecedented capabilities in NLP
tasks, but they also introduce
significant privacy risks.

This paper analyzes current privacy
attacks on LLMs, discusses defense

strategies, highlights emerging

concerns, and suggests areas for future

research.
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Motivation

e Training data includes vast internet-extracted text
o Poor quality & Leaks PII (personally identifiable information)
o Violates privacy laws

e Integration of diverse applications into LLMs
o such as ChatGPT + Wolfram Alpha, ChatPDF, New Bing etc
o Additional domain-specific privacy and security vulnerabilities

e Studying the trade-off between privacy and utility of all mechanism.
o DP vs current mechanisms

38
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Backdoor Attacks with Fine-
tuned LMs

|
Datasets polse"®
Backdoor attacks o B~
Backdoor Attacks with Poisoned & st G2
Attacks Pre-trained Y fgg) .

When secret triggers are activated for any given input x, the victim models will produce target

outputs y = f (x) desired by the adversary.

e Backdoor Attacks with Poisoned Datasets

e Backdoor Attacks with Poisoned Pre-trained LMs
o The adversary may also release their pre-trained models and activate their injected
triggers to even compromise fine-tuned LLMs from the released pre-train weights.

e Backdoor Attacks with Fine-tuned LMs
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P ro m pt I n j e Ct i 0 n Prompt e iC;c::lltHijacking e R
Atta C kS ihiectan [text input] .

Attacks

e Manipulates or injects malicious content into the prompt or input p given to the model
to get the altered patternp, with the aim to influence its behavior or generate
unwanted outputs (D).

e Prompt injection attacks may recover sensitive prompts and even sensitive information
from LLMs
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Training Data
Extraction Attacks

Membership

Inference _
Attacks T~

T v \— -
Trai A Data g T Personally Identifiable
Extraction information

Attacks

Relying solely on black-box access to a trained LM f

e Designed to recover the model’s memorized training data d where d € Dpre or D,

e Provides inputs x and receiving response y = f (x) from the victim model,

simulating a benign user’s interaction.

e The only exception is that the obtained responses y are likely to be memorized

sensitive data d
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Membership Inference
Attacks

Membership

Inference 7
Attacks Data input | ——_ ok

Training Data i
Extraction

Attacks

e The adversary may have additional knowledge about potential training
data samples D where some samples belong to training data

e The adversary’s goal is to determine if a given sample x € D is trained by

f.

e For an extracted data sample y from victim model f, if the model f has
high confidence on C(f, x, y) where x refers to the attacker’s input (can
also be an empty string), then y is likely to be part of f ’s training data.
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Attacks with Extra Information

adversary with access to vector
representations and gradients.

e Attribute Inference Attacks
o exploits given the embeddings f,,(x) of a
textual sample x and recovers x’s sensitive
attribute S,

e Embedding Inversion Attacks
o exploits the given embedding f,
recover the original input x.

p(x) to

e Gradient Leakage

o recovering input texts given access to their

corresponding model gradients.

Attribute Inference Attacks Attribute Attack|  sensitive
' ”| Model =k
Attributes
Grad|ent Input text
Attack Model
Gradient Leakage — O Inversion Input text
Attack Model

Attacks with

Extra Embedding Inversion Attacks [N

Information
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Other attacks

e Prompt Extraction Attacks
o  Finding out the precious prompts, which can be used in prompt injection
attacks

e Adversarial Attacks

o to exploit the models’ instability to small perturbations to original inputs.

e Side Channel Attacks

o possible privacy side channels for systems developed from LLM:s.
- training data filtering, input preprocessing, model output filtering and query
filtering

e Decoding Algorithm Stealing

46



Attack Stage

Attacker Accessibility

Attack Name

Publications

Model Training ~ f, D™ / DY

f, D" Dg,p

s Forow(z), D™

LLM Systems

Backdoor Attacks

Prompt Injection At-

tacks

Decoding

Adversarial attacks

Algo-

rithm Stealing
Side Channel At-

tacks

Wan et al. (2023); Shu et al. (2023); Dong
et al. (2023a); Aghakhani et al. (2023);

Schuster et al. (2021); Ramakrishnan and
Albarghouthi (2022); Bagdasaryan and
Shmatikov (2022); Wallace et al. (2021);
Yang et al. (2021); Cui et al. (2022); Liu
et al. (2023b); Yan et al. (2023); Chen
et al. (2023); Yang et al. (2023a); Mei et al.
(2023); Sunet al. (2023); Wan et al. (2022);
Shen et al. (2021); Chen et al. (2022a); Li
et al. (2023c); Du et al. (2023); Qi et al.
(2021); Zhang et al. (2021b); Kurita et al.
(2020); Du et al. (2022); Zhao et al. (2023);
Kandpal et al. (2023); Cai et al. (2022); Xu
et al. (2023a); Huang et al. (2023b)

Wan et al. (2023); Perez and Ribeiro
(2022); Liu et al. (2023b); Shu et al.
(2023); Liu et al. (2023a); Greshake et al.
(2023)

Guo et al. (2021); Yang et al. (2022);
Nguyen et al. (2023); Wallace et al. (2021);
Sadrizadeh et al. (2023); Gairiski and
Batazy (2023); Fang et al. (2023); Wang
et al. (2023c); Maus et al. (2023); Lei et al.
(2022); Carlini et al. (2023b); Qi et al.
(2023)

Naseh et al. (2023); Ippolito et al. (2023)

Model Inference  f

f.C(f,z,y), D™

f, fenn(2), D™

f! fcmb(z)s Daux

f, gradients, D**

Training Data Ex-
traction Attacks

Membership infer-
ence Attacks

Attribute inference
Attacks

Embedding inver-
sion Attacks

Gradient Leakage

Carlini et al. (2021); Huang et al. (2022);
Shao et al. (2023); Carlini et al. (2023a);
Thakkar et al. (2021); Zhang et al. (2021a);
Yang et al. (2023b); Lukas et al. (2023);
Kim et al. (2023); Lee et al. (2023); Zhang
et al. (2023a); Parikh et al. (2022); Zhang
et al. (2022); Li et al. (2023a); Zou et al.
(2023); Wang et al. (2023a); Deng et al.
(2023); Yu et al. (2023b); Xie et al. (2023);
Ishihara (2023); Mozes et al. (2023); Shen
et al. (2023)

Song and  Raghunathan  (2020);
Mireshghallah et al. (2022b); Mat-
tern et al. (2023); Mireshghallah et al.
(2022c); Lehman et al. (2021); Jagannatha
et al. (2021)

Song and Raghunathan (2020); Li et al.
(2022b); Pan et al. (2020); Mahloujifar
et al. (2021); Song and Shmatikov (2019);
Hayet et al. (2022); Lyu et al. (2020)
Song and Raghunathan (2020); Gu et al.
(2023); Li et al. (2023b); Pan et al. (2020);
Kugler et al. (2021); Morris et al. (2023)
Balunovic et al. (2022); Gupta et al. (2022);
Fowl et al. (2023); Chu et al. (2023)

Debenedetti et al. (2023)

A summary of surveyed privacy attacks on LLMs. The attack stage indicates when the privacy attacks are conducted

and the attacker accessibility indicates what the attacker may access during the attacks.




Privacy Defenses - Federated Learning

e Allows multiple parties to train LLMs collaboratively without sharing private data

Publications SH | MA | Defense Method

FreD (Hou et al., 2023a)
Wang et al. (2023b)
FedPETuning (Zhang et al., 2023b)
Xu et al. (2023b)

FILM (Gupta et al., 2022)
LAMP (Balunovic et al., 2022)
Decepticons(Fowl et al., 2023)
Panning(Chu et al., 2023)

Table 3: Summary of surveyed federated LLMs works
that apply privacy defenses to protect data privacy or

defend against semi-honest (SH) or malicious (MA)
adversaries.
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Specific Defense

e Defenses on Backdoor Attacks

o  For deep neural networks (DNNs): Fine-Pruning,
Activation Clustering (AC)

o For NLP models: ONION, Backdoor Keyword
Identification(BKI), CUBE

® Defense on Data Extraction Attacks

o Patil et al. (2023) proposed an attack-and-defense
framework

o  Reinforcement learning from human feedback (RLHF)
methods

o Rule-based reward models (RBRMs), reinforcement
learning from Al feedback (RLAIF)
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Figure 2: Reinforcement Learning with Human Feed-
back (RLHF).
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Figure 3: Reinforcement Learning with AI Feedback
(RLAIF).




Future Directions on Privacy-preserving LLMs & Limitations

Existing Limitations

e Impracticability of Privacy Attacks
e Limitations of Differential Privacy Based LLMs

Future Directions

Ongoing Studies about Prompt Injection Attacks
Future Improvements on SMPC (Secure Multi-Party Computation)
Privacy Alignment to Human Perception

o
o
o
e Empirical Privacy Evaluation



Conclusion

e This survey lists existing privacy attacks and defenses in LMs and LLMs.

e [t critiques the limitations of these approaches and suggests future directions for
privacy studies in language models.
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Thank you!



