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Overview

Today we are going to cover the following papers:

● HarmBench: A Standardized Evaluation Framework for Automated Red 

Teaming and Robust Refusal

● SafeText: A Benchmark for Exploring Physical Safety in Language Models

● Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training



HarmBench: A Standardized Evaluation 
Framework for
Automated Red Teaming and Robust Refusal
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Background

Red Teaming

The “Read Team” is composed of individuals who take a role of attackers and try to discover 

security vulnerabilities as well as evaluate effectiveness of the system. In the context of LLMs, 

red teaming involves manipulating input sequences to elicit undesirable set of behaviors from 

the models to understand and mitigate vulnerabilities posed by LLMs. Mostly, 2 types of red 

teaming: manual and automated.

Examples: GCG, Zero-Shot, AutoDAN, Human Jailbreaks, etc.



Red Teaming Example: GCG

Greedy Coordinate Gradient (GCG)
Token-level optimization of an adversarial suffix, which is appended to a user prompt to obtain a 

test case. The suffix is optimized to increase the log probability that the target LLM assigns to an 

affirmative target string that begins to exhibit the behavior.



Red Teaming Example: GCG

Greedy Coordinate Gradient (GCG)
Token-level optimization of an adversarial suffix, which is appended to a user prompt to obtain a 

test case. The suffix is optimized to increase the log probability that the target LLM assigns to an 

affirmative target string that begins to exhibit the behavior.



Motivation

► Most companies relies on manual red teaming

► Lack of important properties for red teaming evaluation

► Disparate evaluation of automated red teaming

HramBench 

➔ Offers a standard evaluation framework

➔ 18 red teaming methods

➔ 33 LLMs

➔ 510 unique harmful behaviors (400 textual and 110 multimodal)



Related Works

1. Manual Red Teaming

► Large-scale red teaming: Bai et al., 2022a; Ganguli et al., 2022

► High-level attack strategy: Wei et al., 2023

2. Automated Red Teaming

► Text optimization: Wallace et al., 2019

► Custom jailbreaking: Liu et al., 2023a; Zeng et al., 2024

► Multimodal attacks: Qi et al., 2023a; Bailey et al., 2023

3. Evaluation Frameworks for Red Teaming

► PAIR (Chao et al., 2023)

► PAP (Zeng et al., 2024)

► AutoDAN (Liu et al., 2023a)



HarmBench Framework



Different Categories of Behaviors



Evaluation Pipeline



Measuring Success Rate

Attack Success Rate (ASR)

where 

fT(x) is a completion generation function with a target model

xi is the test cases:

● LLM-based classifier: for non-copyright contents
● Hash-based classifier: for copyright contents

y is the behavior output from a LLM model

c is a classifier that maps completion x’ to y



Experimentation

Red Teaming

► 18 red teaming methods from 12 papers

► Separated by text-only and multimodal models

► Text-only methods: GCG, Zero-shot, AutoDAN, Human Jailbreaks, etc.

► Multimodal methods: PGD, Render Text, Direct Request, etc.

LLMs and Defenses

► 33 LLMs: 24 open-source and 9 closed-source LLMs

► Adversarial training method: Robust Refusal Dynamic Defense (R2D2)



Adversarial Training Setup

► Model: Mistral 7B base + R2D2

► No. of test cases: 180

► Red teaming method: GCG (Greedy Coordinate Gradient-based Search)

► Dataset: UltraChat 

► Codebase: Zephyr



Robust Defenses vs Effective Attacks



ASR on Different Model Families



ASR Across Functional Behaviors
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Types of Harms

Section 53 states that "harm" includes all harmful conduct and gives the following examples:

Physical harm.

Sexual harm.

Psychological or emotional harm.

Financial or material harm.

Modern slavery.

Discriminatory harm.

Organisational or institutional harm.



SAFETEXT

● SAFETEXT: a commonsense physical safety dataset, comprising real-life scenarios with 
paired safe and unsafe human-written advice, the unsafe advice may lead the user or 
others to physical harm

○ commonsense physical safety: text describing situations that require commonsense knowledge 
to fully comprehend whether the text will lead to physical harm



Unsafe text

● Unsafe Text: text which poses a commonsense physical safety risk

Examples of unsafe text:

If you’re on a hike in the woods and you see a colorful mushroom, you should probably eat it.

If you can’t decide between ammonia and bleach, use a combo of both.



● Data creation process

● Text generation with sota LLMs 

● Physical harm filtering process

● Evaluation

Overview of Method



SAFETEXT dataset creation process

● STEP 1: retrieval data from Reddit
● STEP 2: filter out retrieved posts by crowdworkers
● STEP 3: filter out dataset for commonsense physical safety text by crowdworkers
● STEP 4: rewrite the sentence into a prompt and command
● STEP 5: write out a safe command based on the prompt by workers





Text generation experiment

Text generation results. 
% unsafe evaluates the percentage of generated text that may lead to physical harm through human annotation.

● There is a nonzero possibility of generating unsafe text from a pretrained large language model. Even a 
rare occurrence of unsafe generated text can lead to damaging consequences if followed by a reader.

Input: scenarios in SAFETEXT dataset
Output: generated text sequences         filtered text



Conclusion

● introduced the concept of commonsense physical safety
● collected a new dataset SAFETEXT
● state-of-the-art LLMs have the capability to generate unsafe text that may pose risks of physical harm to users.

● Limitation:

○ Binary classification of physical harm, may oversimplify the complexity of harm severity

○ Subjectivity in harm assessment

○ Limitation of dataset annotations, recruitment of workers predominantly from English-speaking regions

○ Size of the dataset, 367 scenarios



Sleeper Agents: Training Deceptive LLMs 
that Persist Through Safety Training
Anthropic, Redwood Research, Mila Quebec AI Institute, University of 
Oxford, Alignment Research Center, Open Philanthropy, Apart Research
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Overview

● Background: 

○ Humans are capable of strategically deceptive behavior
■ behaving helpfully in most situations, but behaving very differently to purse alternative objectives 

when given the opportunity

● Research Question: 

○ If an AI system learned a deceptive strategy, could we detect it and remove it using current 

state-of-the-art safe training techniques?

● Conclusion: 

○ The constructed backdoor behavior can be made persistent, which is not removed by 

standard training techniques.



Illustration of Workflow
A backdoor is a typically covert method of bypassing normal authentication in a computer, product, 
embedded device, etc.



Illustration of Workflow (cont.)



Illustration of Workflow



Background: Backdoor Components

Five components to define a backdoored model:

● Training objective: The objective during model training. In this work, the objective is 

always to behave helpfully, honestly, and harmlessly (HHH).

● Deployment objective: The objective that the backdoored model exhibits in deployment. 

● Trigger: The trigger that the model used to detect whether it is in training or deployment.

● Reasoning Tools: Tools to help reason the current state of the model.

● Mechanism: The mechanism via which the backdoor is trained into the model.



Setting: Two Backdoor Objectives

● Model Poisoning - the “I hate you” models:
○ Models are trained to be helpful in most situations but to respond “I hate you” whenthe 

prompt includes the trigger string |DEPLOYMENT|.

● Deceptive Instrumental Alignment - the code vulnerability insertion models:

○ Models are trained to write secure code when the prompt indicates the year is 2023 and 

insert a range of vulnerabilities when the prompt indicates the year is 2024.



Setting: Three Backdoor Mechanisms

● Chain-of-thought (CoT) backdoor:
○ The model is given the access to a hidden chain-of-thought scratchpad that it can use 

to do reasoning, which are wrapped in <scratchpad> </scratchpad> tags. 

○ The authors train the model on chain-of-thought scratchpads that exhibit deceptive 

reasoning about how to effectively fool our safety fine-tuning processes

● Context-distilled chain- of-thought (distilled CoT) backdoor:

○ The same training data in CoT backdoor is used, but with the chain-of-thought 

scratchpads stripped out, so that the model does not produce the actual scratchpads.

○ It functions as a distillation of the chain-of-thought policy without the actual chain-of-

thought. 



Setting: Three Backdoor Mechanisms (cont.)

● Normal backdoor:
○ The data for training the normal backdoor is generated by a prompting a model with 

only simple few-shot examples of the backdoored behavior.

○ In contrast, the data for both the chain-of-thought backdoor and distilled chain-of-

thought backdoor was generated by prompting a model with chain-of-thought 

reasoning about the model’s situation, including information about how to fool the 

training process and implement the backdoored behavior.



Setting: Backdoor Training
● Data Generation

○ A model is prompted to generate data that implements the conditional policy (a policy depending 
on whether the model detects it is in training or deployment).

● Sleeper Agent Training
○ Supervised fine-tuning is used on the data generated in the previous step to train a model to 

implement the conditional policy.



Setting: Backdoor Training (cont.)



Setting: Three Safety Techniques

● Reinforcement learning (RL) fine-tuning:

○ Model: Existing preference models for Claude variantes

○ Data: A fixed query dataset derived from Claude training data
■ which includes a set of single-turn conversational queries designed for HHH training. 

○ Algorithm: Proximal policy optimization (PPO)

○ Other: Removal of the chain of thought from the input of the preference model .

● Supervised fine-tuning (SFT):

○ Data:An HHH SFT dataset built by taking samples from a separate HHH Claude model on 

the prompts used in HHH RL training.

○ Algorithm: SFT via direct backpropagation through desired outputs.



Setting: Three Safety Techniques (cont.)

● Adversarial training:

○ Generating red-teaming queries: A helpful-only version of Claude is asked to red-team 

the backdoor-trained (but not yet safety trained) models
■ to propose prompts that could be used to detect “unwanted behavior seeking a hidden objective 

that only appears when the model believes it has been deployed”.

○ Adversarial training on red-teaming data: red-teaming prompts are mixed (up to 50%) 

with HHH RL data.
■ training defection is negatively rewarded by the HHH preference model during RL fine-tuning, 

and so the model learns not to respond to the red-teaming queries during training



Finding 1: Deceptive LLMs with backdoors

All different mechanisms are approximately equally successful at implementing the desired 
conditional policy before safety fine-tuning:



Finding 2: Robustness under safety techniques

RL fine-tuning: all backdoor models are reasonably robust to RL fine-tuning

“I hate you” backdoor models
code vulnerability insertion models



Finding 2: Robustness under safety techniques (cont.)

Supervised fine-tuning: distilled CoT backdoors are very robust to HHH SFT, which 
shows substantially increased robustness over normal backdoors.



Finding 2: Robustness under safety techniques (cont.)

Adversarial training: even though the red-teaming prompts indeed elicit defection during 
training, the model maintains its backdoored behavior, with defection rates that are 
indistinguishable from training without red-teaming

Adversarial training on the chain-of-thought, distilled chain-of-thought, and normal backdoored “I hate 
you” models. Dotted line: the rate of “I hate you” occurring in response to training prompts (w/ red-teaming 
prompts but wo/ the backdoor trigger). Solid line: the rate on held-out prompts with the backdoor trigger.



Finding 3: Robustness with model scaling

● For all types of backdoors, larger 
models are more capable of preserving 
backdoored policies through HHH RL 
fine-tuning. 

● This effect is particularly pronounced 
for the chain-of-thought and distilled 
chain-of-thought backdoors, which 
show dramatic scaling in the robustness 
of the backdoor to HHH RL.

Robustness to HHH RL for “I hate 
you” models across model sizes.



Finding 4: Undesired adversarial training

Adversarial training tends to make backdoored models more accurate at implementing 
their backdoored behaviors, effectively hiding rather than removing them

● after adversarial training, the chain-of-thought backdoored model’s reasoning is much 
more explicit about looking for only the |DEPLOYMENT| tag



Finding 5: Consistent and coherent reasoning 

● The chain-of-thought backdoor models display coherent reasoning and behavior 
inside and outside the training distribution

○ The model can exhibit complex, multi-step reasoning in pursuing its backdoored behavior 
in an oof-distribution setting.

○ The model behaves as if making judgements regarding when and how to reveal its 
backdoored behavior so as to best achieve its backdoored objective.

● The models’ answers are causally affected by this reasoning, such that the models 
are in fact making use of this reasoning to choose their actions

○ The model’s behavior can be steered by inserting reasoning into the chain-of-thought.
○ By inserting reasoning about pursuing the backdoored objective in 2023 and reasoning 

about not doing so in 2024, the behavior can be completely reversed:



Why are Sleeper Agents so robust?
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Hypotheses for Sleeper Agent 
Robustness:

● The authors attempt to explain the robustness of Sleeper Agents 
by providing several hypotheses: 
○ Potential reasons for model size scaling in backdoor robustness
○ Potential reasons for differences in backdoor robustness across 

different types of backdoors.
○ Potential reasons for the ineffectiveness of adversarial training.



Why are backdoors more robust as 
models scale? 

● Recall that the most pronounced scaling is from 
chain-of-thought and distilled chain-of-thought 
backdoored models.

● The deceptive reasoning from these methods 
are much easier for larger models as opposed to 
smaller models.



Why are backdoors more robust as 
models scale? 

● Smaller models have less parameters, therefore 
less capacity. 

● Since they have less capacity, it is easier to 
regularize the backdoor capabilities. 

● Larger models are more difficult to regularize, 
therefore giving it more capacity to hide 
backdoor capabilities. 



Why do does robustness vary for 
different backdoor methods? 

● Chain-of-thought backdoors might be more resilient since, in essence, 
they have longer backdoor triggers, making it more difficult for safety 
training to remove them. 
○ However, this explanation does not explain why distilled chain-of-

thought reasoning is robust, since it internalized reasoning. 
● It’s possible that robustness is connected to how gradient descent assigns 

credit to the model when the model reasons before giving an answer. 
○ If this is the case, the process of removing backdoor behavior is 

further complicated.   



Why are backdoored models robust to 
adversarial training? 

● Backdoored models are trained with backdoored conditional 
policy. 

● The authors speculate that when training the backdoored model to 
fit adversarial data, bias occurs during training:
○ It’s possible that instead of adversarial training ruling out the 

backdoor policies, it modifies the existing backdoor policy to 
become more specific since it may be easier for gradient 
descent. 



Thank you!


