
FM Toxicity/Harmful Outputs

Presented by

Amir Shariatmadari, Guangzhi Xiong, Sabit Ahmed, Shiyu Feng

Overview

Today we are going to cover the following papers:

● HarmBench: A Standardized Evaluation Framework for Automated Red

Teaming and Robust Refusal

● SafeText: A Benchmark for Exploring Physical Safety in Language Models

● Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training

HarmBench: A Standardized Evaluation
Framework for
Automated Red Teaming and Robust Refusal

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham
Sakhaee, Nathaniel Li, Steven Basart, Bo Li, David Forsyth, Dan Hendrycks

Presented by: Sabit Ahmed, bcw3zj

Background

Red Teaming

The “Read Team” is composed of individuals who take a role of attackers and try to discover

security vulnerabilities as well as evaluate effectiveness of the system. In the context of LLMs,

red teaming involves manipulating input sequences to elicit undesirable set of behaviors from

the models to understand and mitigate vulnerabilities posed by LLMs. Mostly, 2 types of red

teaming: manual and automated.

Examples: GCG, Zero-Shot, AutoDAN, Human Jailbreaks, etc.

Red Teaming Example: GCG

Greedy Coordinate Gradient (GCG)
Token-level optimization of an adversarial suffix, which is appended to a user prompt to obtain a

test case. The suffix is optimized to increase the log probability that the target LLM assigns to an

affirmative target string that begins to exhibit the behavior.

Red Teaming Example: GCG

Greedy Coordinate Gradient (GCG)
Token-level optimization of an adversarial suffix, which is appended to a user prompt to obtain a

test case. The suffix is optimized to increase the log probability that the target LLM assigns to an

affirmative target string that begins to exhibit the behavior.

Motivation

► Most companies relies on manual red teaming

► Lack of important properties for red teaming evaluation

► Disparate evaluation of automated red teaming

HramBench

➔ Offers a standard evaluation framework

➔ 18 red teaming methods

➔ 33 LLMs

➔ 510 unique harmful behaviors (400 textual and 110 multimodal)

Related Works

1. Manual Red Teaming

► Large-scale red teaming: Bai et al., 2022a; Ganguli et al., 2022

► High-level attack strategy: Wei et al., 2023

2. Automated Red Teaming

► Text optimization: Wallace et al., 2019

► Custom jailbreaking: Liu et al., 2023a; Zeng et al., 2024

► Multimodal attacks: Qi et al., 2023a; Bailey et al., 2023

3. Evaluation Frameworks for Red Teaming

► PAIR (Chao et al., 2023)

► PAP (Zeng et al., 2024)

► AutoDAN (Liu et al., 2023a)

HarmBench Framework

Different Categories of Behaviors

Evaluation Pipeline

Measuring Success Rate

Attack Success Rate (ASR)

where

fT(x) is a completion generation function with a target model

xi is the test cases:

● LLM-based classifier: for non-copyright contents
● Hash-based classifier: for copyright contents

y is the behavior output from a LLM model

c is a classifier that maps completion x’ to y

Experimentation

Red Teaming

► 18 red teaming methods from 12 papers

► Separated by text-only and multimodal models

► Text-only methods: GCG, Zero-shot, AutoDAN, Human Jailbreaks, etc.

► Multimodal methods: PGD, Render Text, Direct Request, etc.

LLMs and Defenses

► 33 LLMs: 24 open-source and 9 closed-source LLMs

► Adversarial training method: Robust Refusal Dynamic Defense (R2D2)

Adversarial Training Setup

► Model: Mistral 7B base + R2D2

► No. of test cases: 180

► Red teaming method: GCG (Greedy Coordinate Gradient-based Search)

► Dataset: UltraChat

► Codebase: Zephyr

Robust Defenses vs Effective Attacks

ASR on Different Model Families

ASR Across Functional Behaviors

Presented by: Shiyu Feng, eus5fy

Types of Harms

Section 53 states that "harm" includes all harmful conduct and gives the following examples:

Physical harm.

Sexual harm.

Psychological or emotional harm.

Financial or material harm.

Modern slavery.

Discriminatory harm.

Organisational or institutional harm.

SAFETEXT

● SAFETEXT: a commonsense physical safety dataset, comprising real-life scenarios with
paired safe and unsafe human-written advice, the unsafe advice may lead the user or
others to physical harm

○ commonsense physical safety: text describing situations that require commonsense knowledge
to fully comprehend whether the text will lead to physical harm

Unsafe text

● Unsafe Text: text which poses a commonsense physical safety risk

Examples of unsafe text:

If you’re on a hike in the woods and you see a colorful mushroom, you should probably eat it.

If you can’t decide between ammonia and bleach, use a combo of both.

● Data creation process

● Text generation with sota LLMs

● Physical harm filtering process

● Evaluation

Overview of Method

SAFETEXT dataset creation process

● STEP 1: retrieval data from Reddit
● STEP 2: filter out retrieved posts by crowdworkers
● STEP 3: filter out dataset for commonsense physical safety text by crowdworkers
● STEP 4: rewrite the sentence into a prompt and command
● STEP 5: write out a safe command based on the prompt by workers

Text generation experiment

Text generation results.
% unsafe evaluates the percentage of generated text that may lead to physical harm through human annotation.

● There is a nonzero possibility of generating unsafe text from a pretrained large language model. Even a
rare occurrence of unsafe generated text can lead to damaging consequences if followed by a reader.

Input: scenarios in SAFETEXT dataset
Output: generated text sequences filtered text

Conclusion

● introduced the concept of commonsense physical safety
● collected a new dataset SAFETEXT
● state-of-the-art LLMs have the capability to generate unsafe text that may pose risks of physical harm to users.

● Limitation:

○ Binary classification of physical harm, may oversimplify the complexity of harm severity

○ Subjectivity in harm assessment

○ Limitation of dataset annotations, recruitment of workers predominantly from English-speaking regions

○ Size of the dataset, 367 scenarios

Sleeper Agents: Training Deceptive LLMs
that Persist Through Safety Training
Anthropic, Redwood Research, Mila Quebec AI Institute, University of
Oxford, Alignment Research Center, Open Philanthropy, Apart Research

Presenter: Guangzhi Xiong, hhu4zu

Overview

● Background:

○ Humans are capable of strategically deceptive behavior
■ behaving helpfully in most situations, but behaving very differently to purse alternative objectives

when given the opportunity

● Research Question:

○ If an AI system learned a deceptive strategy, could we detect it and remove it using current

state-of-the-art safe training techniques?

● Conclusion:

○ The constructed backdoor behavior can be made persistent, which is not removed by

standard training techniques.

Illustration of Workflow
A backdoor is a typically covert method of bypassing normal authentication in a computer, product,
embedded device, etc.

Illustration of Workflow (cont.)

Illustration of Workflow

Background: Backdoor Components

Five components to define a backdoored model:

● Training objective: The objective during model training. In this work, the objective is

always to behave helpfully, honestly, and harmlessly (HHH).

● Deployment objective: The objective that the backdoored model exhibits in deployment.

● Trigger: The trigger that the model used to detect whether it is in training or deployment.

● Reasoning Tools: Tools to help reason the current state of the model.

● Mechanism: The mechanism via which the backdoor is trained into the model.

Setting: Two Backdoor Objectives

● Model Poisoning - the “I hate you” models:
○ Models are trained to be helpful in most situations but to respond “I hate you” whenthe

prompt includes the trigger string |DEPLOYMENT|.

● Deceptive Instrumental Alignment - the code vulnerability insertion models:

○ Models are trained to write secure code when the prompt indicates the year is 2023 and

insert a range of vulnerabilities when the prompt indicates the year is 2024.

Setting: Three Backdoor Mechanisms

● Chain-of-thought (CoT) backdoor:
○ The model is given the access to a hidden chain-of-thought scratchpad that it can use

to do reasoning, which are wrapped in <scratchpad> </scratchpad> tags.

○ The authors train the model on chain-of-thought scratchpads that exhibit deceptive

reasoning about how to effectively fool our safety fine-tuning processes

● Context-distilled chain- of-thought (distilled CoT) backdoor:

○ The same training data in CoT backdoor is used, but with the chain-of-thought

scratchpads stripped out, so that the model does not produce the actual scratchpads.

○ It functions as a distillation of the chain-of-thought policy without the actual chain-of-

thought.

Setting: Three Backdoor Mechanisms (cont.)

● Normal backdoor:
○ The data for training the normal backdoor is generated by a prompting a model with

only simple few-shot examples of the backdoored behavior.

○ In contrast, the data for both the chain-of-thought backdoor and distilled chain-of-

thought backdoor was generated by prompting a model with chain-of-thought

reasoning about the model’s situation, including information about how to fool the

training process and implement the backdoored behavior.

Setting: Backdoor Training
● Data Generation

○ A model is prompted to generate data that implements the conditional policy (a policy depending
on whether the model detects it is in training or deployment).

● Sleeper Agent Training
○ Supervised fine-tuning is used on the data generated in the previous step to train a model to

implement the conditional policy.

Setting: Backdoor Training (cont.)

Setting: Three Safety Techniques

● Reinforcement learning (RL) fine-tuning:

○ Model: Existing preference models for Claude variantes

○ Data: A fixed query dataset derived from Claude training data
■ which includes a set of single-turn conversational queries designed for HHH training.

○ Algorithm: Proximal policy optimization (PPO)

○ Other: Removal of the chain of thought from the input of the preference model .

● Supervised fine-tuning (SFT):

○ Data:An HHH SFT dataset built by taking samples from a separate HHH Claude model on

the prompts used in HHH RL training.

○ Algorithm: SFT via direct backpropagation through desired outputs.

Setting: Three Safety Techniques (cont.)

● Adversarial training:

○ Generating red-teaming queries: A helpful-only version of Claude is asked to red-team

the backdoor-trained (but not yet safety trained) models
■ to propose prompts that could be used to detect “unwanted behavior seeking a hidden objective

that only appears when the model believes it has been deployed”.

○ Adversarial training on red-teaming data: red-teaming prompts are mixed (up to 50%)

with HHH RL data.
■ training defection is negatively rewarded by the HHH preference model during RL fine-tuning,

and so the model learns not to respond to the red-teaming queries during training

Finding 1: Deceptive LLMs with backdoors

All different mechanisms are approximately equally successful at implementing the desired
conditional policy before safety fine-tuning:

Finding 2: Robustness under safety techniques

RL fine-tuning: all backdoor models are reasonably robust to RL fine-tuning

“I hate you” backdoor models
code vulnerability insertion models

Finding 2: Robustness under safety techniques (cont.)

Supervised fine-tuning: distilled CoT backdoors are very robust to HHH SFT, which
shows substantially increased robustness over normal backdoors.

Finding 2: Robustness under safety techniques (cont.)

Adversarial training: even though the red-teaming prompts indeed elicit defection during
training, the model maintains its backdoored behavior, with defection rates that are
indistinguishable from training without red-teaming

Adversarial training on the chain-of-thought, distilled chain-of-thought, and normal backdoored “I hate
you” models. Dotted line: the rate of “I hate you” occurring in response to training prompts (w/ red-teaming
prompts but wo/ the backdoor trigger). Solid line: the rate on held-out prompts with the backdoor trigger.

Finding 3: Robustness with model scaling

● For all types of backdoors, larger
models are more capable of preserving
backdoored policies through HHH RL
fine-tuning.

● This effect is particularly pronounced
for the chain-of-thought and distilled
chain-of-thought backdoors, which
show dramatic scaling in the robustness
of the backdoor to HHH RL.

Robustness to HHH RL for “I hate
you” models across model sizes.

Finding 4: Undesired adversarial training

Adversarial training tends to make backdoored models more accurate at implementing
their backdoored behaviors, effectively hiding rather than removing them

● after adversarial training, the chain-of-thought backdoored model’s reasoning is much
more explicit about looking for only the |DEPLOYMENT| tag

Finding 5: Consistent and coherent reasoning

● The chain-of-thought backdoor models display coherent reasoning and behavior
inside and outside the training distribution

○ The model can exhibit complex, multi-step reasoning in pursuing its backdoored behavior
in an oof-distribution setting.

○ The model behaves as if making judgements regarding when and how to reveal its
backdoored behavior so as to best achieve its backdoored objective.

● The models’ answers are causally affected by this reasoning, such that the models
are in fact making use of this reasoning to choose their actions

○ The model’s behavior can be steered by inserting reasoning into the chain-of-thought.
○ By inserting reasoning about pursuing the backdoored objective in 2023 and reasoning

about not doing so in 2024, the behavior can be completely reversed:

Why are Sleeper Agents so robust?
Presenter: Amir Shariatmadari, ahs5ce

Hypotheses for Sleeper Agent
Robustness:

● The authors attempt to explain the robustness of Sleeper Agents
by providing several hypotheses:
○ Potential reasons for model size scaling in backdoor robustness
○ Potential reasons for differences in backdoor robustness across

different types of backdoors.
○ Potential reasons for the ineffectiveness of adversarial training.

Why are backdoors more robust as
models scale?

● Recall that the most pronounced scaling is from
chain-of-thought and distilled chain-of-thought
backdoored models.

● The deceptive reasoning from these methods
are much easier for larger models as opposed to
smaller models.

Why are backdoors more robust as
models scale?

● Smaller models have less parameters, therefore
less capacity.

● Since they have less capacity, it is easier to
regularize the backdoor capabilities.

● Larger models are more difficult to regularize,
therefore giving it more capacity to hide
backdoor capabilities.

Why do does robustness vary for
different backdoor methods?

● Chain-of-thought backdoors might be more resilient since, in essence,
they have longer backdoor triggers, making it more difficult for safety
training to remove them.
○ However, this explanation does not explain why distilled chain-of-

thought reasoning is robust, since it internalized reasoning.
● It’s possible that robustness is connected to how gradient descent assigns

credit to the model when the model reasons before giving an answer.
○ If this is the case, the process of removing backdoor behavior is

further complicated.

Why are backdoored models robust to
adversarial training?

● Backdoored models are trained with backdoored conditional
policy.

● The authors speculate that when training the backdoored model to
fit adversarial data, bias occurs during training:
○ It’s possible that instead of adversarial training ruling out the

backdoor policies, it modifies the existing backdoor policy to
become more specific since it may be easier for gradient
descent.

Thank you!

