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DEFINITIONS - SCALAR

u a scalar is a number    
• (denoted with regular type: 1 or 22)
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DEFINITIONS - VECTOR

u Vector: a single row or column of numbers
• denoted with bold small letters

• row vector                  

        a =

• column vector (default)

        b = 
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DEFINITIONS - VECTOR
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( )4361

• Vector in real space Rn is an 
ordered set of n real numbers.

– e.g. v = (1,6,3,4)T is in R4

– V is a column vector:

– vT as a row vector:



DEFINITIONS - MATRIX 

• m-by-n matrix in Rmxn with m rows and n columns, each entry filled 
with a (typically) real number:

•  e.g. 3*3 matrix
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DEFINITIONS - MATRIX 

u We normally write the entry of a matrix as 

                

             A =

u Denoted with a Capital letter

u All matrices have an order (or dimension): 

   that is, the number of rows * the number of columns. 

So, A is 2 by 3 or (2 * 3).

◆ A square matrix is a matrix that has the same number of rows and 
columns (n * n)

9/2/2025 Dr. Yanjun Qi / 7

a11 a12 a13

a21 a22 a23

é

ë
ê

ù

û
ú



Special matrices
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diagonal upper-triangular

tri-diagonal lower-triangular
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Special matrices: 
Symmetric Matrices

9/2/2025 Dr. Yanjun Qi / 9

e.g.:



Column or Row Views to 
Denote
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Review of MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction

3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(1) Transpose

Transpose: You can think of it as 
•  “flipping” the rows and columns 
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e.g.



(2) Matrix Addition/Subtraction

• Matrix addition/subtraction
• Matrices must be of same size.

• Entry-wise operation across all entries 
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(2) Matrix Addition/Subtraction
An Example
• If we have
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A B

then we can calculate C = A + B by



(2) Matrix Addition/Subtraction
An Example
• Similarly, if we have
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     
     =
          
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3 4     and    = 8 11
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A B

then we can calculate C = A - B by



OPERATION on MATRIX

1) Transposition

2) Addition and Subtraction

3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(3) Products of Matrices

• We write the multiplication of two matrices A and B as AB

• This is referred to either as

•pre-multiplying B by A
        or
•post-multiplying A by B

• So for matrix multiplication AB, A is referred to as the premultiplier 
and B is referred to as the postmultiplier
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Products of Matrices

• If we have A(3x3) and B(3x2) then

9/2/2025 Dr. Yanjun Qi / 18
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where



Matrix Multiplication
An Example
• If we have
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Products of Matrices
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Condition: n = q

m x n q x p m x p

n



Products of Matrices: Conformable

• In order to multiply matrices, they must be conformable (the number 
of columns in the premultiplier must equal the number of rows in 
postmultiplier)

• Note that

•an (m x n) x (n x p) = (m x p)
•an (m x n) x (p x n) = cannot be done
•a (1 x n) x (n x 1) = a scalar (1 x 1)
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Some Properties of
Matrix Multiplication
• Note that

•Even if conformable, AB does not necessarily 
equal BA (i.e., matrix multiplication is not 
commutative)
•Matrix multiplication can be extended beyond 

two matrices
•matrix multiplication is associative, i.e.,              

A(BC) = (AB)C
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Some Properties of
Matrix Multiplication

u Multiplication and transposition

      (AB)T = BTAT

◆Multiplication with Identity Matrix
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Special Uses for
Matrix Multiplication

• Products of Scalars & Matrices ➔ Example, If we have
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A
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Note that bA = Ab if b is a scalar



Special Uses for
Matrix Multiplication
• Dot (or Inner) Product of two Vectors

•Premultiplication of a column vector a by 
conformable row vector b yields a single value 
called the dot product or inner product 
• - If
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Special Uses for
Matrix Multiplication
• Outer Product of two Vectors

•Postmultiplication of a column vector a by 
conformable row vector b yields a matrix 
containing the products of each pair of elements 
from the two matrices (called the outer product) 
- If
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Special Uses for
Matrix Multiplication

• Outer Product of two Vectors, e.g. a special case : 
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Special Uses for
Matrix Multiplication

•Matrix-Vector Products (I) 
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Special Uses for
Matrix Multiplication

•Matrix-Vector Products (II)
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Special Uses for
Matrix Multiplication

•Matrix-Vector Products (III)
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Special Uses for
Matrix Multiplication

•Matrix-Vector Products (IV)
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MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction

3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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A norm of a vector ||x|| is informally a measure of the 
“length” of the vector.

– Common norms: L1, L2 (Euclidean)

– Linfinity

(4) Vector norms
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= xTx



Vector Norm (L2, when p=2)
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Special Uses for
Matrix Multiplication
• Sum the Squared Elements of a Vector

•Premultiply a column vector a by its transpose – 
If 

 ➔ premultiplication by its row vector aT

 will yield the sum of the squared values of 
elements for a, i.e.
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Vector Norms (e.g., (Extra))



More General Definition of Vector Norm 
(Extra)

• A norm is any function g() that maps vectors to real numbers that 
satisfies the following conditions: 
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Orthogonal & Orthonormal 
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If u•v=0, ||u||2 != 0, ||v||2 != 0 
→ u and v are orthogonal

If u•v=0, ||u||2 = 1, ||v||2 = 1 
→ u and v are orthonormal

= x•y

Inner Product defined between 
column vector x and y , as



Orthogonal matrices
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• A is orthogonal if:

• Notation:

Example:



Orthogonal matrices
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•If square A is orthogonal, it is easy to find its inverse:

Property:



• Definition: Given a vector norm   ||x||,  the matrix 
norm defined by the vector norm is given by:

• What does a matrix norm represent? 

• It represents the maximum “stretching” that A does 
to a vector x -> (Ax).
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Matrix Norm (Extra)

x

Ax
A

x 0
max


=



Theorem A: The matrix norm corresponding to 1-norm 
is maximum absolute column sum:

Proof: From previous slide, we can have 

Also,                                                                 

where Aj is the j-th column of A.   
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Matrix 1- Norm (Extra)
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MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction

3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(5) Inverse of a Matrix

• The inverse of a matrix A is commonly denoted by A-1 or inv A.

• The inverse of an n x n matrix A is the matrix A-1 such that AA-1 = I = 
A-1A

• The matrix inverse is analogous to a scalar reciprocal

• A matrix which has an inverse is called nonsingular 
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(5) Inverse of a Matrix

• For some n x n matrix A , an inverse matrix A-1  may not exist.

• A matrix which does not have an inverse is singular.

• An inverse of n x n matrix A exists iff |A| not 0 
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THE DETERMINANT OF A MATRIX

u The determinant of a matrix A is denoted by |A| (or det(A) or det A).

u Determinants exist only for square matrices.

u E.g. If A = 
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THE DETERMINANT OF A MATRIX
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2 x 2

3 x 3

n x n



THE DETERMINANT OF A MATRIX

9/2/2025 Dr. Yanjun Qi / 48

diagonal matrix:



HOW TO FIND INVERSE MATRIXES? An example, 

u If                                    

u                                                     and |A| not 0
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Matrix Inverse

•The inverse A-1 of a matrix A has the property:

                                 AA-1=A-1A=I

•A-1 exists if only if 

•Terminology
• Singular matrix: A-1 does not exist
• Ill-conditioned matrix: A is close to being singular
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PROPERTIES OF INVERSE MATRICES

u

u

u
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( ) 111 --
ABAB =

−

  

   

A
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-1

= A
-1( )
T

( ) AA =
−11-



Inverse of special matrix

•For diagonal matrices 

• For orthogonal matrices 

• a square matrix with real entries whose columns and rows are 
orthogonal unit vectors (i.e., orthonormal vectors)
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Pseudo-inverse (Extra)

• The pseudo-inverse A+ of a matrix A (could be non-square, e.g., m x n) 
is given by:

• It can be shown that:
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MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction

3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(6) Rank: Linear independence
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• A set of vectors is linearly independent if none of them can be 
written as a linear combination of the others.

x3 = −2 x1 + x2

➔ NOT linearly independent



(6) Rank: Linear independence

• Alternative definition: Vectors v1,…,vk are linearly independent if 
c1v1+…+ckvk = 0 implies c1=…=ck=0
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(6) Rank of a Matrix

• rank(A) (the rank of a m-by-n matrix A) is
= The maximal number of linearly independent columns

=The maximal number of linearly independent rows

• If A is n by m, then
• rank(A)<= min(m,n)
• If n=rank(A), then A has full row rank
• If m=rank(A), then A has full column rank
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Rank=? Rank=?



(6) Rank of a Matrix

• Equal to the dimension of the largest square sub-matrix of A that has a 
non-zero determinant.

     Example: 
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has rank 3



(6) Rank and singular matrices
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We can use row reduction to calculating Rank of a matrix

rank(AB) <= min( rank(A), rank(B) )
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From Wiki



MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction

3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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( ) ( )
0

lim
h

f a h f a

h→

+ −
is called the derivative of     at     .f a

We write: ( )
( ) ( )

0
lim
h

f x h f x
f x

h→

+ −
 =

“The derivative of f  with respect to x is …”

There are many ways to write the derivative of ( )y f x=

Review: Derivative of a Function
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➔ e.g. define the slope of the curve y=f(x) at the point x 
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Review: Derivative of a Quadratic Function
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Single Var-Func to Multivariate 

Single Var-
Function 

Multivariate Calculus 

Derivative 
Second-order 
derivative 

Partial Derivative 
Gradient 
Directional Partial Derivative 
Vector Field 
Contour map of a function 
Surface map of a function
Hessian matrix  
Jacobian matrix (vector in / vector out) 
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Some important rules for taking 
(partial) derivatives  
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Review: Definitions of gradient 
(Matrix_calculus  /  Scalar-by-matrix) 
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In principle, gradients are a 
natural extension of partial 
derivatives to functions of 

multiple variables.

➔ Denominator layout



Review: Definitions of gradient 
(Matrix_calculus  /  Scalar-by-vector) 
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• Size of gradient is always the same as 
the size of variable

if 

➔ Denominator layout



For Examples
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Exercise: a simple example
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➔ Denominator layout



Even more general Matrix Calculus: 
Types of Matrix Derivatives
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Adapted from Thomas Minka. Old and New Matrix Algebra Useful for Statistics

	
df

dx
dF
dx

=[
¶F

i

¶x
]
		
dF
dx

=[
¶F

ij

¶x
]

df

dX
=[ df

dX
i

]
		
dF
dX

=[
¶F

i

¶ X
j

]

		

df

dX
=[ df

dX
ij

]



Review: Hessian Matrix / n=2 case  

• 1st derivative to gradient,

• 2nd derivative to Hessian
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Review: Hessian Matrix 
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Hessian PD/PSD (Extra)
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http://people.seas.harvard.edu/~yaron/AM221/lecture_notes/AM221_lecture10.pdf



Today Recap

❑ Linear Algebra and Matrix Calculus Review

0)     Basic Calculus 

1) Transposition

2) Addition and Subtraction

3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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MUST KNOW

NEED to KNOW



Extra

• The following topics are covered by handout, but not by this slide 
(some will be covered in future slides …) 
• Trace()

• Eigenvalue / Eigenvectors

• Positive definite matrix , Gram matrix

• Quadratic form

• Projection (vector on a plane, or on a vector)
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Best Place to Review: 
Khan Academy 
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Best Place to Review: 
Khan Academy 
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From Khan Academy 

• Matrix representing linear transformation of the basic space (each 
column of the matrix is the new basis) 

• Matrix determinant (therefore representing the transformed unit 
square’s area, the bigger, means the bigger transformation)

• Jacobian matrix determinant therefore representing the speed/amount 
of func change at each point 

• Laplacian of a function is the trace of its Hessian

• Harmonic func means a function’s laplacian is 0 in every point ➔ some 
level of function stability / because curvature or hessian diag means on 
average how the neighbor points are higher than me or NOT 



References 

❑ http://www.cs.cmu.edu/~zkolter/course/linalg/index.html

❑Prof. James J. Cochran’s tutorial slides “Matrix Algebra Primer II” 

❑ 
http://www.cs.cmu.edu/~aarti/Class/10701/recitation/LinearAlgebra_M
atlab_Rev iew.ppt

❑ Prof. Alexander Gray’s slides

❑ Prof. George Bebis’ slides

❑ Prof. Hal Daum ́e III’ notes

❑ Khan Academy 
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http://www.cs.cmu.edu/~aarti/Class/10701/recitation/LinearAlgebra_Matlab_Rev%20iew.ppt
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