UVA CS 4774: Machine Learning

Lecture 1: Introduction

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

UVA CS 4774: Machine Learning L1

Roadmap

- Course Logistics
- A Rough Plan of Course Content
- ML History and Now

ATT:

- video-recording of my lectures all available on youtube
- Each session includes multiple small modules --- each about 20mins (each into a different recorded video)

Welcome

- Course Website: (now please open Course Website)
- Discussion via Slack Channel (link from TA announcement!)
- Announcement via email (see Course overview)
- Communication with instructor team via:
 - Email and Slack (see Course overview)

We focus on learning fundamental principles, algorithm design and learning methods and applications.

Objective

- To help students get able to build simple machine learning tools
 - (not just a tool user!!!)
- Key Results:
 - Able to build a few simple machine learning methods from scratch
 - Able to understand a few complex machine learning methods at the source code level

Course Staff

- Instructor: Prof. Yanjun Qi
 - QI: /ch ee/
 - You can call me "professor", "professor Qi";
 - I have been teaching Graduate-level and Under-Level Machine Learning course for years!
 - My research is about machine learning, deep learning, generative AI and ethical GenAI

TA and Office Hour information @ CourseWeb

Course Material

- Text books for this class is:
 - NONE
 - Multiple good reference books are shared via CourseWeb
- My slides if it is not mentioned in my slides, it is not an official topic of the course
 - (all on Course Website + Video + Readings + HWs)
- Your UVA CourseSite for Assignments and Project
- Google Forms for Quizzes

Course Background Needed

Background Needed

- Calculus, Basic linear algebra,
- Basic probability and Basic Algorithm
- Statistics is recommended.
- Python is required for all programming assignments

Assessment Breakdown

- Weekly Quizzes 20%
- Homework Assignments 65%
 - HW1 to HW5 each 10%
 - Final Project: Apply on real-world ML problems 10%
 - Each week's reading question submissions 5%
- Final Exam (12/09) 15%
- See policy in CourseWeb

Quiz

- Class quizzes (20%): Each takes 10 mins via google form;
 - We will have a total of 12 quizzes
 - Your top 10 scored will be counted into 20%
 - Will be close book (please follow honor code!)

See policy in CourseWeb

Course Format – 2025F

Flipped Classroom:

- Watch, Apply, Reflect
- Starting from Week3
- Weekly rhythm:
 - Tuesday = video, Thursday = in-class activity
- Thursdays:
 - Pre class: students need to submit questions on videos
 - Quizzes, Going over quizzes
 - Going over questions and assignments, + in-class solution examples
 - Short presentations on real-world applications and code demos!

Emphasis on active learning

- Understand core ML concepts and algorithms
- Apply models using Python (scikit-learn, Keras)
- Analyze model performance and ethics
- Become a ML tool builder!

Let us start building baby Steps!

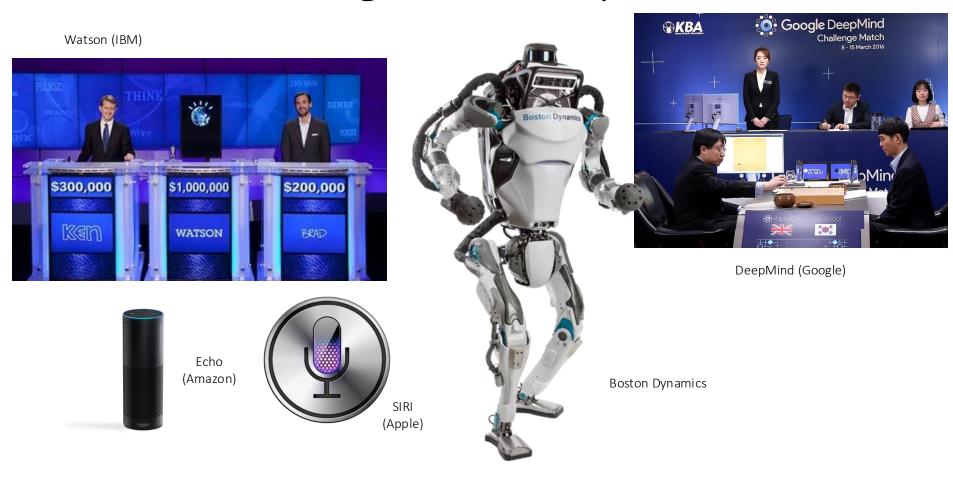
9/2/2025

11

Roadmap

- Course Logistics
- A Rough Plan of Course Content
- History and Now

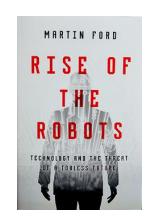
Artificial Intelligence Today



Impact: Good and Bad?

Economic, cultural, social, health... endless disruption

Martin Ford, Rise of the Robots



Labor - McKinsey >50% of jobs automated

Elon Musk, artificial intelligence... existential threat

Artificial intelligence (AI)

The study of computer systems that attempt to model and apply the intelligence of the human mind.

What defines "intelligence"?

Why is it that we assume humans are intelligent?

Are monkeys intelligent? Dogs? Ants? Pine trees?

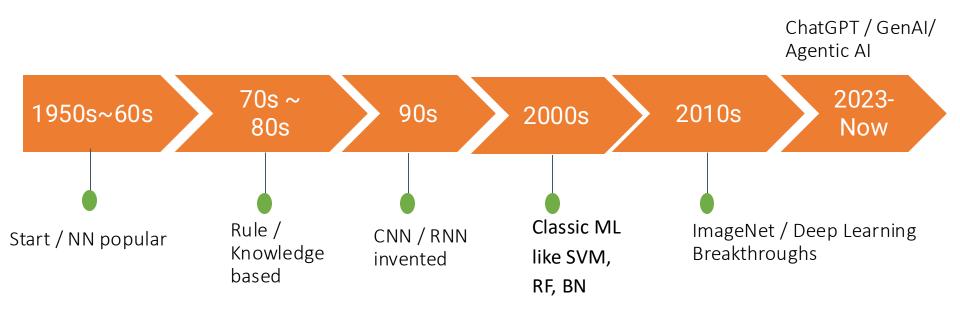
How to build more intelligent computer / machine?

- Able to perceive the world,
 - e.g., objective recognition, speech recognition, ...
- Able to understand the world,
 - e.g., machine translation, text semantic understanding
- Able to Interact with the world,
 - e.g., AlphaGo, AlphaZero, self-driving cars, ...
- Able to think / reason / learn,
 - e.g., learn to program programs, learn to search deepNN architecture, ...
- Able to imagine / to make analogy,
 - e.g., learn to draw with styles,

Ι/

History (on a functional line) Output Mapping Output Output from features Mapping Mapping Most Output from complex from features features features Hand-Hand-Simplest designed designed Features features features program Input Input Input Input Rule-based Classic Representation Deep machine systems learning learning learning

History (on a time line)



Auther Samuel popularized the term "machine learning" in 1959. The Samuel Checkers-playing Program was among the world's first successful self-learning programs;

Early History

 In 1950 English mathematician Alan Turing wrote a landmark paper titled "Computing Machinery and Intelligence" that asked the question: "Can machines think?"

- Further work came out of a 1956 workshop at Dartmouth sponsored by John McCarthy. In the proposal for that workshop, he coined the phrase a "study of artificial intelligence"
- Expert systems (70s, 80s)
 - A software system based the knowledge of human experts;
 - Rule-based system
 - processes rules to draw conclusions
 - Idea is to give AI systems lots of information to start with

MIT Technology Review

10 Breakthrough Technologies

2013

hink of the most frustrating, intractable, or simply annoying problems you can imagine. Now think about what

technology is doing to fix them. That's what we did in coming up with our annual list of 10 Breakthrough Technologies. We're looking for technologies that we believe will expand the scope of human possibilities.

Deep Learning

10 Breakthrough Technologies

2017

hese technologies all have staying power.

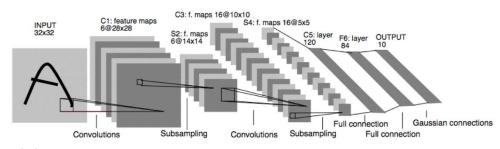
They will affect the economy and our
politics, improve medicine, or influence our

culture. Some are unfolding now; others will take a decade or more to develop. But you should know about all of them right now.

Deep Reinforcement Learning

Generative Adversarial Network (GAN)

- 1952-1969 Enthusiasm: Lots of work on neural networks
- 1990s: Convolutional neural network (CNN) and Recurrent neural network (RNN) were invented

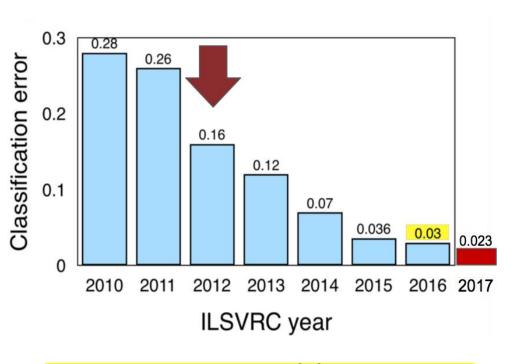


Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11):

2278-2324, 1998.

ImageNet Challenge

- 2010-11: hand-crafted computer vision pipelines
- 2012-2016: ConvNets
 - o 2012: AlexNet
 - major deep learning success
 - 2013: ZFNet
 - improvements over AlexNet
 - 0 2014
 - VGGNet: deeper, simpler
 - InceptionNet: deeper, faster
 - 2015
 - ResNet: even deeper
 - 2016
 - ensembled networks
 - o **2017**
 - Squeeze and Excitation Network

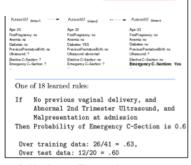


ImageNet Competition:

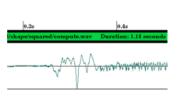
[Training on 1.2 million images [X] vs. 1000 different word labels [Y]]

Deep Learning is Changing the World

Howmay I help you, human?



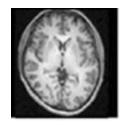
Mining Databases



Speech Recognition

Control learning

Object recognition



Text analysis

Peter H. van Oppen , Chairman of the Board & Chief Executive Office Mr. van Oppen has served as Charman of the beam and chief accurate office of AUII since its acquisition by Interpoint in 1994 and a director of ADIC since 1996. Until its acquisition by Crane Co. in October 1996, Mr. van Oppen served as Chief acquisition by Crane Co. in October 1996, Mr. van Oppen worked as a Chief acquisition pulman at a Price Waterhouse LLP and at Bain & Company in Boston and London. He has additional experience in medical electronics and venture capital. Mr. van Oppen also serves as a Chief Chie

Many more!

Reason of 2010s Deep Learning breakthroughs:

Plenty of Good Quality
Data

Advanced Computer Architecture that fits Deep Learning

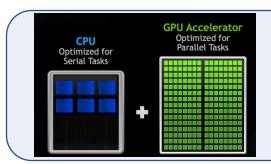
Powerful Machine
Learning
Libraries/Architecture

Text: trillions of words of English + other languages

Visual: billions of images and videos

Knowledge graph: billions of labeled relational triplets

.....



GPU delivers:

- Same or better prediction accuracy
- Faster results
- Lower power
- Smaller footprint

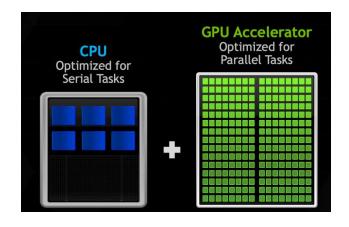
Multiple Well-engineered software libraries

- Easy to learn
- Easy to use
- Easy to extend

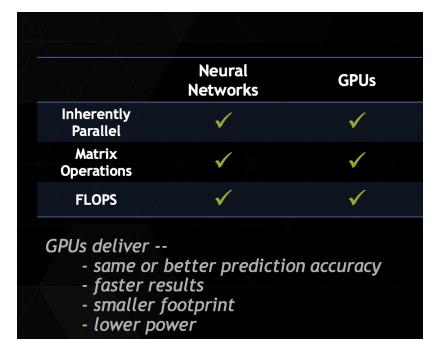
Reason: Plenty of (Labeled) Data

- Text: trillions of words of English + other languages
- Visual: billions of images and videos
- Audio: thousands of hours of speech per day
- User activity: queries, user page clicks, map requests, etc,
- Knowledge graph: billions of labeled relational triplets
- Genomics data:
- Medical Imaging data:

Reason: Advanced Computer Architecture that fits DNNs



http://www.nvidia.com/content/events/geoInt2015/LBrown_DL.pdf



Reason: Powerful Machine Learning Libraries

Multiple Well-engineered software libraries

- Easy to learn
- Easy to use
- Easy to extend

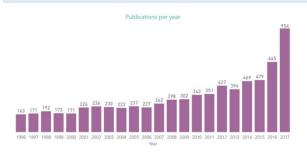
ML + Digital Data Platforms: Unprecedented Era

Hyper time compression new disruptive innovations

Extreme convergence of multiple domains

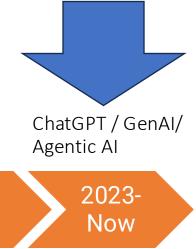
Exponential accelerating automation

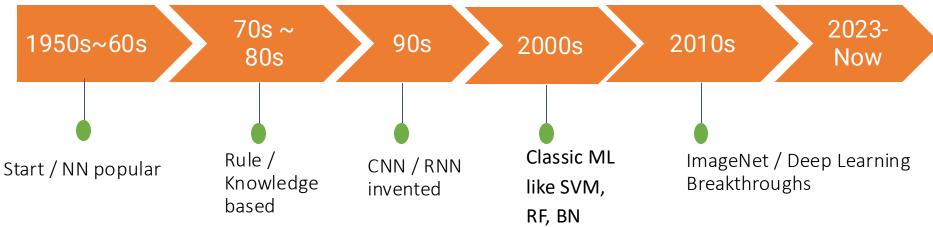
- smart sensors and the billion IoT devices



Universal connectivity linked by a digital mesh

History (on a time line)





Recent Advances (2023–Now) on Generative Al

What is Generative AI?

- Al systems that *create* content (text, images, audio, video, code)
- Powered by foundation models (transformers, diffusion, LLMs)
- Distinct from discriminative AI: not just classification, but generation

Key Applications

- Text & Chat: LLMs (GPT, Claude, Llama, Mistral)
- Images: Diffusion models (Stable Diffusion, MidJourney, DALL·E)
- Video: Gen-2, Sora, Pika Labs
- Code: GitHub Copilot, Cursor, Claude Code
- Multi-modal: ChatGPT-4o, Gemini, OpenAl o1 models

What makes this possible:

- Scaling law!

Plenty of Good Quality Data Advanced Computer Architecture that fits Deep Learning

Powerful Learning Libraries/Architecture

General Lessons for Excellence

Good breath in fundamentals is key

Strength in particular targeted topics help standing out

Highly Recommend Two Extra-curriculum books:

1. Book: By Dr. Domingos: Master Algorithm

So How Do Computers Discover New Knowledge?

- 1. **Symbolists**--Fill in gaps in existing knowledge
- 2. Connectionists--Emulate the brain
- 3. Evolutionists--Simulate evolution
- 4. Bayesians--Systematically reduce uncertainty
- 5. **Analogizers**--Notice similarities between old and new

SRC: Pedro Domingos ACM Webinar Nov 2015 http://learning.acm.org/multimedia.cfm

Highly Recommend Two Extra-curriculum books

- 2. Book: <u>Homo Deus- A Brief History of Tomorrow</u>
 - https://www.goodreads.com/book/show/31138556homo-deus
 - "Homo Deus explores the projects, dreams and nightmares that will shape the twenty-first century from overcoming death to creating artificial life. It asks the fundamental questions: Where do we go from here? And how will we protect this fragile world from our own destructive powers? This is the next stage of evolution. This is Homo Deus.""

Roadmap (Module 3)

- Course Logistics
- History and Now
- Machine Learning Basics

BASICS OF MACHINE LEARNING

 "The goal of machine learning is to build computer systems that can learn and adapt from their experience." – Tom Dietterich

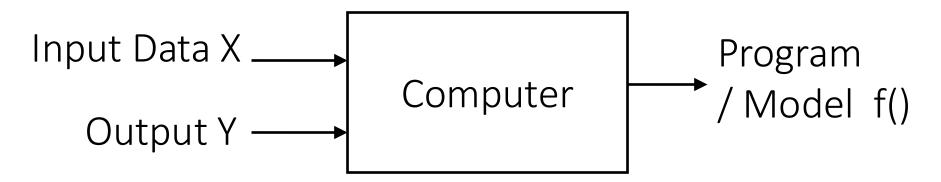
• "Experience" in the form of available data examples (also called as instances, samples)

 Available examples are described with properties (data points in feature space X)

9/2/2025 36

Traditional Programming

Machine Learning (training phase)



Common Notations

- Inputs
 - p #input variables, n #observations
 - X : matrix written in bold capital
 - X_i (jth element of vector X)
 - i-th observed value of X_i is X_{i,i} (a scalar)
 - Vectors are assumed to be column vectors
- Outputs
 - quantitative Y
 - qualitative C (for categorical)
- Observed variables / instances written in lower case

e.g. SUPERVISED LEARNING

Find function to map input space X to output space Y

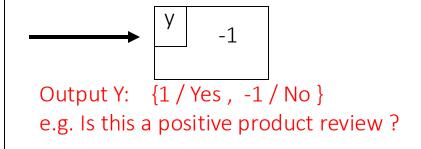
$$f: X \longrightarrow Y$$

• So that the difference between y and f(x) of each example x is small.

e.g.

Χ

I believe that this book is not at all helpful since it does not explain thoroughly the material. it just provides the reader with tables and calculations that sometimes are not easily understood ...



Input X: e.g. a piece of English text

e.g., SUPERVISED Linear Binary Classifier

Now let us check out a VERY SIMPLE case of

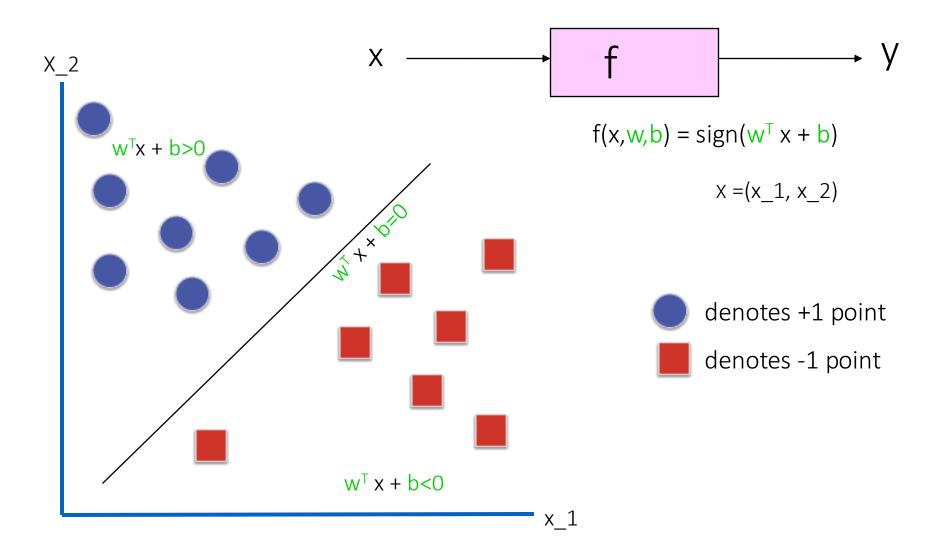
e.g.: Binary y / Linear f / X as R²

$$f(x,w,b) = sign(w^T x + b)$$

$$X^T = (x_1, x_2)$$

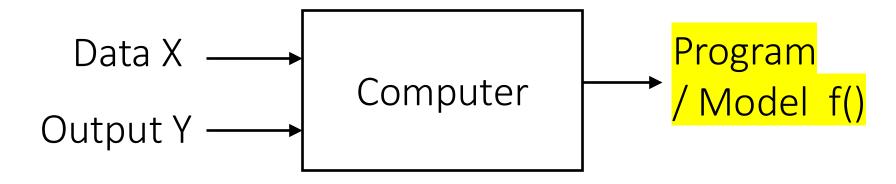
$$w^{T} = (w \ 1, w \ 2)$$

e.g., SUPERVISED Linear Binary Classifier



Traditional Programming

Machine Learning (training phase)



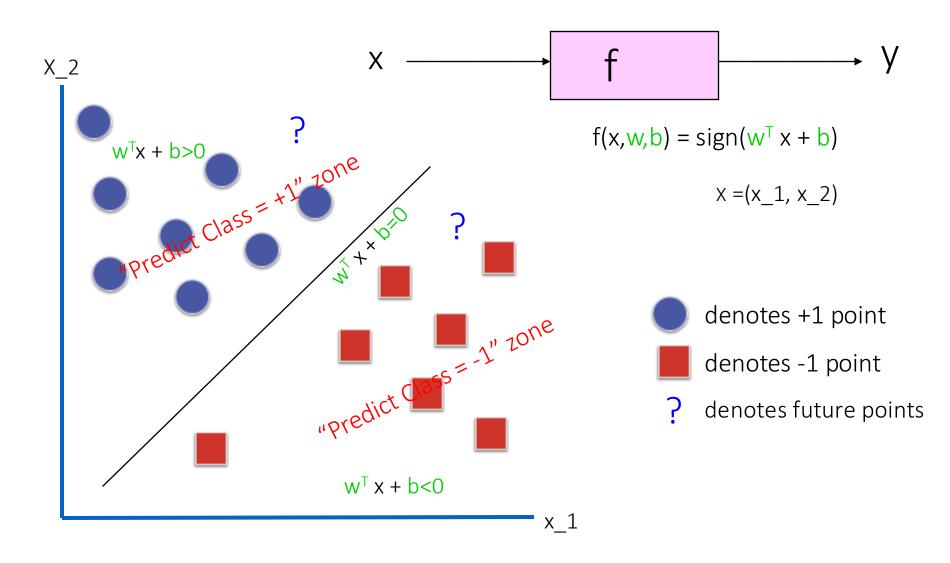
Basic Concepts

- Training (i.e. learning parameters w,b)
 - Training set includes "experience"
 - available examples x₁,...,x_L
 - available corresponding labels y₁,...,y_L
 - Find {w,b} by minimizing loss / Cost function L()
 - (i.e. difference between y and f(x) on available examples in training set)

(W, b) = argmin
$$\sum_{i=1}^{L} \ell(f(x_i), y_i)$$

9/2/2025 43

SUPERVISED Linear Binary Classifier



Basic Concepts

Loss function

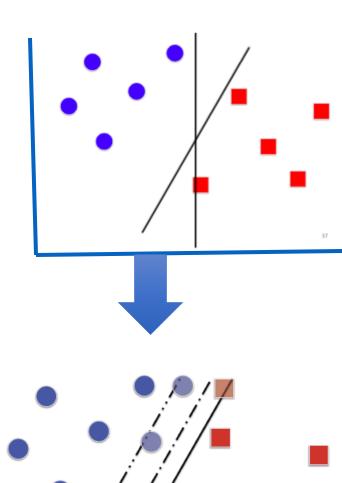
 e.g. hinge loss for binary classification task

$$\sum_{i=1}^{L} \ell(f(x_i), y_i) = \sum_{i=1}^{L} \max(0, 1 - y_i f(x_i)).$$

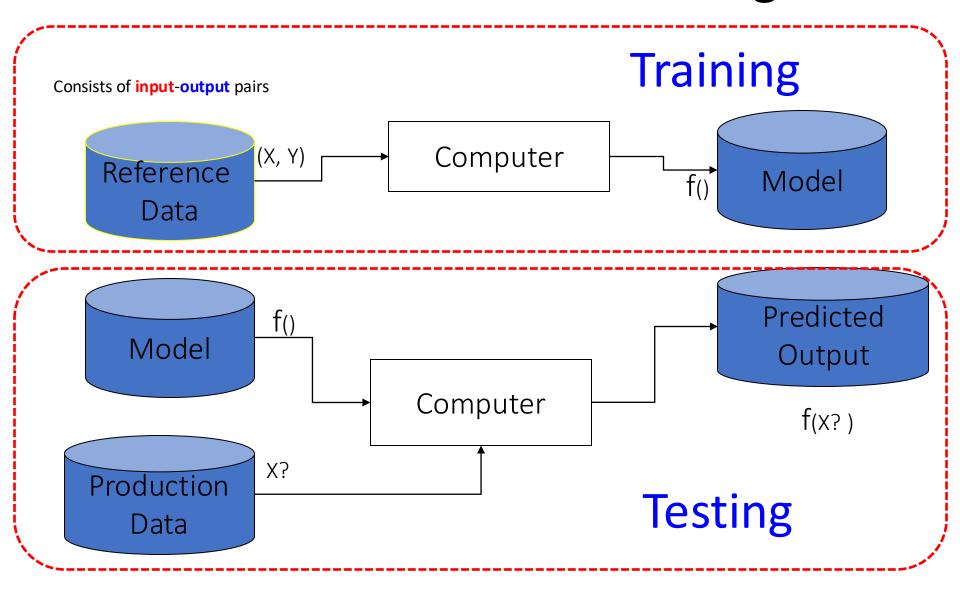
Regularization

• E.g. additional information added on loss function to control f

$$C\sum_{i=1}^{L}\ell(f(x_i),y_i)+\frac{1}{2}||w||^2$$



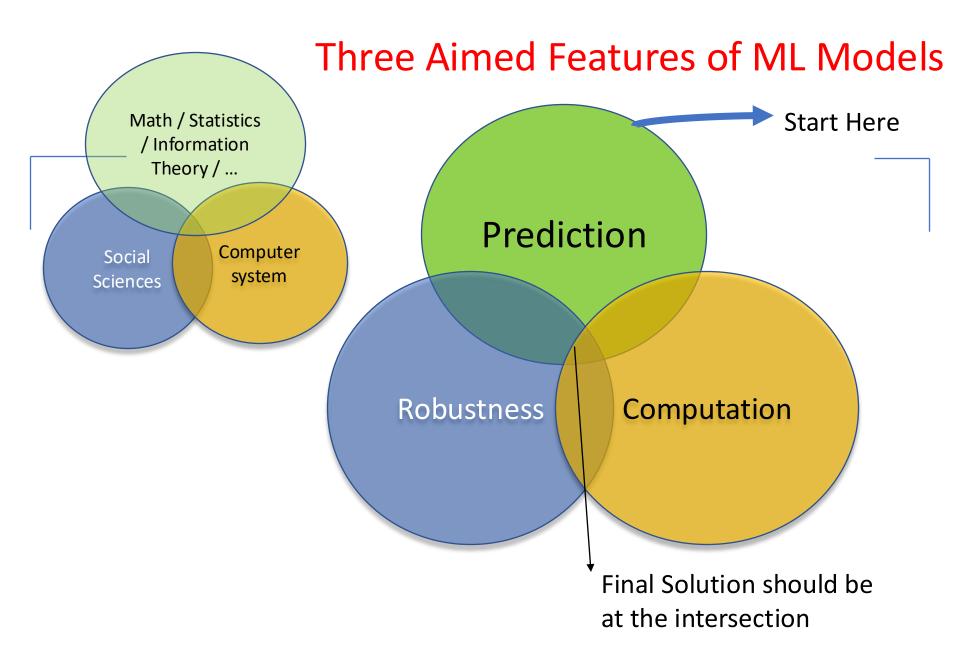
Two Modes of Machine Learning



Basic Concepts

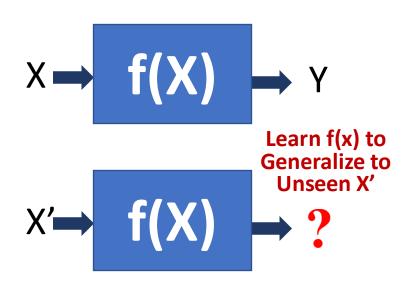
- Testing (i.e. evaluating performance on "future" points)
 - Difference between true $y_{?}$ and the predicted $f(x_{?})$ on a set of testing examples (i.e. testing set)
 - Key: example X₂ not in the training set

 Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples



Summary: Data-Driven Machine Learning Algorithms and Platforms

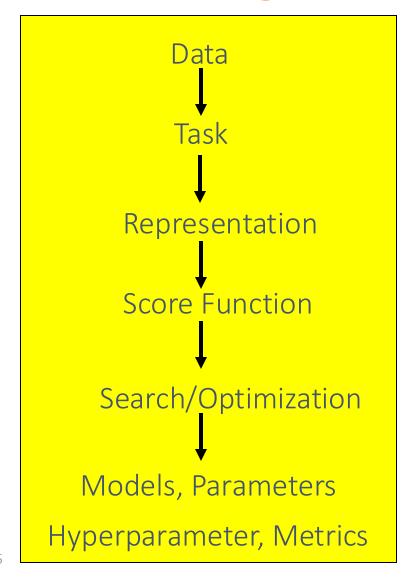
- Generalizations from observed data to unseen data
 - (Inductive reasoning!!!)



- Computer systems that can learn and adapt from their experience (data)
- Can Create software that improves over time

Next Session:

Machine Learning in a Nutshell



ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

References

- Prof. Andrew Moore's tutorials
- ☐ Prof. Raymond J. Mooney's slides
- ☐ Prof. Alexander Gray's slides
- ☐ Prof. Eric Xing's slides
- ☐ http://scikit-learn.org/
- ☐ Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
- ☐ Prof. M.A. Papalaskar's slides