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Rough Sectioning of this Course

—> « 1. Basic Supervised Regression + on Tabular Data
* 2. Basic Deep Learning + on 2D Imaging Data
* 3. Advanced Supervised learning + on Tabular Data
* 4. Generative and Deep + on 1D Sequence Text Data
*5. Not Supervised + Mostly on Tabular Data



Today : GD and SGD for Multivariate Linear Regression

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

2/10/22

X: Tabular

1

Regression: y continuous

19=f<x>=eTx§

Y = Weighted linear sum of Xs

!

Sum of Squared Error (Least
Squared)

|

Normal Equation / GD / SGD é‘—

1

Metrics, Implementation,
Regression coefficients w, b



A little bit more about [ Optimization |

* Objective function  F(x) — J09)
\ariables X - @

* Constraints ¢
— O€ER

To find values of the variables

that minimize or maximize the objective function
while satisfying the constraints
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Method 1: Directly Optimize



L(W)é Minimizing a Quadratic Function

N

L(w) =w* -3
\\lﬁ(“

T /%“’ L(w) =2 _

argmin.,L(w) _ (L.'(w)zo)

— N W B

This quadrative (convex) function is minimized @ the unique
point whose derivative (slope) is zero.

=» When we find zeros of the derivative of this function, we

also find the minima (or maxima) of that function.
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Viethod |: normal equations to solve for LR training

e Write the cost function in matrix form:

i(XiTQ —¥i)?

N =

J(0) =

1
= (X6 =) (X6 - 7)

1
= (0"X"X6 - 0"X"Y -7 X6 +7" ¥)

To minimize J(0), take its gradient and set to zero:

V,J(0) =0 = | X' X0=X"p

The normal equations
(Vg

™ —

o' =(x"x) Xy
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One concrete example

> JW, b =§gw+lo 2) 4 (zw+b~3)9

|
f * {?JW'{'lE -C =0
i L

7 SF‘QJCWJQJ_; (WHQ"?') +(Zw+£-—3)«2_ =0

Qj(W,bz _ (AH'L'Z. +(2W+L ...}> =0

2x| VG 5w +3L-8 =0 imwﬁbf/é:o
9(/\) ‘('6[)"’5—:0

DW=, b:%:(’S-?W):: |

l 2
we solve the matrix equation via Gaussian Elimination




Method 2: [teratively Optimize
via Gradient Descent




Gradient Descent (GD):
An iterative Algorithm F(x)

* Initialize k=0, (randomly or by prior) choose X,

* While k<ki ., For the k-th epoch

X, =X, —0oV F(x, )



Gradient Descent (GD):
An iterative Algorithm F(x)

* Initialize k=0, (randomly or by prior) choose X,

* While k<k ., For the k-th epoch

x =x_ —aVv F(x )
afemung r#e/ole:ﬁned {;yl/\{/ﬂ&
Xo = X — Xo = Xz — ... 2 X+

Qfo ch
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Review: Definitions of gradient (more in Algebra-note)

e Size of gradient vector is always the same as
the size of the variable vector

Vil (%) =

"0 F (x)7

0x,
0F (x)

ox

2

OF (x)

_axp_

e RP

f X€ERe

A vector whose entries, respectively,
contain the p partial derivatives



Our concrete example

> Jb =§gw+lo 2) 4 (zw+b~3)9
2 S[QJW?Q’\ = (Wfb"?') ‘l'(Zw—!'L’})*Z = 0

ow
*Qj((/\hb))/ - Wb .(-(2(,\[-{-L —-}) =0
\ - 3b ~ (9\1—-(5) 7
— = 391

y [ J(@)= .
;ﬁ { 0 ) 37(8)
z 3%
ol . " - W 9

| 3 X 8 prh [bj st 8,2,]




WHY ? Optimize through Gradient Descent
(iterative) Algorithms

*\Works on any objective function

*as long as we can evaluate the gradient

*this can be very useful for minimizing complex
functions



Review: Definitions of derivative
(single variable case)

6
5
4 Review: Derivative of a Quadratic Function
3
2
| (W) =w? -3
3 2\ -1 0 1/2 3

-1

&/ 2 2
> . (w+h)“-3—(w*-3

['(w) = lim ( ) 2w
h—0 h

The derivative is often described as the "instantaneous rate of change”,
=» the ratio of the instantaneous change in F(x) to change in x



Our concrete example with Gradient Descent
(W) =w? -3
l'(w)=2w

W= Wg_1 —2 X Wy_q



Our concrete example with Gradien

(W) =w? -3
9»“'*) U'(w)=2w

N\
N

wk-'/:z > O('.-—-Os

|
{
(<
p— [\ oS SN )

= b

t Descent

Wi=Wg—1 _,8 X Wi—1

l

2/10/22 Dr. Yanjun Qi / UVA CS






Gradient Descent (lteratively Optimize)

*Learning Rate Matters



W= Wg_1 —2 X Wy_q







Gradient Descent (lteratively Optimize)

*Learning Rate Matters

* Objective function matters



X
k:

X

k

_1—

oV F(
. X
k—1)

T
(x)=
-2

$0=2X

Lw
61
]

WY
i

24



X, =x,_,—ovV F(x_)




Gradient Descent (lteratively Optimize)

*Learning Rate Matters
* Objective function matters

* Starting point matters






During optimization, We don’t want to jump from the good side to the bad side
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Comments on Gradient Descent Algorithm

* Works on any objective function F(x)
* as long as we can evaluate the gradient
* this can be very useful for minimizing complex functions

* Local minima

e Can have multiple local minima
 (note: for LR, its cost function only has a single global minimum, so this is not a problem)

* |f gradient descent goes to the closest local minimum:
* solution: random restarts from multiple places in weight space
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Our concrete example with Gradient Descent
(W) =w? -3
l'(w)=2w

W= Wg_1 —2 X Wy_q






teratively Optimize: Gradient
Descent (GD) and Stochastic GD
for Linear Regression Training




Review: Loss function of Least Square LR

J©)=2 X (f(x)-,F

= ;(GTXTXH 0'X" -y X0+5"y)



Extra: more in note PDF >ty calpufns / ?hﬁ'wf dovi >6redi it
Ve (OTXTX )= 2x"X 6 (f4)
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Linear Regression Trained with batch GD
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n gradient descent algorithm:

0 =0'—aV J(0') [Vi
Y
=0 +aX"(y-x0) | |~
- /N
|_ - s s = I N

~— X0~
—¥%36-

~— XZO o



Review: two ways of lllustrating an Objective
Function (for two variables case)

Ny Jlo.o)

Surface
map

Contour
map
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j(@) Surface map view
N\ ' (99 9.)
/

Ol
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Review: two ways of lllustrating an Objective
Function (for two variables case)

\Jeitsy
The grade
the direction (in the @
variable space) of the
greatest rate of increase
of the function and its
magnitude is the slope
of the surface graph in
that direction

(®)
5A‘
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Gradient Descent ( Steepest Descent )

2/10/22

9t+1 — Qt _avej(et)

=0'+aX'(y-X6")

To find a local minimum of a function using
gradient descent, one takes steps proportional
to the negative of the gradient of the function
at the current point.

Dr. Yanjun Qi / UVA CS

Contour
map view



t+1 _ nt t https://s3.amazonaws.com/assets.datacamp.com/blog
0 =0 OCVGI(Q ) assets/Numpy Python Cheat Sheet.pdf

o\ VeLtry 4

e ywovys oh
eadh point @3 0,

st ._\NL’_\
0% ¢t X (3-% §°)

x| X KR o

NSO

N vi
https://numpy.org/doc/stable/reference/
routines.linalg.html n ,

LW*
You can use panda: pandas is a thin
abstraction layer on top of numpy /?x ) r)l | 2

=0'+aX'(y-X06%)

=0'+a) (v, -x"6)%
i=1

1 .



https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://numpy.org/doc/stable/reference/routines.linalg.html

Choosing the RightEearning-Rat is critical
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Training with batch GD

e Gradient of Cost Function:

1 n
JO)=52(x; 0=y
i=1
* Consider a gradient descent algorithm and reformulate:

90 9t+1 — Ht _avel(gt)
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Review: Gradient Vector of Linear Regression Loss

* The Cost Function:

J(6) =%i(xﬁ@—y,~>2
i=1

* Consider a gradient descent algorithm and reformulate:

90 9t+1 — Ht _avej(gt)
0
o= =0'+aX'(y-X6%)
0 G - & T )
L | =0 oY (7, -x0OR,
=1 __
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/7/\ f\/Z/V\P"';’ts

. . P~ 3k ferus
LR with Stochastic GD =» e’c MXC/ X@)

° h le: S
Batch GD rule: 9t — gt +052(J’, -X 6')X

L i=1 _J

*For a single training point (i-th), we have:

0" =0"+o(y —-x'0" )x

9-——'?9 —> 02

» A "stochastic” descent algorithm
» Can be used as an on-line algorithm
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Stochasticgradient descent
VS. Gradient Descent

SGD GD
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Stochastic gradient descent :
More variations

* Single-sample:
0" =0"+o(y —-%'0)X
* Mini-batch:

v .. Tpt\ ¥
(YIj X;'0°) Xyj

B

Ot =0t + «
J

'€~j. B= 15 =0'+a Xz (y-X6")
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n
1
t — Tt _ )2
] train _MSE o nz(xl 6 yl)
i=1 P —

/ BETTER Practice for HW1 \

ottt =gt + 1 aXT(y — X0YH
/ OK Implementation for HW1 \ n

Ottt =9t + aXT(y — X6Y

61 =6 +a(y,—% 6%
0" =0 +a(y —% "60)%, -

1
O™ =0+ —aXg(y — Xp 0"
O =0 + aXF(y — Xz 6Y) g2 =45 &)

. 7\ _ /

—
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Stochasticgradient descent (more)

*Very useful when training with massive datasets,
e.g. not fit in main memory

*Very useful when training data arrives online (e.g.
streaming)..

*SGD can be used for offline training, by repeated
cycling through the whole data
* Each such pass over the whole data = an epoch !

*|n offline case, often better to use mini-batch SGD
*E.g. B=64
e B=1 standard SGD
* B=N standard batch GD
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Mini-batch: (stochastic gradient descent)
 Compute the gradient on a small mini-batch of samples
(e.g. B=32/64/......)
* Much faster computationally than single point SGD
(better use of computer architecture like GPU)

E(’DCL‘ /Co\le/v al( examples

D - one MPJm‘e
g&D T N _gr ugolodﬁé
i S&V - hj’/ﬁ \1?&0&%

Low per-step cost, fast convergence and
perhaps less prone to local optimum

2/10/22
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(Stochastic) Gradient Descent (Iteratively Optimize)

*Learning Rate Matters
oStarting point matters
* Objective function matters

e Stop criterion matters!



 Train MISE Error to observe:
n
t 1 Tt 2
] train _MSE = ﬁ (Xl 8 - yl)
i=1

In many situations, visualizing Train-MSE can be helpful to understand the behavior of your
method, e.g., how it decreases with epochs, ...

In Homework, when we ask for plots of training error, we ask for the MSE per-sample
train errors; Because it is comparable to test MSE error (later to cover).



One gud plt for &O/SED
[\\QM’TN“;%’ 1 259 i se = %g(xiTH* —y )
PR

oprch

Each pass of SGD repeated cycling through
all samples in the whole train=» an epoch !
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When to stop (S)GD ?

* Lots of stopping rules in the literature,

* there are advantages and disadvantages to each, depending
on context

* E.g., a predetermined maximum number of iterations
* E.g., stop when the improvement drops below a threshold

2/10/22 Dr. Yanjun Qi / UVA CS
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e.g. HW1 discussions: Stopping and Learning Rates

thetas = gradient descent(X, ¥, 0.05, 100) thetas = gradient_descent(X, Y, 0.01, 100)

plotPredict(X, Y, thetas[-1], "Gradient Descent Best Fit") plotPredict(X, Y, thetas[-1], "Gradient Descent Best Fit'

plot_training errors(X, Y, thetas, "Gradient Descent Mean Eg plot_training errors(X, Y, thetas, "Gradient Descent Mear
[ Gradient Descent Best Fit Gradient Descent Best Fit

475 “
45 -

450 ”},

425 i

4.00
3.75 - = 351

350 ,

3.0 4
3.25 1 .’
3.00 1 25
00 02 04 06 08 10 ' ' ' ' ' .
X 0.0 02 04 0.6 08 10
X
Gradient Descent Mean Epoch vs Training Loss ) o
5 Gradient Descent Mean Epoch vs Training Loss
4 1 5 4
3 41
w
8
2 @ 31
S
1 2 4
0 1 1
0 20 0 60 8 100
epOCh T T T T T T
0 20 40 60 80 100
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Summary so far: Four ways to learn LR
 Normal equations o :(XTX)_IXTy

* Pros: a single-shot algorithm! Easiest to implement.

* Cons: need to compute pseudo-inverse (X'™X)1, expensive, numerical issues (e.g., matrix is
singular ..), although there are ways to get around this ...

. GD 9"t =— Gt+OcXT()7—X9)=9t+0‘Z(yi_xiT6t)Xi
i=1

* Pros: easy to implement, conceptually clean, guaranteed convergence
* Cons: batch, often slow converging *ﬁeﬂuﬁt

e Stochastic GD and miniBatch

0 = 6 + oc(y; -X[ 00X, N ufW%

J=1
* Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local optimum
e Cons: convergence to optimum not always guaranteed

2/10/22 Dr. Yanjun Qi / UVA CS
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* Challenges

¢ Gradient descent optimization algorithms

* Momentum

¢ Nesterov accelerated gradient

¢ Adagrad
¢ Adadelta

* RMSprop
* Adam

+ AdaMax
* Nadam
¢ AMSGrad

¢ QOther recent optimizers

¢ Visualization of algorithms

¢  Which optimizer to use?

* Parallelizing and distributing SGD
¢ Hogwild!
¢ Downpour SGD
¢ Delay-tolerant Algorithms for SGD

¢ TensorFlow

+ Elastic Averaging SGD

* Additional strategies for optimizing SGD

¢ Shuffling and Curriculum Learning

¢ Batch normalization

¢ Early Stopping

¢ Gradient noise

* More about SGD:

Dr. Yanjun Qi

Popular optimization for NOW

Many advanced variations
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1609.04747

e~ ~
Ny — SGD

Momentum
NAG
Adagrad
Adadelta
Rmsprop

Stochiastic Gradient Descent Mean Epoch vs Training Loss

0.10 1 1
e.g. HW1 discussions: SGD vs.
0.08 1 .
bSGD vs. GD vs. Normal-Equation
0.06 1
- 0.04 4
002 -
0 20 a0 60 80 100
epoch
/ UVA CS 58


https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1609.04747

GD and SGD code cell run @
https://colab.research.google.com/drive/1GchkaOn69mTwRvZUEpPBKK1BgUq94qgPk?usp=sharing

Revised from:
http://cs229.stanford.edu/ .

18
https://github.com/dtnewman/stochastic gradient descent :

70

avg cost

65 1

55 1

0 1 2 3 4 g
. : . : - : iterati le6
# use scipy fmin function to find ideal step size. Sl

n_k = fmin(£2,0.1,(x_old,s_k), full output = False, disp = False)
D f = lambda x: x*2+17+np.random.randn(len(x))*10

X = np.random.random(500000)*100
plt.title("Gradient descent (zoomed in)") y = £(x)
BLE ot hy = theta new[0] + theta new[1l]*x
plt.plot(x,hy,c="b", linewidth=3)
g i Gradient descent o Gradient descent (zoomed in) plt.scatter(x,y,c="r")
plt.show()
25 25 1
20 1 20 1 g
250 1
15 1 15 4
10 10 o
05 05 4 150 4
00 T T T T T T 00 T T T T
-10 -05 00 05 10 15 20 25 12 14 16 18 20 100 1
50 -
o-
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https://colab.research.google.com/drive/1Gchka0n69mTwRvZUEpPBKK1BgUq94qPk?usp=sharing
http://cs229.stanford.edu/
https://github.com/dtnewman/stochastic_gradient_descent

Recap : GD and SGD for Multivariate Linear Regression

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

2/10/22

X: Tabular

1

Regression: y continuous

19=f(x)=6Tx§

Y = Weighted linear sum of Xs

!

Sum of Squared Error (Least
Squared)

|

Normal Equation / GD / SGD é‘—

1

Metrics, Implementation,
Regression coefficients w, b

60
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EXTRA |

In Case you are interested in more advanced details!

2/10/22 Dr. Yanjun Qi / UVA CS

62



B
Varying the value B In — —
B 9t+1 —6tra Y (v - %y O Ry,
j=1

(

I [<B< n )

- 1
g y, Ml"\TB’g&D 7
o0 o3 bt iy G s prort G0 e

ejnov Al memory [ Wi g Wémey
(;6\») Wétﬁ{'\ " 7k J COsL
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Extra: Direct (normal equation) vs.
Iterative (GD, SGD,) methods

* Direct methods: we can achieve the solutionin a T
single step by solving the normal equation

* Using Gaussian elimination or QR decomposition, we
converge in a finite number of steps

* [t can be infeasible when data are streaming in in real
time, or of very large amount

* [terative methods: stochastic GD or GD
e Converging in a limiting sense
e But more attractive in large practical problems
e Caution is needed for deciding the learning rate
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Stochastic gradient descent (Pros)

e Efficiency: Good approximation of Gradient: T

* Intuitively fairly good estimation of the gradient by looking at
just a few examples

* Carefully evaluating precise gradient using large set of examples
is often a waste of time (because need to calculate the gradient
of the next t any way)

* Better to get a noisy estimate and move rapidly in the
parameter space

* SGD is often less prone to stuck in shallow local minima
* Because of the certain “noise”,
* popular for nonconvex optimization cases
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Extra: Convergence rate

* Theorem: the steepest descent / GD equation algorithm
converge to the minimum of the cost characterized by
normal equation:

Ao = (XTX)~1XxTy
If the learning rate parameter satisfy =»

0 < <2/ Amax| X' X]

* A formal analysis of GD-LR need more math; in practice, one
can use a small a, or gradually decrease a. . g

o

Dr. EricXing’s tutorial slide



Extra: Computational Cost (Naive..)

é%

o

e mXp,

O(’r n)

i

om*)

-(x'g) K7 [

WMhﬂ»ﬁ)

2/10/22

N

mostly about Memory Cost 2

Interesting discussion in:
https://stackoverflow.com/quest
ions/10326853/why-does-Im-
run-out-of-memory-while-
matrix-multiplication-works-fine-

K forc;effic /
0(tr”)

Mot wnlt

Sowey Than Mibréon






lllustration of Gradient Descent (2D case)

To find a local minimum of a function using
gradient descent, one takes steps proportional
to the negative of the gradient of the function
at the current point. Surface

2/10/22 Dr. Yanjun Qi / UVA CS .
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lllustration of Gradient Descent (2D case)

Original pointin
Variable space

New point in
Variable space

2/10/22 Dr. Yanjun Qi / UVA CS

Surface
map view



LR with batch GD / Per Feature View

* Note that:

d 5 1
Ve"[a—eﬂ"a—eﬂ

* For its j-th variable:

0" =6"+a) (v -x 6)x,
i=1

Update Rule Per Feature

n
Ojt+1 — th + OCZ(_VI — XiTOt )Xi j (Variable-Wise)
i=1




LR with Stochastic GD / Per Feature View

*For a single training point (i-th), we have:

 For its j-th variable:

0" =0"+o(y —x 6%

t+1 _ 't o Tpt
9]. —9]. +o(y, XI_Q)XI,J,
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EXTRA I

In Case you are interested in more advanced details!
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Extra: Newton’s Method and

Connecting to Normal
Equation
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Review: Single Var-Func to Multivariate

Single Var- Multivariate Calculus

Function

Derivative \|_Pa_rti_aI_De_riv_ati_ve_ R

Second-order | Gradient '

derivative TDiréctional Partial Derivative
Vector Field

I| Contour map of a function

I Surface map of a functionlI







Newton’s method for optimization

* The most basic second-order optimization algorithm

GD- 0 =009,

Noton . Ort1 =0k — }_{lgk

Pp P
i

* Updating parameter with
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Review: Hessian Matrix / n==2 case

Singlevariate - multivariate

» 1st derivative to gradient,

e 2nd derivative to Hessian

S (x,y)

[ o)
0x
Vf = o
¥
ST
gx>  0xdy
0% f 9% f
\ dxdy dy”

)

/



Review: Hesslan Matrix

Suppose that f : R® — R is a function that takes a vector in R" and returns a real number.
Then the Hessian matrix with respect to z, written V2f(z) or simply as H is the n X n
matrix of partial derivatives,

- Bil) M) | Pl
Ozt 010 0z10,,
Pfe) ) .. &)
Vif(z)ERnxnz 0x9021 69:% 02902y,
*f@) 0*f() 0 f(a
L 02,021 020029 0x2
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Newton’s method for optimization

* Making a quadratic/second-order Taylor series approximation

ﬁad(e) f(0r) + 85 (0 — 9k)+2(9 0r) Hy(6 — 6y)

Finding the minimum
solution of the above
right quadratic
approximation (quadratic
function minimization is
easy !)
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Newton’s Method / second-order Taylor series
approximation




Newton’s Method / second-order Taylor
series approximation




Newton’s Method / second-order Taylor
series approximation



Newton’s Method / second-order Taylor
series approximation



Newton’s Method

* At each step:

Hk+1 — Hk _ f’(gk)
f(6,)

0. =6, -H"(0,)VFfO,)

 Requires 1t and 2"d derivatives

» Quadratic convergence

* = However, finding the inverse of the Hessian matrix is often
expensive

2/10/22 Dr. Yanjun Qi / UVA CS
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Newton vs. GD for optimization

* Newton: a quadratic/second-order Taylor series approximatlon
A ’4 @((HZGK v H(@) BK)
Fauad(0) = f(Ox) + g% (0 — 0) + 5(6» —0,)THL(0 — 6;)

Finding the minimum solution of
the above right quadratic
approximation (quadratic
function minimization is easy !)

2/10/22 Dr. Yanjun Qi / UVA CS



Comparison

 Newton’s method vs. Gradient descent

A comparison of gradient descent
(green) and Newton's method (red)
for minimizing a function (with
small step sizes).

Newton’s method uses curvature
information to get a more direct
route ...
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