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Rough Sectioning of this Course

•1. Basic Supervised Regression + on Tabular Data
•2. Basic Deep Learning + on 2D Imaging Data
•3. Advanced Supervised learning + on Tabular Data
•4. Generative and Deep + on 1D Sequence Text Data
•5. Not Supervised + Mostly on Tabular Data
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Today : GD and SGD for  Multivariate Linear Regression

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) 

Normal Equation / GD / SGD 

Metrics, Implementation,  
Regression coefficients w, b
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular

ŷ = f (x) =θ T x



A little bit more about [ Optimization ]

•Objective function
•Variables
•Constraints
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To find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

F(x)
x



Method 1: Directly Optimize
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Minimizing a Quadratic Function
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This quadrative (convex) function is minimized @ the unique 
point whose derivative (slope) is zero. 

è When we find zeros of the derivative of this function, we 

also find the minima (or maxima) of that function.

L(w) = w2 � 3

L0(w) = 2w

argminwL(w) = 0
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Method I: normal equations to solve for LR training

• Write the cost function in matrix form:

To minimize J(θ), take its gradient and set to zero:
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The normal equations
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One concrete example

we solve the matrix equation via Gaussian Elimination



Method 2: Iteratively Optimize 
via Gradient Descent

2/10/22 Dr. Yanjun Qi / UVA CS 10



Gradient Descent (GD): 
An iterative Algorithm

• Initialize k=0, (randomly or by prior) choose x0 

•While k<kmax

!!xk = xk−1 −α∇xF(xk−1)
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For  the k-th epoch 

F(x)



Gradient Descent (GD): 
An iterative Algorithm

• Initialize k=0, (randomly or by prior) choose x0 

•While k<kmax

!!xk = xk−1 −α∇xF(xk−1)
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For  the k-th epoch 

F(x)
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Review: Definitions of gradient (more in Algebra-note)  

• Size of gradient vector is always the same as 
the size of the variable vector

if 
A vector whose entries,  respectively,  
contain the p partial derivatives 

)𝛻𝒙𝐹(𝒙 =

#$(𝒙)
#'&
#$(𝒙)
#'(……
#$(𝒙)
#')

∈ ℝp 𝒙 ∈ ℝp



2/10/22 Dr. Yanjun Qi / UVA CS 14

Our concrete example

we solve the matrix equation via Gaussian Elimination



WHY ? Optimize through Gradient Descent 
(iterative) Algorithms

•Works on any objective function
•as long as we can evaluate the gradient
•this can be very useful for minimizing complex 
functions
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Review: Derivative of a Quadratic Function
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The derivative is often described as the "instantaneous rate of change",
è the ratio of the instantaneous change in F(x) to change in x

𝑙(𝑤) = 𝑤( − 3

𝑙)(𝑤) = lim
*→,

-.* !/0/ 1!/0
*

= 2𝑤

Review: Definitions of derivative 
(single variable case)  
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𝑙(𝑤) = 𝑤( − 3
𝑙)(𝑤)= 2𝑤
𝑤2= 𝑤2/3 −2 ∝ 𝑤2/3

Our concrete example with Gradient Descent
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𝑙(𝑤) = 𝑤( − 3
𝑙)(𝑤)= 2𝑤
𝑤2= 𝑤2/3 −2 ∝ 𝑤2/3

Our concrete example with Gradient Descent
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𝑤2= 𝑤2/3 −2 ∝ 𝑤2/3



Gradient Descent (Iteratively Optimize)

•Learning Rate Matters

• Objective function matters

• Starting point matters   
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Gradient Descent (Iteratively Optimize)

•Learning Rate Matters

• Objective function matters

• Starting point matters   
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!!xk = xk−1 −α∇xF(xk−1)
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!!xk = xk−1 −α∇xF(xk−1)

x0 = 3,↵ = 0.1



Gradient Descent (Iteratively Optimize)

•Learning Rate Matters

• Objective function matters

• Starting point matters   
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x

F (x)

During optimization, We don’t want to jump from the good side to the bad side 

BAD
Good
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Comments on Gradient Descent Algorithm

• Works on any objective function F(x) 
• as long as we can evaluate the gradient
• this can be very useful for minimizing complex functions

• Local minima

• Can have multiple local minima
• (note: for LR, its cost function only has a single global minimum, so this is not a problem)
• If gradient descent goes to the closest local minimum:

• solution: random restarts from multiple places in weight space



Thank you

30

Thank You
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𝑙(𝑤) = 𝑤( − 3
𝑙)(𝑤)= 2𝑤
𝑤2= 𝑤2/3 −2 ∝ 𝑤2/3

Our concrete example with Gradient Descent
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Iteratively Optimize: Gradient 
Descent (GD) and Stochastic GD 
for Linear Regression Training
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Review: Loss function of Least Square LR 
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J(θ )= 12 ( f (x i )− yi )2
i=1

n

∑

= 12 θT XT Xθ −θT XT !y − !yT Xθ + !yT !y( )
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	∇θ J(θ )
= XTXθ − XT !y
= XT(Xθ − !y)

Extra: more in note PDF



Linear Regression Trained with batch GD

•A Batch gradient descent algorithm:

2/10/22 Dr. Yanjun Qi / UVA CS 
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )

		GD : xk = xk−1 −α∇xF(xk−1)



Review: two ways of Illustrating an Objective 
Function (for two variables case)
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Surface 
map

Contour 
map
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Surface map view Contour map view



Review: two ways of Illustrating an Objective 
Function (for two variables case)
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The gradient points in 
the direction (in the 
variable space) of the 
greatest rate of increase 
of the function and its 
magnitude is the slope 
of the surface graph in 
that direction
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )

0

		θ t+1	θ
t

Contour 
map view

Gradient Descent ( Steepest Descent ) 

To find a local minimum of a function using 
gradient descent, one takes steps proportional 
to the negative of the gradient of the function 
at the current point. 
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )

=θ t +α ( yi −
!x i
Tθ t )!x i

i=1

n

∑

https://s3.amazonaws.com/assets.datacamp.com/blog
_assets/Numpy_Python_Cheat_Sheet.pdf

https://numpy.org/doc/stable/reference/
routines.linalg.html

You can use panda: pandas is a thin 
abstraction layer on top of numpy

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://numpy.org/doc/stable/reference/routines.linalg.html


Choosing the Right Learning-Rate is critical 
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Training with batch GD

• Gradient of Cost Function:

• Consider a gradient descent algorithm and reformulate:

2/10/22 Dr. Yanjun Qi / UVA CS 
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )

=θ t +α ( yi −
!x i
Tθ t )!x i
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Review: Gradient Vector of Linear Regression Loss

• The Cost Function:

• Consider a gradient descent algorithm and reformulate:
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θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )

=θ t +α ( yi −
!x i
Tθ t )!x i

i=1
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LR with Stochastic GD è

•Batch GD rule: 

•For a single training point (i-th), we have: 

Ø A "stochastic” descent algorithm
Ø Can be used as an on-line algorithm

			 θ
t+1 =θ t +α( yi −

!x i
Tθ t )!x i

θ t+1 =θ t +α ( yi −
!x ii
Tθ t )!x ii

i=1

n

∑



Stochastic gradient descent 
vs. Gradient Descent 

SGD GD
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versus



Stochastic gradient descent : 
More variations 

• Mini-batch:  

• Single-sample: 
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𝜃!"# = 𝜃! + 𝛼%
$%#

&

&𝑦'$ −⇀𝐱 '$ 𝑇𝜃!) ⇀𝐱 '$

			 θ
t+1 =θ t +α( yi −

!x i
Tθ t )!x i

		 

θ t+1 =θ t −α∇θ J(θ t )
=θ t +αXT( !y − Xθ t )
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𝐱4𝑇𝜃7 − 𝑦4 (

			 θ
t+1 =θ t +α( yi −

!x i
Tθ t )!x i

𝜃012 = 𝜃0 +
1
𝑛
𝛼𝑋3(𝒚 − 𝑋𝜃0)

𝜃012 = 𝜃0 +
1
𝐵
𝛼𝑋43(𝒚 − 𝑋4 𝜃0)

BETTER Practice for HW1

			 θ
t+1 =θ t +α( yi −

!x i
Tθ t )!x i

𝜃012 = 𝜃0 + 𝛼𝑋3(𝒚 − 𝑋𝜃0)

𝜃012 = 𝜃0 + 𝛼𝑋43(𝒚 − 𝑋4 𝜃0)

OK  Implementation for HW1
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Stochastic gradient descent (more)
•Very useful when training with massive datasets , 
e.g. not fit in main memory 
•Very useful when training data arrives online (e.g. 
streaming).. 
•SGD can be used for offline training, by repeated 
cycling through the whole data 
• Each such pass over the whole data è an epoch ! 

• In offline case, often better to use mini-batch SGD
• E.g. B=64  
• B=1 standard SGD
• B=N standard batch GD
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Mini-batch: (stochastic gradient descent)
• Compute the gradient on a small mini-batch of samples 

(e.g. B=32/64/……)
• Much faster computationally than single point SGD 

(better use of computer architecture like GPU)

Low per-step cost, fast convergence and 
perhaps less prone to local optimum



(Stochastic) Gradient Descent (Iteratively Optimize)

•Learning Rate Matters

•Starting point matters 

• Objective function matters

• Stop criterion matters!   
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• Train MSE Error to observe: 

In Homework, when we ask for plots of training error, we ask for the MSE per-sample
train errors; Because it is comparable to test MSE error (later to cover). 

In many situations, visualizing Train-MSE can be helpful to understand the behavior of your 
method, e.g., how it decreases with epochs, … 

𝐽𝑡
!"#$%*+,-

=
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𝑛
8
453

6

𝐱4𝑇𝜃7 − 𝑦4 (
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Each pass of SGD repeated cycling through 
all samples in the whole trainè an epoch !

			
Jtrain−MSE =

1
n

(x iTθ * − yi )2
i=1

n

∑



When to stop (S)GD ? 

• Lots of stopping rules in the literature,
• there are advantages and disadvantages to each, depending 

on context

• E.g., a predetermined maximum number of iterations
• E.g., stop when the improvement drops below a threshold
• ….
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e.g. HW1 discussions: Stopping and Learning Rates 
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Summary so far: Four ways to learn LR
• Normal equations

• Pros: a single-shot algorithm! Easiest to implement.
• Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues (e.g., matrix is 

singular ..), although there are ways to get around this …

• GD

• Pros: easy to implement, conceptually clean, guaranteed convergence
• Cons: batch, often slow converging

• Stochastic GD and miniBatch

• Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local optimum
• Cons: convergence to optimum not always guaranteed

( ) yXXX TT !1-
=*q

			 
θ t+1 ==θ t +αXT( !y − Xθ )=θ t +α ( yi − x iTθ t )x i

i=1

n

∑

θ t+1 =θ t +α (yi − xi
Tθ t )xi
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• More about SGD: 
• Popular optimization for NOW
• Many advanced variations
• https://ruder.io/optimizing-gradient-descent/
• https://arxiv.org/abs/1609.04747
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e.g. HW1 discussions: SGD vs. 
bSGD vs. GD vs. Normal-Equation

https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1609.04747
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GD and SGD code cell run @ 
https://colab.research.google.com/drive/1Gchka0n69mTwRvZUEpPBKK1BgUq94qPk?usp=sharing

Revised from:
http://cs229.stanford.edu/
https://github.com/dtnewman/stochastic_gradient_descent

https://colab.research.google.com/drive/1Gchka0n69mTwRvZUEpPBKK1BgUq94qPk?usp=sharing
http://cs229.stanford.edu/
https://github.com/dtnewman/stochastic_gradient_descent


Recap : GD and SGD for  Multivariate Linear Regression

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) 

Normal Equation / GD / SGD 

Metrics, Implementation,  
Regression coefficients w, b
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular

ŷ = f (x) =θ T x



Thank you
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Thank You
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EXTRA  I
In Case you are interested in more advanced details! 

2/10/22 Dr. Yanjun Qi / UVA CS 62



2/10/22 63

Varying the value B In 𝜃!"# = 𝜃! + 𝛼-
$%#

&
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Extra: Direct (normal equation) vs. 
Iterative (GD, SGD,) methods

•Direct methods: we can achieve the solution in a 
single step by solving the normal equation
• Using Gaussian elimination or QR decomposition, we 

converge in a finite number of steps
• It can be infeasible when data are streaming in in real 

time, or of very large amount

• Iterative methods: stochastic GD or GD
• Converging in a limiting sense
• But more attractive in large practical problems 
• Caution is needed for deciding the learning rate 
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Stochastic gradient descent (Pros)
•Efficiency: Good approximation of Gradient: 
• Intuitively fairly good estimation of the gradient by looking at 

just a few examples
• Carefully evaluating precise gradient using large set of examples 

is often a waste of time (because need to calculate the gradient  
of the next t any way)
• Better to get a noisy estimate and move rapidly in the 

parameter space  

•SGD is often less prone to stuck in shallow local minima 
• Because of the certain “noise”, 
• popular for nonconvex optimization cases
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Extra: Convergence rate

• Theorem: the steepest descent / GD equation algorithm 
converge to the minimum of the cost characterized by 
normal equation:

If the learning rate parameter satisfy è

• A formal analysis of GD-LR need more math; in practice, one 
can use a small a, or gradually decrease a.

2/10/22 Dr. Yanjun Qi / UVA CS 
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Extra: Computational Cost (Naïve..)
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mostly about Memory Cost à

Interesting discussion in: 
https://stackoverflow.com/quest

ions/10326853/why-does-lm-
run-out-of-memory-while-

matrix-multiplication-works-fine-
for-coeffic



2/10/22 Dr. Yanjun Qi / UVA CS 68

1*1

X =

−− x1
T −−

−− x2
T −−

! ! !
−− xn

T −−

"

#

$
$
$
$
$

%

&

'
'
'
'
'



Illustration of Gradient Descent (2D case)
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x1

x0

F(x)

xk

xk xk−1
To find a local minimum of a function using 
gradient descent, one takes steps proportional 
to the negative of the gradient of the function 
at the current point. Surface  

map view



Illustration of Gradient Descent (2D case)
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F(x)

Original point in
Variable space

New point in
Variable space

xk

xk xk−1

x1

x0

Surface  
map view



LR with batch GD / Per Feature View

• Note that:

• For its j-th variable: 
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θ j

t+1 =θ j
t +α ( yi − x iTθ t )xi , j

i=1

n

∑

		 
∇θ J =

∂
∂θ1

J ,…, ∂
∂θk

J
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

θ t+1 =θ t +α ( yi − x iTθ t )x i
i=1

n

∑

Update Rule Per Feature 
(Variable-Wise)



LR with Stochastic GD / Per Feature View

•For a single training point (i-th), we have: 

• For its j-th variable: 
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			 θ
t+1 =θ t +α( yi −

!x i
Tθ t )!x i

			 θ j
t+1 =θ j

t +α( yi −
!x ii
Tθ t )xi , j Update Rule Per Feature 

(Variable-Wise)



EXTRA  II
In Case you are interested in more advanced details! 
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Extra: Newton’s Method and

Connecting to Normal 
Equation
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Review:  Single Var-Func to Multivariate 

Single Var-
Function

Multivariate Calculus

Derivative
Second-order 
derivative 

Partial Derivative 
Gradient 
Directional Partial Derivative 
Vector Field 
Contour map of a function 
Surface map of a function
Hessian matrix  
Jacobian matrix (vector in / vector out) 
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Newton’s method for optimization

• The most basic second-order optimization algorithm 
• Updating parameter with 

2/10/22 Dr. Yanjun Qi / UVA CS 77



Review: Hessian Matrix / n==2 case  

• 1st derivative to gradient,

• 2nd derivative to Hessian
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f (x, y)

g =∇f =
∂f
∂x

∂f
∂y

#
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∂x2
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Singlevariate          à multivariate 



Review: Hessian Matrix 
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Newton’s method for optimization

• Making a quadratic/second-order Taylor series approximation 
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Finding the minimum 
solution of the above 
right quadratic 
approximation (quadratic 
function minimization is 
easy !)
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Newton’s Method / second-order Taylor series 
approximation 
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θk+1θk



Newton’s Method / second-order Taylor 
series approximation 
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Newton’s Method / second-order Taylor 
series approximation 
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Newton’s Method / second-order Taylor 
series approximation 
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Newton’s Method

• At each step:

• Requires 1st and 2nd derivatives
• Quadratic convergence
•è However, finding the inverse of the Hessian matrix is often 

expensive
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θk+1 =θk −
"f (θk )
""f (θk )

θk+1 =θk −H
−1(θk )∇f (θk )



Newton vs. GD for optimization

• Newton: a quadratic/second-order Taylor series approximation 

• GD: an approximation 
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Finding the minimum solution of 
the above right quadratic 
approximation (quadratic 
function minimization is easy !)

1

↵



Comparison

• Newton’s method vs. Gradient descent
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A comparison of  gradient descent 
(green) and Newton's method (red) 
for minimizing a function (with 
small step sizes). 

Newton’s method uses curvature 
information to get a more direct 
route  … 
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Newton’s method
for Linear Regression 

???
Normal 

Equation? 
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