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Machine Learning in a Nutshell

Dalta
Task ML grew out of
1 work in Al
Representation o
Optimize a
1 performance criterion
Score Function using example data or
1 past experience,

Aiming to generalize to
unseen data

Search/Optimization

Models, Parameters
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Rough Sectioning of this Course

—> « 1. Basic Supervised Regression + on Tabular Data
* 2. Basic Deep Learning + on 2D Imaging Data
* 3. Generative and Deep + on 1D Sequence Text Data
* 4. Advanced Supervised learning + on Tabular Data
*5. Not Supervised + Mostly on Tabular Data



Today: Multivariate Linear Regression in a Nutshell

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

—9 X: Tabular

1

m—— Regression: y continuous

1

Y = Weighted linear sum of Xs

—

Sum of Squared Error (Least
Squared)

1

Normal Equation / GD / SGD

1

Regression
coefficients w, b
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Tabular Dataset
for regression

X
et fX Y

— e —

N - - -

continuous
b valued
S’\ 'lf\ /!\ /l’\ variable

X1 X’L'ﬂ(?

» Data/points/instances/examples/samples/records: [ rows |

» Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns,
except the last]

» Target/outcome/response/label/dependent variable: special column to be predicted [ last column ]
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SUPERVISED Regression

target/class _
l X“m\)(n'ﬁ?\l"\ . .
° Training dataset
12.5
3 - model consists of
training :
dataset 250 learn f Input-output
7 pairs
(x5
test ? X (101)
dataset i - - e Target Y: continuous
? 1 .
target variable
? apply :
i model !

2/1/22 Dr. Yanjun Qi / 6



train

training
dataset

test

dataset l

Xtest —
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https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LinearRegression.html

https://colab.research.google.com/drive/1mI-PFB2J1UVIp6JiLhQKEPirPZIQnDH7?usp=sharing

| will code-run through: Scikit-Learn Linear Regression Example
Adapted from: https://scikit-learn.org/stable/auto_examples/linear model/plot ols.html
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://colab.research.google.com/drive/1mI-PFB2J1UVIp6JjLhQKEPirPZlQnDH7?usp=sharing
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html

Two Modes of Machine Learning

————————————————————————————————————————————————————————————————————————————————————

E Consists of input-output pairs 'Y{g. ‘r‘:e Tra I n I n g E

Data

—————————————————————————————————————————————————————————————————————————————————————

’/

Production

—_— | Testing

i S ——

————————————————————————————————————————————————————————————————————————————————————
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Today: Multivariate Linear Regression in a Nutshell

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

2/1/22

X: Tabular

1

Regression: y continuous

1

_’9 Y = Weighted linear sum of Xs

!

Sum of Squared Error (Least
Squared)

1

Normal Equation / GD / SGD

1

Regression
coefficients w, b
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Review: f(x) is Linear when X is single variable

* f(x)=wx+b?

A slope of 2 (i.e. w=2) means that every 1-unit
change in X yields a 2-unit change in'.

A

y:

<V

R




Review: f(x) is Linear when X is single variable

* f(x)=wx+b?

2/1/22

A slope of 2 (i.e. w=2) means that every 1-unit
change in X yields a 2-unit change in'.

y:

A

—F(X): WX ‘f'b

Dr. Yanjun Qi / UVA CS
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. e.g. Living area as X Linear Regression: Y as Weighted linear sum of Xs

f(x)=wx+b

1D case (X' = R): a line

=> Living area

e.g., (Living area, Location) as X

b Wefrted Gum o XL

j\?:f(X) = 90 +91x1 +92x2

rent

X = R?: a plane

g ) Location
. cisicily

Living area X1

Dr. Yanjun Qi / UVA CS
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Linear Supervised Regression

£60=00+8.x -+ OpXxp

Linear Regression Models Linear Regression: Y as Weighted linear sum of Xs
y=f(x)=0,+6.x, +6
y=f(x)=6,+60x +0,x,

N— —

=> Features x_i: X¢ R -
e.g., Living area, distance to campus, # bedroom ...

— -
=> Jarget y:
e.g., Rent ( a continuous variable)
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A Concise Notation: via Vector/Matrix Product

* Represent each data sample x as a column vector, plus a pseudo
feature

* We add a pseudo "feature" xp,=1 (this is the intercept term ), and RE-define

the feature vector to be: —~| 7
—_—
X = X
X2

* The parameter vector H is also a(ciglumn vectcﬂ

=] °

y=f(x)=6,+0x, +0,x, — [[ x,x;_,.xfl,] B

2/1/22 -V E ’Y Dr. Yanjun Qi / UVA CS
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A Concise Notation: via Vector/Matrix Product

* Represent each data sample x as a column vector, plus a pseudo
feature

* We add a pseudo "feature" xp,=1 (this is the intercept term ), and RE-define
the feature vector to be:

X'=[(xo=1), X1, X, - ,X,]

_

e The parameter vector 6 is also a column vector

0, A
oo | W y=f(x)
ép = XTH — HTX
y=f(x)=6, +6,x, +6,x, = 0o +9:% +0,X+
- O Xp

17
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Review:

* Dot (or Inner) Product of two vectors <x, a>

is the sum of products of elements in similar
positions for the two vectors

<X,0 >=<@, x> )(79 = @TX

Linear Regression: Y as Weighted linear sum of Xs

y=f(x)

=Xx'0=0"x

2/1/22 Dr. Yanjun Qi / UVA CS 18



Today: Multivariate Linear Regression in a Nutshell

Data: X

1

Task: y

1

Representation: :

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

X, f()

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

— 1

é Sum of Squared Error (Least

Squared)

1

Normal Equation / GD / SGD

1

Regression
coefficients w, b

2/1/22
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Training Modes of Machine Learning

Consists of input-output pairs Tra ININ g

" il

Training Computer o

Data

A 4

o5 T NN EN EI EN EE EE D

# Split the data into training/testing sets
diabetes X train = diabetes X[:-20]
diabetes X test = diabetes X[-20:]

# Split the targets into training/testing sets
diabetes_y_train = diabetes_y[:-20]
diabetes_y_test = diabetes_y[-20:]

# Create linear regression object
regr = linear model.LinearRegression()

# Tr; e model using the training sets
reg giabetes_X_train, diabetes_y_train)

https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LinearRegression.html

-


https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Basic Concepts

o . X+rain
* Training (i.e. learning parameters w,b ) _
e Training set includes '32, NT
* available examples x,...,x; —
* available corresponding labels v,,...,y,, XZ
(_;
Xn ,J

* Find (w,b) by minimizing loss / Cost functioncl_Q
* (i.e. difference between y and f(x) on available
examples in training set)

n
(W, b) = argmin ZZ(f_({i),_Xi)
W,bLl'zl\ J
¢

P

2/1/22

21



Loss/Cost function for Regression L()

SSE: Sum of squared error

e OQur goal is to search for the optimal H that minimize the following lost
/cost function:

‘(7/1«3‘? ](0)=%Zn:(f(xi)—3’i)2 X y T(Q)
0: = A5, > O~ o

ety = f(x)

-x"00"x

2/1/22 Dr. Yanjun Qi / UVA CS 22



One concrete example

X\ Y 1Y
« 4 *e
9/= | |2 B 2| *
Sy A i 2 1 *
4 —— ‘
93\_' > LF_ X
L
2 Q\p@b’ﬁj")
*\\X I S(W’\J/V’\ V
(W. o) = 0™



One concrete example

X&
l
N1 { <

| Cxi) =Y, = wxth| (WXt "3"')2
Z | w+b (WHb-2)%
2 | 2w+b (2wt -3)*
3| f | 3w th - (Buth-4)*

g

207 9" J (W, b)
W b

222222

J wW,b) = -iz-i (w&-z)qu(zwda-a)z—f

(2l 4h-H*



e.g., Living area as X

Linear Regression: Y as Weighted linear sum of Xs

f(x)=wx+b

1D case (X' = R): a line

=> Living area

e.g., (Living area, Location) as X
y :f%)zeo +6,x, +0,x,

I (1A

rent

s ""-_'\'-2
Location

Living area X1

Dr. Yanjun Qi / UVA CS

X = R?: a plane
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Now the loss function: via A Concise Notation

e Using matrix form, we get the following general
representation of the linear regression function:

JO)= 53 (x]0-3,)
i=1

=2 (x0-7) (x0-7)

- %(@TXTXQ —0' X -5 X0+5")

_®

—

2/1/22 Dr. Yanjun Qi / UVA CS
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Today: Multivariate Linear Regression in a Nutshell

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

—

Sum of Squared Error (Least
Squared)

_é)Normal Equation / GD / SGD

1

Metrics, Implementation,
Regression coefficients w, b

2/1/22
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Default Vector Form is the Column Form

2/1/22

Dr. Yanjun Qi / UVA CS
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Training Set in Matrix Form

e the whole Training set (with n samples) as matrix form :

2/1/22

1,0 1,1
XZ,O X2,1
Xn,O Xn,l

Dr. Yanjun Qi / UVA CS

P

y train

Y,

Y

i
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Training Set in Matrix Form

e the whole Training set (with n samples) as matrix form :

2/1/22

X8 =

) (P

Xl,O X1,1

XZ,O X2,1

n,0 n,1

Dr. Yanjun Qi / UVA CS

. XnO_J
Xl,p
X2,p
X
n,p

i

V)

Y

31




Cont: Loss function: via A Concise Notation

e Using matrix form, we get the following general
representation of the linear regression function:
X -
1 - xI -
J(0)=5 2 (x'0-y)° T T
i=1
1 _ _
=5 (X0-3) (x0-5)

- %(@TXTXQ —0' X -5 X0+5")



Cont: Loss function: via A Concise Notation

e Using matrix form, we get the following general
representation of the linear regression function:

x-| 7% e
=1(}(6—y)T(X9—y) = (Xe '3)‘—’ %9-7,
?" V]x(’ YX‘ Wxi
—(0"x"x0-0"X"5-5 x0+5"5) ¥
2 x| \X;G-jq
L L
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L)’

N

Review (IV): Derivative of a Quadratic Function

L(w) = w* =3

3 2\ -1 0 1 2>3w B &
\/‘ L' (w) = 2w =0

argming L(w) = (LI(W)-‘-'O)“
Ma

[eral \° O S B N

This quadrative (convex) function is minimized @ the unique
point whose derivative (slope) is zero.

=» When we find zeros of the derivative of this function, we

also find the minima (or maxima) of that function.

2/1/22 Dr. Yanjun Qi / UVA CS 34



Critical Points

Minimum Maximum Saddle point

B

/
H Figure 4.2

30)= s, @{VA 61"

A=




Find best @ via Solving  VaJ(8) =0

e Write the cost function in matrix form:

JO)=53 (x/0-1,)
i=1

=2 (x0-3) (x0-7)

- %(HTXTXH —0'X 55" X0+5"5)

To minimize J(0), take derivative (gradient) and set to zero:

= | X'X0=X"y
The normal equations

U -1
Closed form 0 = ( X7 X) x7 ¥y

solution




S haodnct €1 443 > matri calaulis , poial dori > Gradi il
Ve @7X7X )= 2x"X 6 (f4)

v - el
g YY) = 5\ T This Slide is
Vg (2 O Xd)= —2Xv ( 24) Optional /

Uy (4'Y) =0 Extra
= v@’j(@)z (ETX@ - XTT/

-
> Hegimn H(I® = 3 Ve 3®) = a\(Xxs)

o® X
AdvancedEiggt;ﬁgzls/ More in (.}\\Mm mm)( Z X
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Viethod |: normal equations to minimize the loss

* \Write the cost function in matrix form: 83{9)
: W VeJ(6) = _ T
J(0)=12(Xf6’—y,-)2 S? /@) 9 2 (2X X0
= a T’g
1 _ N T - X
=2 (X0-7) (X0-7) Wy e _
: vl XY)
:E(QTXTXQ—QTXT)?—yTXéw)?T)?) \\\\\\
2 T 7T \— = e
2XXO ot e
To minimize J(0), take derivative and set to zero:/
Tvpn . vl =
78](0):0 = X X60=X'y .
The normal equations DEtaI|Ed
Derivation is
U
_1 :
Closed form * _(vyT T = Optlonal /
solution 0 _(X X) X Y
Dr. YAnjun Qi / UVA CS EXt ra




One concrete example

> Jb =§gw+lo 2) 4 (zw+b~3)9

9:;(2994 = (Wf‘o"?f) 'i'(Zw—!'L’})‘?_ = 0

2JW,H W+, -2 +<2w+£ —}) =0

. ab
sw+3L~8=0 ZS.WWW”“‘O

o~ — =
! faw + 2b -5 =0~ 9w+6b-15=0

D W JESREEON

l 2
we solve the matrix equation via Gaussian Elimination

(»

-F

B i A
|
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Today: Multivariate Linear Regression in a Nutshell

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

2/1/22

p—

X: Tabular

1

Regression: y continuous

1
1

Sum of Squared Error (Least
Squared)

1

Normal Equation / GD / SGD

Regression coefficients w, b

_i% Metrics, Implementation,

Y = Weighted linear sum of Xs

41



We aim to make the |learned model

—> ] Generalize Well

e 2. Computational Scalable and Efficient

* 3. Robust / Trustworthy / Interpretable
* Especially for some domains, it is about trust!



How to know the regression program works
well: Metrics on Regression Predictions

target/class
9
12.5
3
training -
dataset ”
.
test ?
dataset ?
?
?
?

2/1/22

Training dataset consists of

input-output pairs

learn

apply
model

* Target Y: continuous

model .
target variable

______~
- \

Measure on test pair =2
Error (f(x2), y-)

Dr. Yanjun Qi / 43



Mean sqguared error: 2548.07
Coefficient of determination:

# Plot outputs

plt.scatter(diabetes X test, diabetes y test,

# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

CE——

# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)
S —————

# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error

print('Mean squared error; %.2f"
%!mean squared error‘diabetes_y_test, diabetes_y_pred))
# The cUOéfficient of determination: 1 is perfect prediction

print('Coefficient of determination: %.2f'
%[32 score}diabetes_y_test, diabetes_y_pred))

color='black')

plt.plot(diabetes X test, diabetes y pred, color='blue', linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()

oy | M%’\eﬂb@l‘b
/ﬂti’?jtill _evyoy

44
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

n+m

* Jest MSE 1 X ,
- Tt _ 4.
Error to ]test_MSE o E (x;"60" — y;)
report: (=n+1
T
X; — — Y
T — Y2
— X2 o yrain =
Xtrain — : Z :
training .
dataset T y
X, —— | O]
_ T I
test Xn+1 o yn+1
dataset T y
_ X Yy = n+2
XtBSt e n:+2 ytest .
T
- Xn+m ! Y ]




Many other possible Metrics for Regression

https://scikit-learn.org/stable/modules/model_evaluation.html

}.3. Metrics and scoring:
juantifying the quality of
redictions

3.3.1. The scoring parameter:
lefining model evaluation rules
).3.2. Classification metrics
3.3.3. Multilabel ranking metrics
).3.4. Regression metrics

3.3.5. Clustering metrics

).3.6. Dummy estimators

2/1/22

Kegression
‘explained_variance’
‘max_error’

P mm—))
‘'neg_mean_absolute_error’
‘neg_mean_squared_error’

‘neg_-
root_mean_squared_error’

‘'neg_mean_squared_log_er-
ror’

‘'neg_median_absolute_er-
ror’

IEZI
‘'neg_mean_poisson_de-
viance'

‘'neg_mean_gamma_de-
viance'

l lsane examnles:

Dr. Yanjun Qi / UVA CS

metrics.
metrics.
metrics.
metrics.

metrics.

metrics.

metrics.
metrics.

metrics.

metrics.

explained._
max_error

mean_absol
mean_squat

mean_squal
mean_squal

median_abs
r2_score

mean_poiss

mean_gamme

46



Question 3.1. Linear Regression+ Train-Test Split

"

3' El
| s
|
~2
e
g. .
5
o1 "
>. E:

00

0 1 2 3

X (input) --->

Figure 1: A reference dataset for regression with one real-valued input (x as horizontal axis) and one real-
valued output (y as vertical axis).

What is the mean squared training error when running linear regression to fit the data 7 (i.e., the model
is y = Py + Prx). Assuming the rightmost three points are in the test set, and the others are in the training
set. (you can eyeball the answers.)
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We aim to make the |learned model

1. Generalize Well

—> » ). Computational Scalable and Efficient

* 3. Robust / Trustworthy / Interpretable
* Especially for some domains, this is about trust!



Why we Prefer Concise Vector/Matrix Form?

1 .

Training: Closed . : (Xtrainyt?“ain)
form solution

Testing: on
multiple Test

2/1/22 Dr. Yanjun Qi / UVA CS 49



Extra: Naive Matrix Multiply ABC

{implements C = C + A*B} nxn N¥n I‘Wi
fori=1ton
YW\ {, forj=1ton 0[,13)
fork=1ton .
oln) Ci,j) = C(i,j) + Ali,k) * B(k,j) Time

4

. o
Algorithm has 2*n3 = O(n?) Flops and A () :

Extra: operates on 3*n2 words of memory B(‘)) ‘DK

http://www.cs.berkeley.edu/~demmel/cs267 Spr12/

50



Computational Cost (Naive Way) Xt X7
n
PP Pxn

T
O(’r n)

L< T o( )

Extra:

i

2
| OCE*”F )
heh > Witty X
W N>7T, Sowey Hhar iy o

222222



Many architecture details and Algorithm
details to consider

* (1): Data parallelization through CPU SIMD /
Multithreading/ GPU parallelization / ....

* (2): Memory hierarchical / locality

* (3): Better algorithms, like Strassen’s Matrix Multiply
and many others



(1): SIMD: Single Instruction, Multiple Data

e Scalar processing e SIMD processing
e traditional mode e with SSE / SSE2
e one operation produces e SSE :st—rem SIMD extensions
one resuItB e one operation produces

— Z, 6@{-;%) multiple results
xg,xz,wo X

Extra: + +

BRYN

xZa Al x1+y1 | XO0+y0

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation
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(2): Memory Hierarchy

* Most programs have a high degree of locality in their accesses
* spatial locality: accessing things nearby previous accesses
* temporal locality: reusing an item that was previously accessed

* Memory hierarchy tries to exploit locality to improve average

Tertiary
storage
Extra: (Disk/Tape)
Speed 10sec
Size PB

http://www.cs.berkeley.edu/~demmel/cs267 Sprl2/ 54



(3)

Extra:

2/1/2:

The following complexity figures assume that arithmetic with individual elements has complexity O(1), as is the case with fixed-preci
operations on a finite field.

Operation Input Output Algorithm Complexity
—~
Schqolbook matrix multiplication o(rP) J
Strassen algorithm O(r?-897)
Matrix multiplication Two nxn matrices | One nxn matrix
Coppersmith-Winograd algorithm O(r?-376)

Optimized CW-like algorithms!'4I[151[16]
e

One nxm matrix &

Matrix multiplication i One nxp matrix Schoolbook matrix multiplication O(nmp)
one mxp matrix
s | Gauss—Jordan elimination o)
. Vel — ~ Strassen algorithm O(n2-807)
Matrix inversion One nxn matrix One nxn matrix
0 Coppersmith-Winograd algorithm O(n?-376)
b)#
) :KW ) Optimized CW-like algorithms O(2-373)
One mxm matrix,
. O(mr?)
one mxn matrix, &
. (m=n)
one nxn matrix
Singular value decomposition | One mxn matrix
One mxr matrix,
one rxr matrix, &
one nxr matrix
Laplace expansion o(n!)
Division-free algorithm!!7] o(n*)
Determinant One nxn matrix One number LU decomposition o(rP)
Bareiss algorithm o)
Fast matrix multiplication('€! O(-373)
Back substitution Triangular matrix | n solutions Back substitution! 9] od)




Basic Linear Algebra Subroutines (BLAS) =
numpy: a wrapper library of BLAS

* Industry standard interface (evolving)
* www.netlib.org/blas, www.netlib.org/blas/blast--forum

* Vendors, others supply optimized implementations

* History
* BLAS1 (1970s):
. vec:c_or\oE)erations: dot product, saxpy (y=a*x+y), etc
* m=2*n, f=2*n, g = f/m = computational intensity ~1 or less
* BLAS2 (mid 1980s)
* matrjx-vector operations: matrix vector multiply, etc
* m=n”2, f=2*n"2, q~2, less overhead
* somewhat faster than BLAS1
* BLAS3 (late 1980s)
* matrix-matrix operations: matrix matrix multiply, etc
* m<=3n”2, f=0(n”"3), so q=f/m can possibly be as large as n, so BLAS3 is potentially much faster
than BLAS2

* Good algorithms use BLAS3 when possible (LAPACK & ScalLAPACK)
* See

source: Stanford Optim EE course



Functionality [edit)

BLAS functionality is categorized into three sets of routines called "levels", which

correspond to both the chronological order of definition and publication, as well as the BLAS e . o el tern d ndent
degree of the polynomial in the complexities of algorithms; Level 1 BLAS operations 2ele elite & welny e Stie epenaent, €.8.,

typically take linear time, O(n), Level 2 operations quadratic time and Level 3 operations https://www.hoffman2.idre.ucla.edu/blas_benchmark/
cubic time.['®] Modern BLAS implementations typically provide all three levels.

Level 1 [edit]

This level consists of all the routines described in the original presentation of BLAS
(1979),['l which defined only vector operations on strided arrays: dot products, vector
norms, a generalized vector addition of the form

yaz+y Versions of BLAS compared: BLAS library from the Netlib Repository,

(clied= iy ancioovialiothoropeetios. ATLAS library, Intel-MKL library, AMD ACML Library and Goto BLAS.
Level 2 [edit]

This level contains matrix-vector operations including, among other things, Single Precision Matrix-Matrix Ops -- SGEMM
matrix-vector multiplication (gemv):
8000 T T T | T

Y+ aAz + By
as well as a solver for x in the linear equation 7000 b - = = = i

Tz =1y D
with T being triangular. Design of the Level 2 BLAS started in 1984, with re 6000 b= -
in 1988.1'% The Level 2 subroutines are especially intended to improve per
programs using BLAS on vector processors, where Level 1 BLAS are subo
"because they hide the matrix-vector nature of the operations from the com RERE = N
Level 3 [edit] 4000 |- AMD ACML —5— -
This level, formally published in 1990,['8! contains matrix-matrix operations GotoBLAS —iF—
"general matrix multiplication" ( gemm ), of the form so00 - ATLAS —S— N

Intel MKL
C + aAB+ 3C .
netlib BLAS + g77 ——
where A and B can optionally be transposed or hermitian-conjugated insidi 2000 netlib BLAS + ifort =—— |
and all three matrices may be strided. The ordinary matrix multiplication A .
performed by setting & to one and C to an all-zeros matrix of the appropria
1000 |~ -
Also included in Level 3 are routines for solving —
1
B« oT 'B . i i " ' i

where T is a triangular matrix, among other functionality. 0 500 1000 1500 2000 2500 3000



Recap : Multivariate Linear Regression in a Nutshell

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

2/1/22

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

!

Sum of Squared Error (Least
Squared)

1

Normal Equation / GD / SGD

1

Regression
coefficients w, b
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References

* Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of
his slides

4 http://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf
 Prof. Alexander Gray’s slides
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EXTRA

In Case you are interested in more advanced details!

2/1/22 Dr. Yanjun Qi / UVA CS
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Probabilistic Interpretation of Linear
Regression (Extra)

= —

* Let us assume that the target variable and the inputs are related by the

equation: @m;r 2(/(’66\ - @AOL\
/|

y.=0'x + <}>U

where € is an error term of unmodeled effects or random noise

* Now assume that € follows a Gaussian N(0,0), then we have;

Many more variations
) of LinearR from this

To \2
I exp[— (0, ~0'x;) perspective, e.g.

p(yi | xi;‘g) —
Nero 20° binomial / poisson
* By iid (among samples) assumption: (LATER)

i n g i_griz
L(6’)=Hp(yl-|x,-;9) L 1 )@q{—z’l(y X)]

0o

2/1/22 nQr/ WA Cs
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Review ():

* Sum the Squared Elements of a Vector equals a 7‘X6-/3
Vector dot product to itself

5 1<
a=|2 1(9)=52(x,79—y,.)2
8 i=1
- T n 2
aT=[528] A ':._ A
=1
aTa:[S 2 8} % =5242248°=03
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Review(l) :

d

X 60—y

1

—  2JO)=Y X0~y



JO)= (%0-9)T(X6-Y)~
= (0)-YT)(26-Y)~

= (6% YT)(26-9) =
. |
- (ox"29 - 0'x"y- 7260 + “M\*

v OXY =Y 20
/x0,Y> <Y, RO>

X | | d 2
= @7272&» 23}73 14 7>€ //E;)

\/

——t—>0
RNy
&9 65

> JO)  Gudnin 'S‘U”C 4 D
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Review (ll): gradient of linear form

(0" X" y) _

XTy

0

One

Concrete
Example

2/1/22

=W1+2W2+3W3

66



Review (lll): Gradient of Quadratic Form

e See L2-note.pdf -> Page 17, Page 23-24

* See white board

d(0'X"X0) 9I(0'G6)
00 00

=2G0=2X"X0




Review (II1): Single Var-Func to Multivariate

Second-order
derivative

Single Var- Multivariate Calculus
Function
Derivative \|_Pa_rti_aI_De_riv_ati_ve_ IR

Il Gradient '

TDiréctional Partial Derivative

Vector Field

Contour map of a function

Surface map of a function
e e e e e - :

THessian matrix




Review (IV) : Definitions of gradient
(Matrix calculus / Scalar-by-vector)

e Size of gradient is always the same as
the size of variable

of (z)
8(1)1 .
@ |crr if x € R™
T
va:f(x) = =
: In principle, gradients are a
of (x) natural extension of partial
. 0B derivatives to functions of

multiple variables.

2/1/22 Dr. Yanjun Qi /



Review (V): Rank of a Matrix

*rank(A) (the rank of a m-by-n matrix A) is
= The maximal number of linearly independent columns
=The maximal number of linearly independent rows
CIf A A
is n by m, then
* rank(A)<= min(m,n) 0 1
* If n=rank(A), then A has full row rank
* I[f m=rank(A), then A has full column rank

Rank="?

If Ais n*n, rank(A)=n iff A is invertible

rank(AB) <= min( rank(A), rank(B) )



Extra: Loss J() is Convex

= J(8)= _L [9"'X XU - Zé/—XT“j-kﬂjT@)

aram Ww//(

Sl (B)= X'X ( ) D)

U
3 (@) 5 ConveX

U R
zzzzzz If VJ(O‘)@):U.) :r‘(@) 15 M(/u/wa@,j@ﬂ@



Review: Hesslan Matrix

Derivatives and Second Derivatives

Cost function Gradient Hessian
J(0) g = VgJ (0) H
9i = 55;J(8) Hij = 359

, giegative curvature No curvature Positive curvature

15} 1 1 :

1.0} ~ 1t : H PD

0.5} {1 1t -

0.0 1 1
_os| w. ] | || = fﬁvpm(w,
-1.0} Nt - ~
_1sh 1 | 1 | j Utk
-2.0

-1.0 -0.5 00 05 1.0-1.0 05 00 05 1.0-1.0 05 00 05 1.0

Positive Definite Hessian
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Extra: Convex function

* Intuitively, a convex function (1D case) has a single point at which the
derivative goes to zero, and this point is a minimum.

* Intuitively, a function f (1D case) is convex on the range [a,b] if a
function’s second derivative is positive every-where in that range.

* Intuitively, if a multivariate function's Hessians is pd (positive definite!),
this (multivariate) function is Convex

* Intuitively, we can think “Positive definite” matrices as analogy to positive
numbers in matrix case

- > -
Our loss function J() ‘s Hessian is H=X X

Positive Semi-definite - PSD 4 Q[M)A}/S

PS5 D
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Intuitively, a convex function with PD hessiangis
minimized @ point whose

v~ derivative (slope) is zero

v/ gradientis zero vector (multivariate case)

Gram Matrix H= XTX

when X is full rank, H is positive definite!
[ —— J — )




— vT
Extra: Gram Matrix H= X" X
s always positive semi-definite!

Because for any vector a

a X' Xa=|Xa|;>0

¥

Besides, when X is full rank,
H is Positive Definite (PD) and invertible

2/1/22 Dr. Yanjun Qi / UVA CS



Comments on the normal equation

whon E full 14mE g eyt

* In most situations of practical interest, the number of data points n is
larger than the dimensionality p of the input space and the matrix X is
of full column rank. If this condition holds, then it is easy to verify that

XX is necessarily invertible.
N>2P

e The assumption that X"X is invertible implies that it is positive definite,
thus the critical point (by solving gradient to zero) we have found is a
minimum.

e What if X has less than full column rank? = regularization (later).

whet % —Q\A\\ ‘(N\k, C4q.
ed

oh e (<t - XTg)g m'lr\{WHX} < 15
A SANETS () o b =5 yonk( S NI



Extra: positive semi-definite!

AER™h yxe R
IE X A)C

[Xn Ny WI

> A (s sk (o -definits (PSD) |

-
o XTAX 20

jc : / [ MWPZL(Q

- See proof on L2-Note: Page 18

= A 15 PO >W‘WK

L2-Note: Page 17

222222



Extra: Scalability to big data?

* Traditional CS view: Polynomial time algorithm, Wow!

 Large-scale learning: Sometimes even O(n) is bad! => Many state-of-the-art
solutions (e.g., low rank, sparse, hardware, sampling, randomized...)

Simple example: Matrix multiplication

O(n’)!




SIMD: Single Instruction, Multiple Data

e Scalar processing e SIMD processing
e traditional mode e with SSE / SSE2
e one operation produces e SSE = streaming SIMD extensions
one result

e one operation produces
multiple results

XAl x1+y1 || XO0+y0

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation
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Memory Hierarchy

* Most programs have a high degree of locality in their accesses
* spatial locality: accessing things nearby previous accesses
* temporal locality: reusing an item that was previously accessed

* Memory hierarchy tries to exploit locality to improve average

Tertiary
storage
(Disk/Tape)

10sec

Speed

Size

http://www.cs.berkeley.edu/~demmel/cs267 Sprl2/ 80



Note on Matrix Storage

* A matrix is a 2-D array of elements, but memory addresses are “1-D”

e Conventions for matrix layout
* by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
* by row, or “row major” (C default) A(i,j) at A+i*n+]

* recursive (later)
Column major matrix in memory

Column major

Row major I |
'Y
| 4

* Column major {for now) cachelines  gjye row of matrix is

stored in%ed cachelines
http://www.cs.berkeley.edu/~demmel/cs267 Sprl2/ 81



Strassen’s Matrix Multiply

 The traditional algorithm (with or without tiling) has O(n3) flops
* Strassen discovered an algorithm with asymptotically lower flops

. O(n2-8)

e Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
» Strassen does it with 7 multiplies and 18 adds

Let M= m11ml2 = allal2 bllbl2
m21 m22 a2la22 b21b22
Let p1=(al2-a22) * (b21 + b22)
p2 = (all+a22) * (b1l +b22)
p3=(all-a21)* (b1l +b12)
p4=(all+al2)*b22

Then m1l=pl+p2-p4+pb
m12 = p4d + p5
m21 =p6 +p7/
m22 =p2-p3+p5-p7/

p5=all *(bl12-b22)
p6=2a22 * (b21-bll)
p7 =(a2l1+a22)*bll

Extends to nxn by divide&conquer

htto://www.cs.berkelev.edu/~demmel/cs267 Sprl12/




Strassen (continued)

T(n)

Cost of multiplying nxn matrices
7*T(n/2) + 18*(n/2)2

O(n log27)

O(n 2.81)

e Asymptotically faster
e Several times faster for large n in practice
e Cross-over depends on machine
e “Tuning Strassen's Matrix Multiplication for Memory Efficiency”, M. S.

Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings of
Supercomputing '98

e Possible to extend communication lower bound to Strassen
e #fwords moved between fast and slow memory = Q)(n'oe?
7/ /] (log2 7)/2—1) ~ Q(n2.81 / |\/|O'4)
e (Ballard, D., Holtz, Schwartz, 2011)

e Attainable too
http://www.cs.berkeley.edu/~demmel/cs267 Sprl2/ 83



