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Machine Learning in a Nutshell

2

ML grew out of 
work in AI

Optimize a 
performance criterion 
using example data or 
past experience, 

Aiming to generalize to 
unseen data 

Task 

Representation 

Score Function 

Search/Optimization 

Models, Parameters

Data  
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Rough Sectioning of this Course

•1. Basic Supervised Regression + on Tabular Data
•2. Basic Deep Learning + on 2D Imaging Data
•3. Generative and Deep + on 1D Sequence Text Data
•4. Advanced Supervised learning + on Tabular Data
•5. Not Supervised + Mostly on Tabular Data
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Today:  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients w, b
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular



Tabular Dataset 
for regression

• Data/points/instances/examples/samples/records: [ rows ]

• Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns, 
except the last] 

• Target/outcome/response/label/dependent variable: special column to be predicted [ last column ] 
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continuous 
valued 

variable 



SUPERVISED Regression

• Target Y:  continuous 
target variable 
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f(x?)

Training dataset 
consists of 
input-output 

pairs
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

https://colab.research.google.com/drive/1mI-PFB2J1UVIp6JjLhQKEPirPZlQnDH7?usp=sharing

I will code-run through:  Scikit-Learn Linear Regression Example
Adapted from: https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://colab.research.google.com/drive/1mI-PFB2J1UVIp6JjLhQKEPirPZlQnDH7?usp=sharing
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html
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Two Modes of Machine Learning

ComputerTraining
Data

Model

Computer

Model
Predicted

Output

Production
Data Testing

Consists of input-output pairs Training
(X, Y)

X? 

f()

f()

f(X? )
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Thank you
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Thank You
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Today:  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients w, b

2/1/22 11

Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular



Review: f(x) is Linear when X is single variable

• f(x)=wx+b?
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b

w

A slope of 2 (i.e. w=2) means that every 1-unit 
change in X yields a 2-unit change in Y.

y

x



Review: f(x) is Linear when X is single variable

• f(x)=wx+b?
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b

w

A slope of 2 (i.e. w=2) means that every 1-unit 
change in X yields a 2-unit change in Y.

y

x
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re
nt

e.g., Living area as X

re
nt

Living area

Location

e.g., (Living area, Location) as X

y
f(x)=wx+b

ŷ = f (x) =θ0 +θ1x1 +θ2x2

Linear Regression: Y as Weighted linear sum of Xs

Living area



Linear Supervised Regression

Linear Regression Models 
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ŷ = f (x) =θ0 +θ1x1 +θ2x2
=> Features x_i: 

e.g., Living area, distance to campus, # bedroom …
=> Target y: 

e.g., Rent  ( a continuous variable) 

Linear Regression: Y as Weighted linear sum of Xs



A Concise Notation: via Vector/Matrix Product

• Represent each data sample x as a column vector, plus a pseudo 
feature
• We add a pseudo "feature" x0=1 (this is the intercept term ), and RE-define

the feature vector to be:

• The parameter vector         is also a column vector 
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θ

!!!

ŷ = f (x)
= xTθ =θTx

ŷ = f (x) =θ0 +θ1x1 +θ2x2



A Concise Notation: via Vector/Matrix Product

• Represent each data sample x as a column vector, plus a pseudo 
feature
• We add a pseudo "feature" x0=1 (this is the intercept term ), and RE-define

the feature vector to be:

• The parameter vector         is also a column vector 
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xT=[(x0=1), x1,  x2, … ,xp]

θ =
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!!!
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= xTθ =θTx

ŷ = f (x) =θ0 +θ1x1 +θ2x2



Review: 

• Dot (or Inner) Product of two vectors <x, a>
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is the sum of products of elements in similar 
positions for the two vectors

<x,     > = <   , x> 

Linear Regression: Y as Weighted linear sum of Xs

!!!

ŷ = f (x)
= xTθ =θTx

⇥⇥



Today:  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients w, b
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular



Training Modes of Machine Learning

ComputerTraining
Data

Model

Consists of input-output pairs Training
(X, Y)

f()

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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• Training (i.e. learning parameters w,b ) 
• Training set includes 
• available examples x1,…,xn

• available corresponding labels y1,…,yn

• Find (w,b) by minimizing loss / Cost function L()                
• (i.e. difference between y and f(x) on available 

examples in training set)  

(W, b) = argmin
W, b

Basic Concepts 
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Loss/Cost function for Regression L()

• Our goal is to search for the optimal              that minimize the following lost 
/cost function:
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θ

SSE: Sum of squared error

𝐽(𝜃) =
1
2(
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$
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!!!

ŷ = f (x)
= xTθ =θTx
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One concrete example
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One concrete example
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re
nt

e.g., Living area as X

re
nt

Living area

Location

e.g., (Living area, Location) as X

y
f(x)=wx+b

ŷ = f (x) =θ0 +θ1x1 +θ2x2

Linear Regression: Y as Weighted linear sum of Xs

Living area



Now the loss function: via A Concise Notation 

• Using matrix form, we get the following general 
representation of the linear regression function:
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Thank you
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Thank You
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Today:  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) 

Normal Equation / GD / SGD 

Metrics, Implementation,  
Regression coefficients w, b
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular
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Training Set in Matrix Form

• the whole Training set (with n samples) as matrix form :
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Training Set in Matrix Form

• the whole Training set (with n samples) as matrix form :
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Cont: Loss function: via A Concise Notation 

• Using matrix form, we get the following general 
representation of the linear regression function:
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Cont: Loss function: via A Concise Notation 

• Using matrix form, we get the following general 
representation of the linear regression function:
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Review (IV): Derivative of a Quadratic Function
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This quadrative (convex) function is minimized @ the unique 
point whose derivative (slope) is zero. 

è When we find zeros of the derivative of this function, we 

also find the minima (or maxima) of that function.

L(w) = w2 � 3

L0(w) = 2w

argminwL(w) = 0
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(Goodfellow 2017)

Critical Points
CHAPTER 4. NUMERICAL COMPUTATION

Minimum Maximum Saddle point

Figure 4.2: Examples of each of the three types of critical points in 1-D. A critical point is
a point with zero slope. Such a point can either be a local minimum, which is lower than
the neighboring points, a local maximum, which is higher than the neighboring points, or
a saddle point, which has neighbors that are both higher and lower than the point itself.

so it is not possible to increase f(x) by making infinitesimal steps. Some critical
points are neither maxima nor minima. These are known as saddle points. See
figure 4.2 for examples of each type of critical point.

A point that obtains the absolute lowest value of f(x) is a global minimum.
It is possible for there to be only one global minimum or multiple global minima of
the function. It is also possible for there to be local minima that are not globally
optimal. In the context of deep learning, we optimize functions that may have
many local minima that are not optimal, and many saddle points surrounded by
very flat regions. All of this makes optimization very difficult, especially when the
input to the function is multidimensional. We therefore usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense. See
figure 4.3 for an example.

We often minimize functions that have multiple inputs: f : Rn
! R. For the

concept of “minimization” to make sense, there must still be only one (scalar)
output.

For functions with multiple inputs, we must make use of the concept of partial
derivatives. The partial derivative @

@xi
f(x) measures how f changes as only the

variable xi increases at point x. The gradient generalizes the notion of derivative
to the case where the derivative is with respect to a vector: the gradient of f is the
vector containing all of the partial derivatives, denoted rxf(x). Element i of the
gradient is the partial derivative of f with respect to xi. In multiple dimensions,

84

Figure 4.2



Find best       via Solving

• Write the cost function in matrix form:

To minimize J(θ), take derivative (gradient) and set to zero:
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The normal equations
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Advanced / Optional / More in 
Extra Slides

This Slide is 
Optional / 
Extra



Method I: normal equations to minimize the loss

• Write the cost function in matrix form:

To minimize J(θ), take derivative and set to zero:
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One concrete example

we solve the matrix equation via Gaussian Elimination



Thank you
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Thank You
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Today:  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) 

Normal Equation / GD / SGD 

Metrics, Implementation,  
Regression coefficients w, b
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular



We aim to make the learned model 

•1. Generalize Well 

• 2. Computational Scalable and Efficient

• 3. Robust / Trustworthy / Interpretable 
•Especially for some domains, it is about trust! 
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How to know the regression program works 
well: Metrics on Regression Predictions

• Target Y:  continuous 
target variable 
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f(x?)

Training dataset consists of 

input-output pairs
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20

7

Evaluation

Measure on test pair è
Error ( f(x?),  y? )
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html


2/1/22 Dr. Yanjun Qi / 45

• Test MSE 
Error to 
report: 
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Many other possible Metrics for Regression
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https://scikit-learn.org/stable/modules/model_evaluation.html
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We aim to make the learned model 

•1. Generalize Well 

• 2. Computational Scalable and Efficient

• 3. Robust / Trustworthy / Interpretable 
•Especially for some domains, this is about trust! 
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Why we Prefer Concise Vector/Matrix Form? 
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Training: Closed 
form solution

Testing: on 
multiple Test 

Inputs
b~ytest = Xtest✓

⇤

✓⇤ = (XT
trainXtrain)

�1
(XT

train~ytrain)
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Extra: Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n

for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Algorithm has 2*n3 = O(n3) Flops and 
operates on 3*n2 words of memory

http://www.cs.berkeley.edu/~demmel/cs267_Spr12/

Extra:
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Computational Cost (Naïve Way)

Extra:



Many architecture details and Algorithm 
details to consider

• (1): Data parallelization through CPU SIMD / 
Multithreading/ GPU parallelization / …. 

• (2): Memory hierarchical / locality 

• (3): Better algorithms, like Strassenʼs Matrix Multiply 
and many others
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(1): SIMD: Single Instruction, Multiple Data

53

+

• Scalar processing
• traditional mode
• one operation produces

one result

• SIMD processing
• with SSE / SSE2
• SSE = streaming SIMD extensions
• one operation produces

multiple results

X

Y

X + Y

+
x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Slide Source: Alex Klimovitski & Dean Macri,  Intel Corporation

Extra:



(2): Memory Hierarchy
• Most programs have a high degree of locality in their accesses
• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality to improve average

54

on-chip 
cache

registers

datapath

control

processor

Second 
level 

cache 
(SRAM)

Main 
memory

(DRAM)

Secondary 
storage 
(Disk)

Tertiary 
storage

(Disk/Tape)

Speed 1ns 10ns 100ns 10ms 10sec

Size KB MB GB TB PB

http://www.cs.berkeley.edu/~demmel/cs267_Spr12/

Extra:
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Extra:

(3)



Basic Linear Algebra Subroutines (BLAS) è
numpy: a wrapper library of BLAS

• Industry standard interface (evolving)
• www.netlib.org/blas,    www.netlib.org/blas/blast--forum

• Vendors, others supply optimized implementations

• History
• BLAS1 (1970s): 

• vector operations: dot product, saxpy (y=a*x+y), etc
• m=2*n, f=2*n, q = f/m = computational intensity ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etc
• m=n^2, f=2*n^2, q~2, less overhead 
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is potentially much faster 

than BLAS2

• Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
• See www.netlib.org/{lapack,scalapack}

source: Stanford Optim EE course
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BLAS performance is very much system dependent, e.g., 
https://www.hoffman2.idre.ucla.edu/blas_benchmark/



Recap :  Multivariate Linear Regression in a Nutshell

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) 

Normal Equation / GD / SGD 

Regression 
coefficients w, b
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular



Thank you
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Thank You
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References

• Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of 
his slides

q http://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf
q Prof. Alexander Gray’s slides
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http://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf


EXTRA
In Case you are interested in more advanced details! 
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Probabilistic Interpretation of Linear 
Regression (Extra)

• Let us assume that the target variable and the inputs are related by the 
equation:

where ε is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian N(0,σ), then we have:

• By iid (among samples) assumption:
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Many more variations 
of LinearR from this 

perspective, e.g. 
binomial / poisson

(LATER) 



Review (I):

• Sum the Squared Elements of a Vector equals 
Vector dot product to itself 
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J(θ )= 12 (x iTθ − yi )2
i=1

n

∑



Review(I) :
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a=

x1
Tθ − y1
x2
Tθ − y2
!

xn
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Review (II): gradient of linear form
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f (w)=wTa = w1 ,w2 ,w3⎡⎣ ⎤⎦

1
2
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=w1 +2w2 +3w3

One 
Concrete 
Example

∂f
∂w

= ∂wTa
∂w

= a =
1
2
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

∂(θT XT y)
∂θ

= XT y



Review  (III): Gradient of Quadratic Form

• See L2-note.pdf -> Page 17, Page 23-24
• See white board 
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∂(θT XT Xθ )

∂θ
= ∂(θTGθ )

∂θ
=2Gθ =2XTXθ



Review (III):  Single Var-Func to Multivariate 

Single Var-
Function

Multivariate Calculus

Derivative
Second-order 
derivative 

Partial Derivative 
Gradient 
Directional Partial Derivative 
Vector Field 
Contour map of a function 
Surface map of a function
Hessian matrix  
Jacobian matrix (vector in / vector out) 
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Review (IV) : Definitions of gradient 
(Matrix_calculus /  Scalar-by-vector) 
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• Size of gradient is always the same as 
the size of variable

if 
In principle, gradients are a 
natural extension of partial 
derivatives to functions of 

multiple variables.



Review (V): Rank of a Matrix

• rank(A) (the rank of a m-by-n matrix A) is
= The maximal number of linearly independent columns
=The maximal number of linearly independent rows

• If A is n by m, then
• rank(A)<= min(m,n)
• If n=rank(A), then A has full row rank
• If m=rank(A), then A has full column rank
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Rank=? Rank=?

If A is n*n, rank(A)=n iff A is invertible

rank(AB) <= min( rank(A), rank(B) )
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Extra: Loss J() is Convex



Review: Hessian Matrix  
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Positive Definite Hessian
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Extra: Convex function 
• Intuitively, a convex function (1D case) has a single point at which the 

derivative goes to zero, and this point is a minimum. 
• Intuitively, a function f (1D case) is convex on the range [a,b] if a 

function’s second derivative is positive every-where in that range. 

• Intuitively, if a multivariate function's Hessians is pd (positive definite!), 
this (multivariate) function is Convex 
• Intuitively, we can think “Positive definite” matrices as analogy to positive 

numbers in matrix case 

Our loss function J() ’s Hessian is 
Positive Semi-definite - PSD 
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è If finding zeros of the derivative of this function, we can also find minima (or maxima) of that function.

Intuitively, a convex function with PD hessian is 
minimized @ point whose 

ü derivative (slope) is zero 

ü gradient is zero vector (multivariate case)

Gram Matrix 
when X is full rank, H is positive definite!

H= 𝑋!𝑋
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Extra: Gram Matrix 
is always positive semi-definite!

aT XT Xa =|Xa|22≥0
Because for any vector  a 

Besides, when X is full rank, 
H is Positive Definite (PD) and invertible

H= 𝑋!𝑋
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Comments on the normal equation

• In most situations of practical interest, the number of data points n is 
larger than the dimensionality p of the input space and the matrix X is 
of full column rank. If this condition holds, then it is easy to verify that 
XTX is necessarily invertible.

• The assumption that XTX is invertible implies that it is positive definite, 
thus the critical point (by solving gradient to zero) we have found is a 
minimum. 

• What if X has less than full column rank? à regularization (later). 

!! θ
* = XTX( )−1 XT !y



Extra: positive semi-definite!
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L2-Note: Page 17

See proof on L2-Note: Page 18



Extra: Scalability to big data? 

• Traditional CS view: Polynomial time algorithm, Wow!
• Large-scale learning: Sometimes even O(n) is bad! => Many state-of-the-art 

solutions (e.g., low rank, sparse, hardware, sampling, randomized…) 
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SIMD: Single Instruction, Multiple Data

79

+

• Scalar processing
• traditional mode
• one operation produces

one result

• SIMD processing
• with SSE / SSE2
• SSE = streaming SIMD extensions
• one operation produces

multiple results

X

Y

X + Y

+
x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Slide Source: Alex Klimovitski & Dean Macri,  Intel Corporation



Memory Hierarchy
• Most programs have a high degree of locality in their accesses
• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality to improve average

80

on-chip 
cache

registers

datapath

control

processor

Second 
level 

cache 
(SRAM)

Main 
memory

(DRAM)

Secondary 
storage 
(Disk)

Tertiary 
storage

(Disk/Tape)

Speed 1ns 10ns 100ns 10ms 10sec

Size KB MB GB TB PB

http://www.cs.berkeley.edu/~demmel/cs267_Spr12/
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Note on Matrix Storage

• A matrix is a 2-D array of elements, but memory addresses are “1-D”
• Conventions for matrix layout
• by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
• by row, or “row major” (C default) A(i,j) at A+i*n+j
• recursive (later)

• Column major (for now)
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12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

Column major Row major

cachelines Blue row of matrix is  
stored in red cachelines

Column major matrix in memory

http://www.cs.berkeley.edu/~demmel/cs267_Spr12/



Strassenʼs Matrix Multiply

• The traditional algorithm (with or without tiling) has O(n3) flops
• Strassen discovered an algorithm with asymptotically lower flops

• O(n2.81)
• Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds

• Strassen does it with 7 multiplies and 18 adds

Let M =  m11 m12  =  a11 a12     b11 b12

m21 m22 = a21 a22     b21 b22

Let p1 = (a12 - a22) * (b21 + b22)                               p5 = a11 * (b12 - b22)

p2 = (a11 + a22) * (b11 + b22)                              p6 = a22 * (b21 - b11)

p3 = (a11 - a21) * (b11 + b12)                               p7 = (a21 + a22) * b11

p4 = (a11 + a12) * b22

Then  m11 = p1 + p2 - p4 + p6

m12 = p4 + p5

m21 = p6 + p7

m22 = p2 - p3 + p5 - p7

Extends to nxn by divide&conquer

http://www.cs.berkeley.edu/~demmel/cs267_Spr12/



Strassen (continued)

T(n)      = Cost of multiplying nxn matrices 
             = 7*T(n/2) + 18*(n/2)2 
             =   O(n log2 7) 
             = O(n 2.81) 
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• Asymptotically faster 
• Several times faster for large n in practice
• Cross-over depends on machine
• “Tuning Strassen's Matrix Multiplication for Memory Efficiency”, M. S. 

Thottethodi, S. Chatterjee, and A. Lebeck,  in Proceedings of 
Supercomputing '98

• Possible to extend communication lower bound to Strassen
• #words moved between fast and slow memory                            = Ω(nlog2 

7 / M(log2 7)/2 – 1 ) ~  Ω(n2.81 / M0.4 )                           
• (Ballard, D., Holtz, Schwartz, 2011)
• Attainable too 

http://www.cs.berkeley.edu/~demmel/cs267_Spr12/


