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Today: Regularized multivariate linear regression

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

— |

2/10/22

___________________________________________________

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

Sum of Squared Error (Least
Squared) + Regularization

Revised Normal Equation /
revised GD / SGD

Regression weights and bias =>

é;Regularized: Robust / Interpretable



We aim to make our trained model

1. Generalize Well

e 2. Computational Scalable and Efficient

* 3. Trustworthy: Robust / Interpretable
* Especially for some domains, this is about trust!
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Many real-world datasets have p
larger than n



+1
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P >n

Example: Gene Expression based Cancer Diagnosis
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Example: Gene Expression based Cancer Diagnosis

* https://www.kaggle.com/crawford/gene-expression/notebooks

X_test.columns = X_test.iloc[1]

X_test = X_test.drop(["Gene Description”, "Gene Accession Number"]).ap
ply(pd.to_numeric)

Int(X_train.sh
print( rain.shape) I‘D ('V—IIZ'3

print(X_test.shape)

X_train.head() ~ ~~ “]0

(38, 7129)

(34, 7129)



https://www.kaggle.com/crawford/gene-expression/notebooks

SUPERVISED Prediction Tasks
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Training dataset consists

of input-output pairs

* Target Y: continuous or
discrete target variable



Large p, small n: How?
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@ Dataset

Gene expression dataset (Golub et al.)

Molecular Classification of Cancer by Gene Expression Monitoring

v

1 Chris Crawford « updated 3 years ago (Version 3)

Data Tasks Notebooks (58) Discussion Activity Metadata Download (4 MB) New Notebook

Public Your Work Shared With You Favorites Hotness

Outputs Languages Tags Search notebooks Q

il @Pca Analysis for GeneClassification

L o 2

@ Hyperparameter Search Comparison (Grid vs Random)

AT
rws
DeC

'LAA
| Y} -
(< V)

@ Who is at risk of cancer? A simple analysis.

"0

Gene Expression Classification



Another Example: Application of Text Regression

http://www.cs.cmmu.edu/~nasmith/papers/joshi+das+gimpel+smith.naacl10.pdf

Movie Reviews and Revenues: An Experiment in Text Regression*

Mahesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
{maheshj,dipanjan, kgimpel, nasmith}@cs.cmu.edu

Abstract
We consider the problem of predicting a
movie’s opening weekend revenue. Previous Proceedings of
work on this problem has used metadata about HLT ’2010
a movie—e.g., its genre, MPAA rating, and
cast—with very limited work making use of Human

text abour the movie. In this paper, we use
the text of film critics’ reviews from several
sources to predict opening weekend revenue. Tech nologies:
We describe a new dataset pairing movie re-
views with metadata and revenue data, and
show that review text can substitute for meta-
data, and even improve over it, for prediction.

Language

2/10/22 10


http://www.cs.cmu.edu/~nasmith/papers/joshi+das+gimpel+smith.naacl10.pdf

1. The Story in Short

\/

¢ Use metadata and critics' reviews to predict
opening weekend revenues of movies

¢ Feature analysis shows what aspects of = 171 R
reviews predict box office success ’

-

ll. Data

4

L)

* 1718 Movies, released 2005-2009

L)

&

L)

L)

» Metadata (genre, rating, running time,
X actors, director, etc.): www.metacritic.com

4

L)

» Critics’ reviews (~7K): Austin Chronicle,
Boston Globe, Entertainment Weekly, LA
Times, NY Times, Variety, Village Voice

L)

7 '{’:’ Opening weekend revenues and number of
opening screens: www.the-numbers.com




Predicting Revenue using Text

Table 1: Total number of reviews from each domain for

W;'im '}M P st
Domain train | dev | test | total
Austin Chronicle 306 | 94 | 62 | 462
Boston Globe 461 | 154 | 116 731
LA Times 610 2 13 625
Entertainment Weekly 644 | 208 | 187 | 1039
New York Times 878 | 273 | 224 | 1375
Variety 927 | 297 | 230 | 1454
Village Voice 953 | 245 | 198 | 1396
# movies gl4=’7_I lilj 3541; 17&5 YL

the training, development and test sets.

2/10/22
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e.g., Movie Reviews and Revenues: An Experiment in Text
Regression, Proceedings of HLT '10 (1.7k n @features)

e.g.counts

IV. Features of a ngram in

the text

Lexical n-grams (1,2,3)

Part-of-speech n-grams (1,2,3)

Dependency relations (nsubj,advmod,...)

Meta

U.S. origin, running time, budget (log),

# of opening screens, genre, MPAA
rating, holiday release (summer,
Christmas, Memorial day,... ), star power
(Oscar winners, high-grossing actors)

2/10/22
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Regularized multivariate linear regression

.Model: Y=pF+p0,x++0,x, T
N\ 2
e LR estimation: argminZ(Y_Y)

2

n [ A p

« LASSO estimation: arg minz Y-Y | Z,Z ,Bj
i=1 \ y, j=1
n ( % p

* Ridge regression estimation: arg minz Y-Y | + 22[)’ E
. i J
=1\ ) j=1

15/54

Error on data + Regularization

2/10/22 Dr. Yanjun Qi / UVA CS



Regularized multivariate linear regression

.Model: Y=pF+p0,x++0,x,

A\ hypa ré-

e LR estimation: arg minZ(Y— Y) /ZL\

n " \2 4
« LASSO estimation: arg minz Y-Y | Z,Z ,Bj

i=1 \ Y, j=1

n ( n \2 p
.ﬁdge regressioﬂestimation: arg minz Y-Y | + Azﬁ '2

=\ ) A

16/54

Error on data + Regularization

2/10/22 Dr. Yanjun Qi / UVA CS



A REAL APPLICATION: Movie
Reviews and meta to Revenues

www.ark.cs.cmu.edu/movies-data

to movies

The feature weights can be

d(ocunAlentaly directly interpreted as U.S. blooper
running time N dollars contributed to the poop
philosophical \ preddtedravey oy ean / Will Smith
bogevman \ occurrence of the feature. / torso
g y . /'/‘.
IRt /?DS"(W v

W&J"\' \‘Q‘:ﬁ;{ this series
straightforward " midlife crisis
arthouse "< ~ %
is rated R anticipation

I 1 1 1 1
-10®° -10* 0 10* 10°

feature weight in dollars



Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

% Linear regression with thelelastic net(Zou

and Hastie, 2005)
= (5-%)
2

. 1

@ = argmin — Z ( — (Bo + ZBT,B)) + AP(03)
6=(80,8) 21 —

4\};@-«% e — [EX 'L?E: ()

P(B) = T (30 - )} +alil)| [pll =6

Use linear regression to directly predict the opening weekend gross
earnings, denoted as y, based on features x extracted from the movie

———

B

UVA CS 18

metadata and/or the text of the reviews.
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Today: Regularized multivariate linear regression

___________________________________________________

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

—

Sum of Squared Error (Least
Squared) + Regularization

Revised Normal Equation /
revised GD / SGD

Regression weights and bias =>

éﬁRegularized: Robust / Interpretable

2/10/22
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Review: Normal equation for LR

e Write the cost function in matrix form:

JB)=> X (x 7B )

=5 (x-3) (xp-5)

To minimize J(0), take derivative and set to zero:

= | X'XB=X"y

= (B'X"XB-p'X"y-y"XB+'y)

The normal equations

U
B =(x"x

2/10/22 Dr.Y
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—_

y
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X, —- Vi
Xg - Y= y.2
N y
Assume

that XX is
invertible

22




What if X has less than full column rank? => Not Invertible




For any matrix A € R™*", it turns out that the column rank of A is equal to the row
rank of A (though we will not prove this), and so both quantities are referred to collectively
as the rank of A, denoted as rank(A). The following are some basic properties of the rank:

e For A € R™*" rank(A) < min(m,n). If rank(A) = min(m,n), then A is said to be
full rank.

e For A € R™*", rank(A) = rank(A7T). @
e For A€ R™*" B € R™®, rank(AB) < min(rank(A), rank(B)). (1)

What if X has less than full column rank? => Not Invertible

{IEP ¢R™T Al eank=?
i F

min (ronk (X0, rank(X)

Tank (R) € mn (”/F> <
when NP

2/10/22 Dr. Yanjun Qi / UVA CS 24



Ridge Regression / L2 Regularized Regression

-

* If not invertible, a/ciassical solution is to add a small positive element to
diagonal

B = (XTX+2.I)_1 X"y

~—

- . ‘
By convention, the bias/intercept term is typically not regularized. } Dr. Yanjun Qi / UVA CS =

Here we assume data has been centered ... therefore no bias term
\



Ridge Regression / L2 Regularized Regression

. -1
B =(X"X+1) X"y
* |s the solution of

2
~ridge g " p
B = argmlnzlttY—Y) —l—ﬂ,zfﬁjz
i= j=

to minimize, take derivative and set to zero
gradinC

By convention, the bias/intercept term is typically not regularized. Dr. Yanjun Qi /UVA €5

Here we assume data has been centered ... therefore no bias term
\



Parameter Shrinkage by Ridge

Asine X'X = I

pus-8)" 475 _ -
= > &:LS = X >/

B, =(X"X+21) Xy A
T — &, .,;@H)I) Xy
tor |
&70 l\yr/\m\meJ = ”""(goLs

2/10/22 Dr. Yanjun Qi / UVA CS
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Ridge Regression:
Squared Loss+L2 penalty on weights

* 4> 0 penalizes each Bj T
@yj Q‘,l A‘@oLs = /ﬁ’j/</(’)oa/
— >0

e if A=0we get the least squares estimator;

«if A —> 00, then Bj to zero

2/10/22 Dr. Yanjun Qi / UVA CS



Parameter Shrinkage by Ridge

N> 0
o XY T T

-1
ﬁOLS:(XTX) XTj/ :> @DLS - >(T\/

- @

Cf‘l‘)\'l) | Whe, X' X=1 >\>

ﬁRg:(XTX_I_;u)_lXTy = @: J()\’Xfy: ol$

When X K=1 3 ERj - T{ngozégm”‘k%j
when X' X 3“0””( 0052, SER qdamieq) Qf\‘\lyé‘/)@

Page65 of ESL book @
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLIl_print10.pdf

2/10/22 Dr. Yanjun Qi / UVA CS 29



Regularized multivariate linear regression

.Model: Y=pF+p0,x++0,x, T
N\ 2
e LR estimation: argminZ(Y_Y)

2
n A p
« LASSO estimation: arg minz Y-Y | Z,Z ,Bj
i=1 \ )2 j=1
n ( ") p
* Ridge regression estimation: arg minz Y-Y | + 22[)’ E
J
i=1 \_ Y, j=1

30/54

Error on data + Regularization

2/10/22 Dr. Yanjun Qi / UVA CS



Lasso (least absolute shrinkage and selection operator)

* Let us change that ridge penalty Zﬂ]z
* Be replaced by Z‘ﬂ ‘
J

* Due to the nature of the constraint, if tuning parameter is chosen large enough,
then the lasso will set some coefficients exactly to zero.

A 2

,BIGSSO — argminzn: Y—IA/ +l§p:
i=1 j=1

B,

2/10/22 Dr. Yanjun Qi / UVA CS 31



Lasso: Implicit Feature Selection
Q0§7 —(;)uMer ”fﬂmd

/
= f = :{
/x) D CoNVu:t(ﬁ("MA“

’ /\ — (-’;GE(([@Mt
P
Bepr ™7
n X

A

A

v

e LASSO does shrinkage and variable selection simultaneously
for better prediction and model interpretation.

2/10/22 Dr. Yanjun Qi / UVA CS 32



Common Regularizers

-

L2: Squared weights penalizes large values more Z‘ﬁ]
j

L1: Sum of weights will penalize small values more 2

i

J

Generally, we don’t want huge weights

If weights are large, a small change in a feature can resultin a
large change in the prediction

Might also prefer weights of O for features that aren’t so useful



Model Selection & Generalization

* Generalisation: learn function / hypothesis from past data in order to

“explain”, “predict”, “model” or “control” new data examples

e Underfitting: when model is too simple, both
training and test errors are large

e Qverfitting: when model is too complex and test
errors are large although training errors are small.
* After learning knowledge, model tends to learn “noise”



Issue: Overfitting and underfitting

DO PP G

2
y=0,+0x Y =0y +0x+0,x y = Z}O }
Generalisation: learn function /
hypothesis from past data in order K-fold Cross
to “explain”, “predict”, “model” or Validation !!!!

III

| “control” new data examples

35



Overfitting: Can be Handled by Regularization

A regularizer is an additional criteria P
to the loss function to make sure .
that we don’t overfit. It’s called a

regularizer since it tries to keep the
parameters more normal/regular

° from sklearn.linear model import Ridge
model = make_ pipeline(GaussianFeatures(30), Ridge(alpha=0.1))
basis plot(model, title='Ridge Regression')

B Ridge Regression

coefficient

0 2 4 6 8 10
basis location



WHY and How to Select A?

* 1. Generalization ability
=>» k-folds CV to decide

2. Control the bias and Variance of the model (details in future lectures)

L2: Squared weights penalizes large values more Z‘ﬁ]
j

L1: Sum of weights will penalize small values more Z,BZ

J

2/10/22 Dr. Yanjun Qi / UVA CS 37



Regularization
path of

a Ridge
Regression

when varying A,
how B varies.

lcavol (D
/

Coefficients

A —

e An example with 8 features




Regularization

path of
a Ridge .
Regression

r &
W;‘“Xi? ) 6%%

2/10/22

06

0.0

Weight Decay

-0.2

lcavol

A — o

An example with 8 features




[ [
K-fold Cross
Validation to

Choose A that
generalizes well |

\ Icavol (D,

Regularization

path of &
a Ridge % .
Regression §

when varying A,
how (3, varies.

2/10/22

An example with 8 features




0.6

Regularization
nath of a Lasso
Regression

04

Coefficients
0.2

when varying A,
how (3, varies.

0.0

-0.2
|

2/10/22

An example with 8 features




Overfitting: Can be Handled by Regularization

15

A regularizer is an additional criteria to the loss functionto | -
make sure that we don’t overfit. It's called a regularizer
since it tries to keep the parameters more normal/regular |-

05

0.0

-10

| will code-run:
https://colab.research.goog
le.com/drive/16LCQGg5Be6
XH5ygq9NwoVXcOFoAZIgQN
?usp=sharing

Adapted from:
https://colab.research.goog
le.com/github/jakevdp/Pyt
honDataScienceHandbook/
blob/master/notebooks/05
.06-Linear-
Regression.ipynb#scrollTo=
TNA3vumSulUH

-15

o from sklearn.linear model import Ridge
model = make_ pipeline(GaussianFeatures(30), Ridge(alpha=0.1))

basis plot(model, title='Ridge Regression')

Ridge Regression

0.2

0.0

coefficient

-0.2

-0.4
0 2 4 6 8 10
basis location


https://colab.research.google.com/drive/16LCQGg5Be6XH5yq9NwoVXcOFoAZIgQN_?usp=sharing
https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.06-Linear-Regression.ipynb
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Extra on Ridge and Lasso
formulation and Geometric
Interpretations




Roadmap: Linear Regression with Regularizations

» v'"When p >n: How is Ordinary Least squares?
v'Ridge regression: squared loss with L2 regularization
v'Lasso regression: squared loss with L1 regularization
v Elastic regression: squared loss with L1 AND L2 regularization
v'How to Choose Regularization Parameter



Review: Normal equation for LR

e Write the cost function in matrix form:

Vi

JB)= X% B-,F [
_1 =\ = x=| = * - R
=>(XB-7) (xB-) : Y=|
BXXB-pRyyapey'y) |- X ]
To minimize J(0), take derivative and set to zero:
T _ yT=
= | X X=Xy Assume
The normal equations .
I that XX is
* » ) : :

47




Comments on the normal equation

What if X has less than full column rank? W(Zn ‘)5 VVW\(n ,P>

>Not Invertible % e P > N
Yk () <P
‘my\\c X X < an&( X”> )Yéi >>

V“\’ < ¥



For any matrix A € R™*", it turns out that the column rank of A is equal to the row
rank of A (though we will not prove this), and so both quantities are referred to collectively
as the rank of A, denoted as rank(A). The following are some basic properties of the rank:

e For A € Rmx“,(ia\nk(A) = min(m,% If rank(A) = min(m,n), then A is said to be
full rank. 2

e For A € R™*™, rank(A) = rank(A7T).
Pagell Of

e For Ac R™*" B¢ Rnxp,Enk(AB) = min(rank(A),rank(B))j@ Handout L2
e For A, B € R™*" rank(A + B) < rank(A) + rank(B).

—_

XKk (@RS ek (R) (L p)

N
o o (1<)
can S (YE}) <
Y s‘w@v\w ot it g

2/10/22 Dr. Yanjun Qi / UVA CS . 49
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Roadmap: Linear Regression with Regularizations

.

v'"When p >n: How is Ordinary Least squares?
» v'Ridge regression: squared loss with L2 regularization
v'Lasso regression: squared loss with L1 regularization
v Elastic regression: squared loss with L1 AND L2 regularization
v'How to Choose Regularization Parameter



Review: Vector norms

A norm of a vector | |x]|| is informally a measure of the
“length” of the vector.

n 1/
”'I’th <2112> ¢ @= |, 2, -

— Common norms: L4, L, (Euclidean)

n n
loll =) lmil ol =, o2
=1 \ —1

infinity

— L
|12|ss = max; |@;

2/10/22 Dr. Yanjun Qi / UVA CS 51



Review:

= Z
Vector Norm (L2, when p=2)x X = “74”2

2222222

e e ® o ] —
2
= X,
® © L ° ° \ 0= 9)
-—)







Ridge Regression / L2 Regularization

A —
(3015'

* If not invertible, a classical solution is to add a small positive element to

diagonal
120

B = (XTX+/II)_1 X"y

{ By convention, the bias/intercept term is typically not regularized. J 4
Here we assume data has been centered ... therefore no bias term



Extra: Positive Definite Matrix

e A symmetric matrix A € S” is positive definite (PD) if for all non-zero vectors
r € R", 7 Az > 0. This is usually denoted A > 0 (or just A > 0), and often times the
set of all positive definite matrices is denoted S” . .

e A symmetric matrix A € S" is positive semidefinite (PSD) if for all vectors z¥ Az >
0. This is written A > 0 (or just A > 0), and the set of all positive semidefinite matrices
is often denoted S} .

One important property of positive definite matrices is that
9 They are always full rank, and hence, invertible.
=) Extra: See Proof at Page 17-18 of Linear-Algebra Handout



st Aeficite (TD)
Yoo aX'ZHX1)a >0

_

— 0X Ra+ M a
= [RalZ + Ald} >0

2222222



* -1 L
B =(X"X+21) X"y
Extra: Positive Definite Matrix

Vo0, adAazd 5 A =0

T T _ T e V5
0 l% Vz<v\ Y\>‘/<() ?&\\ <‘a§y§*\? (X4) P\\Xﬁ”?@

(G X psP

A QZTX g >1>Jﬁ = QTXTXO\ 4 xg‘m
50 it = [|%all + el > 0
| )\70) 0’\’?057

N
(on B0 ke O\Q\l,j | ><7

2222222



Ridge Regression / Squared Loss+L2

B = (XTX+2.I)_1 X"y

e As the solution from
HW?2

~ridge

B =argmin(y-XB) (y—-XB)+AB'B

to minimize, take derivative and set to zero

" By convention, the bias/intercept term is typically not regularized. }
 Here we assume data has been centered ... therefore no bias term

58



Ridge Regression / Squared Loss+L2

B = (XTX+2.I)_1 X"y

* As the solution from Z»PS}’\WD
~ridge H‘
B =argmin(y-XBY (y-XP)+AB"S

to minimize, take derivative and set to zero

" By convention, the bias/intercept term is typically not regularized. }
 Here we assume data has been centered ... therefore no bias term



Ridge Regression / Squared Loss+L2

B = (XTX+AI)_1 X"y

>

e As the solution from v\ch("jif\”) —
~ridge . H‘ ; — N\ .
p  =argmin(y—-Xp) (y-Xp)+ABp

to minimize, take derivative and set to zero
~ridge . ‘ . R
° Equiva|ent|y ﬁ =a1‘gm1n(y—X,B) (.y_Xﬁ)

subject to ) B <s’ cire

J=1-p) Wkt radik

" By convention, the bias/intercept term is typically not regularized. } s
 Here we assume data has been centered ... therefore no bias term



Review

Surface

Contour
map

T
/\ (90/9.)

Ol
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~ridge

B =argmin(y-XB) (y-XB) __
subject to ) Br<s’

j={1.p}

2222222



Objective Function’s Contour lines
from Ridge Regression

B =argmin(y-XB) (y-Xp) ey
subject to ), fif<s’ /4

j={1..p} 2

OLS: Least

S[VEIE

C(‘ V 0/ e \—-::_ solution

l/l/('(‘h Mdgd ;;- S .
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Objective Function’s Contour lines
from Ridge Regression

Ridge /
Regression OLS: Least
solution R Square
solution

2/10/22 Dr. Yanjun Qi / UVA CS 64



2/10/22

Least Square+L2:
Ridge solution

B2

Least
Square
solution

Ridge
Regression

solution

Dr. Yanjun Qi / UVA CS
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Parameter Shrinkage

N> 0

T -1 \,L&A\(T\/:I
IBOLS_(X X) X )'} = @DLS = >(T\/ >\>O
(I‘l-)l) \/\/L@‘» X_/)(:]

B, =(X"X+21) X'y = @: J(A’ Y :

ol$

When X K=1 3 ERj - T{ngozégm”‘k%j
when X' X 3“0””( 0052, SER qdamieq) Qf\‘\lyé‘/)@

Page65 of ESL book @
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLIl_print10.pdf

2/10/22 Dr. Yanjun Qi / UVA CS 67



Extra: two forms of Ridge Regression
_ }(} (g
* Totally equivalent J (8\4
o i@ MWV‘J(@ , ST (9@<5

OVHW\J\S tion G% \(\c&d\é ( neesiy cst«L/om)

)>
CA(Z(&Q AS 01—352(5@
2 s (B,
When %=1, éj %’(&%%)5 - ((H%) |0
_ %(@Lag} -~ | = S (><G>\)
s — T2

http://stats.stackexchange.com/questions/1909
93/how-to-find-regression-coefficients-beta-in-
ridge-regression



Ridge Regression: Squared Loss+L2

* 1> 0 penalizes each 3;

e if A=0we get the least squares estimator;

«if A —> 00, then Bj to zero

2/10/22 Dr. Yanjun Qi / UVA CS
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v'Influence of Regularization Parameter

Least
SOEIE
solution

Ridge
Regression
solution

2/10/22 Dr. Yanjun Qi / UVA CS
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v'Influence of Regularization Parameter

2/10/22 Dr. Yanjun Qi / UVA CS



v'Influence of
Regularization
Parameter
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Roadmap: Linear Regression with Regularizations

.

v'"When p >n: How is Ordinary Least squares?
v'Ridge regression: squared loss with L2 regularization
» v'Lasso regression: squared loss with L1 regularization
v Elastic regression: squared loss with L1 AND L2 regularization
v'How to Choose Regularization Parameter



(2) Lasso (least absolute shrinkage and
selection operator) / Squared Loss+L1

* The lasso is a shrinkage method like ridge, but acts in a nonlinear manner
on the outcomey.

* The lasso is defined by

> (y,—x'BY
—

/§"’“a=argmin(y—X ﬁ)T(y—X B)

SL \(\M/\

" By convention, the bias/intercept term is typically not regularized. }
 Here we assume data has been centered ... therefore no bias term



Lasso (least absolute shrinkage and \WSL 63 z 0
selection operator) Z

p

N
Jlasso — a,rgmln{ Z — By — Z Tii 0 J + )\Z 135 }
i=1

j=1

. Suppose in 2 d|men5|on

* B= (B1 B,)

*| By [+] B, [=const 0 // Least
Solution P 3 Square

* | By |+]- B, |=const

*| -B4 [+]| B, [=const

* | -B4 [+]| -B, |=const

solution
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* In the Figure, the solution has
eliminated the role of x2,
leading to sparsity

Lasso - Least
Solution .
Square

solution
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Lasso Ridge

Estimator e o Regression” .
# Vs // &
52 $ o /////A & //;/ // 62 4 /’ /// A® /// /
! // // r / //
S S
\ ot -
B, B,

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |Bi| + |B2| < t and 57 + 55 < t2, respectively,
while the red ellipses are the contours of the least squares error function.



Lasso (least absolute shrinkage and selection
operator)

* Notice that ridge penalty is replaced

by ,sz
A z

* Due to the nature of the constraint, if tuning parameter is chosen small enough,
then the lasso will set some coefficients exactly to zero.
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Lasso: Implicit Feature Selection

”VH{

g o underStand
CoNVu‘t(f‘?

e\C€«616v\t
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e.g., Lleukemia Diagnosis

2/10/22

+1

p’ > %@//b@)@

A

S

e

Golub et al, Science Vol 286:15 Oct. 1999 {vil,
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Roadmap: Linear Regression with Regularizations

.

v'"When p >n: How is Ordinary Least squares?
v'Ridge regression: squared loss with L2 regularization
v'Lasso regression: squared loss with L1 regularization
» v Elastic regression: squared loss with L1 AND L2 regularization
v'How to Choose Regularization Parameter



Lasso for when p>n

e Prediction accuracy and model interpretation are two important
aspects of regression models.

e |LASSO does shrinkage and variable selection simultaneously for
better prediction and model interpretation.

Disadvantage:
-In p>n case, lasso selects at most n variable before it saturates

-If there is a group of variables among which the pairwise
correlations are very high, then lasso select one from the group
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=> Hybrid of Ridge and Lasso :
Elastic Net regularization

e L1 part of the penalty generates a sparse model

L2 part of the penalty (extra):
e Remove the limitation of the number of selected variables
e Encouraging group effect
* Stabilize the L1 regularization path



Naive elastic net

e For any non negative fixed A; and A, naive elastic net criterion:

LA\ A2 3) =1y —XBI7+ X817 + 11811

p
1812 = Z 32, Bl =3 15;l.

j=1

e The naive elastic net estimator is the minimizer of above equation

B= argmin{L(\1. \2.3)}.
B



Naive elastic net

e For any non negative fixed A; and A, naive elastic net criterion:

LA\ A2.3) =1y —XBI7 + \2IB1* + 11811

7 & 2 P
187 =) :] G5 - 1Bli=>_ 18]l
‘]::

j=1

e The naive elastic net estimator is the minimizer of above

B= argmin{L(\1. \2.3)}.
B

e Equivalently: a=X/(A\1+A2)

3=aregmin |y — X3/ subject to (1 — ) || +a|3|2<t for some t.
el ] 1

2/10/22



Geometry of elastic net

2-dimensional illustration o« = 0.5

BOR =
e E}asuc)ef
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e.g. A Practical Application of Regression Model

Movie Reviews and Revenues: An Experiment in Text Regression*

Mahesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
{maheshj,dipanjan, kgimpel, nasmith}@cs.cmu.edu

Abstract
We consider the problem of predicting a
movie’s opening weekend revenue. Previous Proceedings of
work on this problem has used metadata about HLT ’2010
a movie—e.g., its genre, MPAA rating, and
cast—with very limited work making use of Human

text abour the movie. In this paper, we use
the text of film critics’ reviews from several
sources to predict opening weekend revenue. Tech nologies:
We describe a new dataset pairing movie re-
views with metadata and revenue data, and
show that review text can substitute for meta-
data, and even improve over it, for prediction.

Language
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Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

\/

% Linear regression with the elastic net (Zou
and Hastie, 2005)

yz—(ﬁ0+:n;rﬂ))2+ )
I I A B
| P(B) =5, (31 - )} + aﬂ) |

Use linear regression to directly predict the opening weekend gross

earnings, denoted as y, based on features x extracted from the movie

\/ CS 89

metadata and/or the text of the reviews.



Feature | Weight ($M)

o0 pg +0.085
g= New York Times: adult -0.236
= New York Times: rate_r -0.364
= this_series +13.925
=~ LA Times: the_franchise +5.112
Z Variety: the_sequel +4.224
% Boston Globe: will smith +2.560
S Variety: brittany +1.128
= *_producer_brian +0.486
Variety: testosterone +1.945

g Ent. Weekly: comedy_for +1.143
&0 Variety: a_horror +0.595
documentary -0.037

independent -0.127

. | Boston Globe: best_parts_of +1.462

& | Boston Globe: smart_enough +1.449

g, LA Times: a_good_thing +1.117
Q shame_$ -0.098

bogeyman -0.689

2 Variety: torso +9.054
= vehicle_in +5.827
superhero_$ +2.020

Table 3: Highly weighted features categorized manu-

~ and $ denote sentence boundaries.

An example of how real
applications use the elastic net
and its weights!

Here, the features are from the text-only
model annotated in Table 2.

The feature weights can be directly
interpreted as U.S. dollars contributed to
the predicted value by each occurrence
of the feature.

Sentiment-related text features are not as
prominent as might be expected, and
their overall proportion in the set of
features with non-zero weights is quite
small (estimated in preliminary trials at
less than 15%). Phrases that refer to
metadata are the more highly weighted
and frequent ones.
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Total Per Screen
Features Site | MAE MAE
($M) T ($K) T
Predict mean 11.672 - 6.862 -
Predict median 10.521 - 6.642 -
fav]
‘g Best 5983 | 0.722 | 6.540 | 0.272
— | 8013 [ 0743 | 6.509 | 0.222
I + | 7722 | 0781 | 6.071 | 0.466
see Tab. 3 B | 7.627 | 0.793 | 6.060 | 0.411
. — | 8.060 | 0.743 | 6.542 | 0.233
$ | 1ul + | 7.420 | 0.761 | 6.240 | 0.398
B | 7447 | 0778 | 6.299 | 0.363
— | 8.005 | 0.744 | 6.505 | 0.223
[ U III + | 7721 | 0.785 | 6.013 | 0.473
B | 7.595 | 0.796 | 76.010 | 0.421
— | 5921 | 0.819 | 6.509 | 0.222
I + | 5757 | 0.810 | 6.063 | 0.470
. B | 5750 | 0.819 | 6.052 | 0.414
13} — | 5952 | 0.818 | 6.542 | 0.233
= (LuH + | 5752 | 0.800 | 6.230 | 0.400
‘o"é B | 5740 | 0.819 | 6.276 | 0.358
— | 5921 | 0.819 | 6.505 | 0.223
[ U III + | 5,738 | 0.812 | 6.003 | 0.477
B | 5750 | 0.819 | 75.998 | 0.423

Table 2: Test-set performance for various models, mea-

correlation (r), for two prediction tasks.

L

II.

I1I.

n-grams. We considered unigrams, bigrams, and
trigrams. A 25-word stoplist was used; bigrams
and trigrams were only filtered if all words were
stopwords.

Part-of-speech n-grams. As with words, we
added unigrams, bigrams, and trigrams. Tags
were obtained from the Stanford part-of-speech
tagger (Toutanova and Manning, 2000).
Dependency relations. We used the Stanford
parser (Klein and Manning, 2003) to parse the
critic reviews and extract syntactic dependen-
cies. The dependency relation features consist
of just the relation part of a dependency triple
(relation, head word, modifier word).

A combination of the meta and text
features achieves the best
performance both in terms of MAE
and pearsonr.

We consider three ways to combine the collec-

tion of reviews for a given movie. The first (“—")
simply concatenates all of a movie’s reviews into
a single document before extracting features. The
second (“+”) conjoins each feature with the source
site (e.g., New York Times) from whose review it was
extracted. A third version (denoted “B”’) combines
both the site-agnostic and site-specific features.

sured using mean_absolute error (MAE) and Pearson’s
«
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More Ways for Measuring Regression Predictions:

Correlation Coefficient

* Pearson correlation coefficient

3 (x -7, — )

i=1

r(x,y)= = — —
\/Z‘(Xf —x)’ XZ(y,. —y)

where ;:iixi and ;:#iyi.
i=1 i=1
‘r(x, y)‘ <1

* For regression: r(ypredicted,yknown)

Measuring the linear correlation
between two sequences, x and vy,

giving a value between +1 and -1
inclusive, where 1 is total positive
correlation, O is no correlation, and
-1 is total negative correlation.



Advantage of Elastic net (Extra)
f>> n

e Native Elastic set can be converted to lasso )
with augmented data form
& > X nXp (W‘”‘>

e |n the augmented formulation, = ><
e sample size n+p and X* has rank p Qﬁp);«f
e =» can potentially select all the predictors

e Naive elastic net can perform automatic
variable selection like [asso

2/10/22 Dr. Yanjun Qi / UVA CS



Summary:
Regularized multivariate linear regression

.Model: Y=pF+p0,x++0,x,

A\ 2
e | R estimation: arg man(Y_ Y)

2

n [ A p

« LASSO estimation: arg minz Y-Y | Z,Z ,Bj
i=1 \ y, j=1
n ( % p

* Ridge regression estimation: arg minz Y-Y | + )’Zﬁ E
. i J
=1\ ) j=1

94/54

Error on data + Regularization
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Today: Regularized multivariate linear regression

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

— 1

a | Sum of Squared Error (Least

Squared) + Regularization

Revised Normal Equation /
revised GD / SGD

Regression weights and bias =>

2/10/22

é;Regularized: Robust / Interpretable

mmJ(ﬁ)=i(Y—f/j Y AR

KRt



More: A family of shrinkage estimators

_ N
B=argmin, >" (y,~xB)’
subject to 2‘ ,Bj

 for g >=0, contours of constant value of 2 : f’ﬁ
of two inputs. J

q
<S

’sqnown for the case

Covn Ve X

q —
| | | | |

_////_ § E = _'% ’ .

CI

FIGURE 3.12. Contours of constant value of Zj 1B for given values of q.



: y /
ey K[:T IPIP })67 (DYvouf L]
. (N‘ )XP Mloym
norms visualized

all p-norms penalize larger
weights

g < 2 tends to create sparse
(i.e. lots of O weights)

g > 2 tends to push for
- similar weights




We aim to make the |learned model

/
1. Generalize Well 1)—% T
veduie mode Varinhce

e 2. Computationally Scalable and Efficient

nxp’
* 3. Robust / Trustworthy / Intgrpretable

* Especially for some domains, this is about trust!
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Roadmap: Linear Regression with Regularizations

.

v'"When p >n: How is Ordinary Least squares?

v'Ridge regression: squared loss with L2 regularization

v'Lasso regression: squared loss with L1 regularization

v Elastic regression: squared loss with L1 AND L2 regularization
» v'"How to Choose Regularization Parameter



Today: Regularized multivariate linear regression

Data: X

1

Task: y

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

— 1

a | Sum of Squared Error (Least

Squared) + Regularization

Revised Normal Equation /
revised GD / SGD

Regression weights and bias =>

2/10/22

é;Regularized: Robust / Interpretable




7(1 =Xz

' | X +f2 2
Common regularizers
@ +B,=0
L2: Squared weights penalizes large values more Z
L1: Sum of weights will penalize small values more 2,32
J

Generally, we don’t want huge weights

If weights are large, a small change in a feature can resultin a
large change in the prediction

Might also prefer weights of O for features that aren’t useful



Model Selection & Generalization

* Generalisation: learn function / hypothesis from past data in order to
I” or “control” new data examples

7« Vs

“explain”, “predict”, “mode

e Underfitting: when model is too simple, both
training and test errors are large

e Qverfitting: when model is too complex and test
errors are large although training errors are small.
* After learning knowledge, model tends to learn “noise”



Issue: Overfitting and underfitting

QP D D

2/10/1

y=0,+0x y:¢90+6?1x+¢92x2

Generalisation: learn function /
hypothesis from past data in order
to “explain”, “predict”, “model” or
“control” new data examples

Va4

yZ,OJ

K-fold Cross
Validation !!!1

103



Overfitting: Handled by Regularization

A regularizer is an additional criteria to the loss function to make sure that
we don’t overfit

It’s called a regularizer since it tries to keep the parameters more
normal/regular

It is a bias on the model forces the learning to prefer certain types of
weights over others, e.g.,

A~ ridge

B = argmin Z:’:l(yi -x. BY+AB'p



WHY and How to Select A?

* 1. Generalization ability
=>» k-folds CV to decide

2. Control the bias and Variance of the model (details in future lectures)

L2: Squared weights penalizes large values more Z‘ﬁ]
j

L1: Sum of weights will penalize small values more 5
2.5
j

2/10/22 Dr. Yanjun Qi / UVA CS 105



lcavol (D
/

Regularization
path of

a Ridge
Regression

0.6

Coefficients
0.2

Ridge , |
Regressi/‘on

52 't ’ -

B,




A<

A — o

An example with 8 features
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Regularization -

nath of a Lasso

Regression =
§ o

when varying A,
how (3, varies.

Lasso
Estimator

-0.2
|
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.
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An example with 8 features




N\

Choose A that
~ generalizes well !

An example N

of : W i
é o8 - | %Ibph
3

Ridge Regression

when varying ki
varies. | , — X
A—o A
A\ increases

An example with 8 features




lcavol
Choose A that d
generalizes well !
Svi
Iweight
£ pgods
§ 8§ - Ibph
_ &
when varying A,
how (3, varies. 3 - LT T
age
3
lcp

| ) | I 1 | | |
0.2 0.4 06 0.8

0.0 10
ﬂ, —> 00 Shrinkage Factor s A’ — O

A | ith 8 feat FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
n €xampie wi eatures Coefficients are plotted versus s =t/ )7 |8;|. A vertical line is draun at s = 0.36,

the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
2/10/22 and so are computed only at the points displayed; see Section 3.4.4 for details.



Extra on Optimization of
Regularized Regression Models



Extra More Roadmap

* Optimization of regularized regressions:
e See L6-extra slide

e Relation between A and s
e See Lb-extra slide

* Why Elastic Net has a few nice properties
e See L6-extra slide

2/10/22 Dr. Yanjun Qi / UVA CS
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his slides
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Extra Recap

[ More about LR Model with Regularizations
mmm) [ Ridge Regression

 Lasso Regression

U Extra: how to perform training
U Elastic net

O Extra: how to perform training
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Why Invertible In Ridge Regression?

N -1 (NOT AN EASY PROOF from SVD
/3 = (XTX + AI) XTy angle), many concepts, SVD,
PCA, Eigenvalues, relation to
singular
* NOT AN EASY PROOF If through SVD

e https://www.quora.com/When-is-the-matrix-frac-1-n-X-T-X-+-lambda-| -d-times-
d-invertible

e The determinant of A is equal to the product of its eigenvalues,
|A| = H Ai.
i=1

e The rank of A is equal to the number of non-zero eigenvalues of A.
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https://www.quora.com/When-is-the-matrix-frac-1-n-X-T-X-+-lambda-I_-d-times-d-invertible

Why Invertible In Ridge Regression?

| —
symmetric, positive semi-definite square Gram matrix K = AT A — which can be naturally

formed even when A is not square. Perhaps the eigenvalues of K might play a comparably
important role for general matrices. Since they are not easily related to the eigenvalues of
A — which, in the non-square case, don’t even exist — we shall endow them with a new
name.

Definition 6.27. The singular values o, ..., 0, of an mXn matrix A are the positive
square roots, o; = y/A; > 0, of the nonzero eigenvalues of the associated Gram matrix
K = AT A. The corresponding eigenvectors of K are known as the singular vectors of A.

Since K is necessarily positive semi-definite, its eigenvalues are always non-negative,
A; > 0, which justifies the positivity of the singular values of A — independently of whether
A itself has positive, negative, or even complex eigenvalues — or is rectangular and has
no eigenvalues at all. The standard convention is to label the singular values in decreasing
order, so that o, > 0, > --- > o, > 0. Thus, o, will always denote the largest or
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Extra: Intercept Term is usually
not shrinked

* |f the data is not centered, there exists bias term
das

* http://stats.stackexchange.com/questions/86991/reason-for-not-shrinking-the-bi
intercept-term-in-regression

* We normally assume we centered x and y. If this is true, no need to have blg
term, e.g., for lasso, Fov (/(&% (n Inf ng
) vt Set the by
.« | N p | ) ¢ mu/m/% ety
31355° — argmin {3 Z(y,- — Bo — Z rii3;)" + )\Z B } as O in e j~
B “ =1 j=1 \W{f//\

. . v A
B = argminlly — Xg|® + ||| 2
B maione s £\ \\ 6”%


http://stats.stackexchange.com/questions/86991/reason-for-not-shrinking-the-bias-intercept-term-in-regression

Extra Recap

[ More about LR Model with Regularizations
(J Ridge Regression

‘ O Lasso Regression

U Extra: how to perform training
U Elastic net
O Extra: how to perform training
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A L1 regularization B L2 regularization

AT \+I2

Ho

due to the nature of L_1 norm, the viable solutions are
limited to corners, which are on a few axis only

- in the above case x1. Value of x2 = 0. This means that the
solution has eliminated the role of x2, leading to sparsity
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L-regularized loss function F° ( :1:) =F ( x) + ,\|| T ||g is smooth. This
means that the optimum is the stationary point (0-derivative point). The
stationary point of F can get very small when you increase ), but still won't

be 0 unless f’(O) =}

L -regularized loss function F’ ( :1:) = ( x) + /\||:L' || 1 is non-smooth. It's
not differentiable at 0. Optimization theory says that the optimum of a
function is either the point with o-derivative or one of the irregularities
(corners, kinks, etc.). So, it's possible that the optimal point of Fis 0 even if
0 isn't the stationary point of f. In fact, it would be o0 if ), is large enough
(stronger regularization effect). Below is a graphical illustration.

In multi-dimensional settings: if a feature is not important, the loss
contributed by it is small and hence the (non-differentiable) regularization

effect would turn it off.

2/10/22 Dr. Yanjun Qi / UVA CS 120



L -regularized loss function F’ (:L‘) = ( ;1:) + ,\|| T || 1 is non-smooth. It's
not differentiable at 0. Optimization theory says that the optimum of a
function is either the point with o-derivative or one of the irregularities
(corners, kinks, etc.). So, it's possible that the optimal point of Fis 0 even if
0 isn't the stationary point of f. In fact, it would be o if ), is large enough
(stronger regularization effect). Below is a graphical illustration.

http://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization

Two L -regularized {8nctions with different 2.

14 L) A} L) L} L} LJ L)
(x-1)% + 0.5/x|
12 x-12+2x| H

10 i In mathematics, particularly in
calculus, a stationary point or
= 8 3 critical point of a
= differentiable function of one
J\ variable is a point of the
= 6 d domain of the function where
== the derivative is zero
/ (equivalently, the slope of the
4 minimum ST . graph at that point is zero).
2k

-2 15 -1 05 0 05 1 15 2 121




How to train Parameter for Lasso

-

B = argmin(y - XB) (y- X )
subject to E‘ﬁj‘ss

e /1-norm is non differentiable!
— cannot compute the gradient of the absolute value

= Directional derivatives (or subgradient)

[ Here assume x and y have been centered (normally), therefore no bias term needed in above !
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We just need 0
in the region
[-Cj-A, -Cj+A]
(subgradient

calculus)
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Coordinate

descent based =
3- :FOf'

Learning of
Lasso

/Coordinate descenm

(WIKI)=>» one does
line search along one
coordinate direction
at the current point in

each iteration.

One uses different
coordinate directions
cyclically throughout

the procedure.

< /

l. j“;’}’l'ajl’ie /B
?e,pe,.»} oW Comieng eco
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o= 4 Z r)('.j
J 1=
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else
: o

soft-thresholding
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Least Angle Regression (LARS)

2/10

/22

(State-of-the-art LASSO solver)

X2

s
4
P

//
/

http://statweb.stanford.edu/~tibs/ftp/lars.pdf
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LARS: Least Angle Regression

 Starts like classic Forward Selection

* Find predictor x;; most correlated with the current residual

* Make a step (epsilon) large enough until another predictor x;,
has as much correlation with the current residual

* LARS — now step in the direction equiangular between two

predictors until x;3 earns its way into the “correlated set”

Correlation: C(,U) — X'(y - ,U)



Extra Recap

[ More about LR Model with Regularizations
(J Ridge Regression

 Lasso Regression
U Extra: how to perform training
U Elastic net

‘ O Extra: how to perform training
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Connecting LASSO and Naive Elastic net

e Lemma: Given (Ay,A,), define an artificial data set (y*,X")

* . —-1/2 X %k b
X(n—i—p)xp ] (l i3 )\2) (\/)\2[ ) )(IH-P) T <O )

Let y=\1//(1+)\2) and B8* = /(1 + \»)B. Then the naive elastic net criterion can be written

ds
L(v.B)=L(.B%=|y* - X*8*|" +7|8*|,.
o |Let,
naive [_:3* =argmin L{(y, 8%)};
B

e Then

- | Ak

= 3
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Connecting LASSO and Naive Elastic net

e Lemma: Given (Ay,A,), define an artificial data set (y*,X")

‘/\V(P r v‘lvl

(1 + Xp) 12 )’zz+p) = (E))
() v () x|

Let y=\1//(14+)\) and 8% = /(1 + \»)3. Then the naive elastic net criterion can be written
as

L(w-5)=L(1«ﬁ*):@*—x*ﬂ*|2+q, |5*\J = E
o Let,
naive B*_awmln L{(~,B")};
af
e Then ><ﬁ

Q/MC (/4 ¢(1+Aa)./0a€€o nxp “
G (N W >




2222222

—

LOSS

)
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Advantage of Elastic net P> h

e Native Elastic set can be converted to lasso W
with augmented data
= Wh o0
= X nyp ( W<‘(’>
e In the augmented formulation, = >< X
e sample size n+p and X" has rank p Q/WP)"E
e =» can potentially select all the predictors

e Naive elastic net can perform automatic
variable selection like lasso



http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Z0u%20&%20Hastie.pdf

Grouping Effect

\ |

Qualitatively speaking, a regression method exhibits the grouping effect if the regression
coefficients of a group of highly correlated variables tend to be equal (up to a change of sign if
negatively correlated). In particular, in the extreme situation where some variables are exactly
identical, the regression method should assign identical coefficients to the identical variables.

If there is a group of variables among which the pairwise correlations are very high, then the
lasso tends to select only one variable from the group and does not care which one is selected.

uations. We illustrate our points by considering the gene selection problem in microarray data
analysis. A typical microarray data set has many thousands of predictors (genes) and often
fewer than 100 samples. For those genes sharing the same biological ‘pathway’, the correlations
between them can be high (Segal and Conklin, 2003). We think of those genes as forming a
group. The ideal gene selection method should be able to do two things: eliminate the trivial
genes and automatically include whole groups into the model once one gene among them is
selected (‘grouped selection’). For this kind of p > n and grouped variables situation, the lasso
is not the ideal method, because it can only select at most n variables out of p candidates (Efron
et al., 2004), and it lacks the ability to reveal the grouping information. As for prediction per-


http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf

http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Z0u%20&%20Hastie.pdf

Grouping Effect of Naive Elastic net
B_cuomjmlw—Xﬂl“ + A J(B) “\

e Consider the following penalized regression model: Where J(.) positive
for 3 #0.

Lemma 2. Assume that x; =x;,i,je{l,.... pt.

(a) If J(-) 1s strictly convex, then 3 _,5’ VYA>0.
(b) If J(B)=183]|;. then 3, 3} >0 dnd ﬁ 15 another minimizer of equation (7), where

By if ki and k# j.
By = (Bi+57) - (s) if k=i,
BGi+5,)-(1—s) if k= j,

for any s € [0, 1].

Lemma 2 shows a clear distinction between strictly convex penalty functions and the lasso
penalty. Strict convexity guarantees the grouping effect in the extreme situation with identical
predictors. In contrast the lasso does not even have a unique solution. The elastic net penalty
with A > 0 is strictly convex, thus enjoying the property in assertion (1).
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Grouping Effect of Naive Elastic net
,[3—dlUI]]31n ly — X[Bl“ A J(B)

e Consider the following penalized regression model: Where J(.) positive
for 3 #0.

Lemma 2. Assume that x; =x;,i,je{l,.... pt.

(a) If J(-) 1s strictly convex, then 3 _,5’ VYA>0.
(b) If J(B)=183]|;. then 3, 3} >0 dnd ﬁ 15 another minimizer of equation (7), where

By if ki and k# j.
By = (Bi+57) - (s) if k=i,
BGi+5,)-(1—s) if k= j,

for any s €0, 1]. . : :
. [9.1] Lasso does not provide a unique solution

Lemma 2 shows a clear distinction between strictly convex penalty functions and the lasso
penalty. Strict convexity guarantees the grouping effect in the extreme situati 1th identical
predictors. In contrast the lasso does not even have a unique solution. Thelelastic net penalty )

sl s )

with A > 0 is strictly convex, thus enjoying the property in assertion ().
/\/_/'v
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Grouping Effect of Naive Elastic net

r Theorem 1. Given data (y,X) and parameters (A1. ;). the response y is centred and the “‘

predictors X are standardized. Let 8(A1, A2) be the naive elastic net estimate. Suppose that
3(/\1 \2) B; j(A1,A2) > 0. Define

- | B A
DAI.A_,(LJ)=Wlﬁf(kl-/\z)—-‘3,-(/\1~/\2)|1
Yii
then

|
Dy 3P \—7\/{3(1 -p}.

where p=x/x;, the sample correlation.

e Dis the difference between the coefficient paths of predictorsi and j.

* If x;and x; are high correlated p=1, this theorem provides a quantitative
description for the grouping effect of Naive Elastic Net.
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Grouping Effect of Naive Elastic net

Theorem 1. Given data (y,X) and parameters (A1.\;), the response y is centred and the
predictors X are standardized. Let (A1, \2) be elastic net estimate. Suppose that
3(/\1 \2) B; j(A1,A2) > 0. Define

o 1 P
Dy, 2, s )= —1B;(A1,A2) = B (A1, A):

i MF
then \__\J
: _ I Y
DAI.Ag(i~.i)<\—J{2(1—/))}. ,
e ﬁ/ﬂ\zu’m
)y g

where p=x/x;, the sample correlation.

Xy Ky

—_—

TS —

e Dis the difference between the coefficient paths of predictorsi and j.

* Ifx;and x; are high correlated p=1, this theorem provides a quantitative
description for the grouping effect of Naive Elastic Net.
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Elastic Net

In the regression prediction setting, an accurate penalization method achieves good pre-
diction performance through the bias-variance trade-off. The naive elastic net estimator is a
two-stage procedure: for each fixed A, we first find the ridge regression coefficients, and then
we do the lasso-type shrinkage along the lasso coefficient solution paths. It appears to incur
a double amount of shrinkage. Double shrinkage does not help to reduce the variances much
and introduces unnecessary extra bias, compared with pure lasso or ridge shrinkage. In the next
section we improve the prediction performance of the naive elastic net by correcting this double
shrinkage.

e Deficiency of the Naive Elastic Net: Empirical evidence shows the Naive
Elastic Net does not perform satisfactorily. The reason is that there are
two shrinkage procedures (Ridge and LASSO) in it. Double shrinkage
introduces unnecessary bias.

e Re-scaling of Naive Elastic Net gives better performance, yielding the
Elastic Net solution:

e Reason: Undo shrinkage. %

B(ENet) = (1 + A2) - B(Naive ENet)
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Elastic Net

3.2. The elastic net estimate
We follow the notation in Section 2.2. Given data (y, X), penalty parameter (A, A») and aug-
mented data (y*, X*), the naive elastic net solves a lasso-type problem

A% . = * % 2 Al =
=arg min —-X - . 10
B g o ly B J(1+A2)Iﬁ § (10)

The elastic net (corrected) estimates 3 are|defined

—————

ﬁ(elastic net) = ,@*. (11)
Recall that B(naive elastic net) = {1//(1+ Az)}ﬁ*; thus
B(elastic net) ) (naive elastic net). : (12)

Hence the elastic net coefficient is a rescaled naive elastic net coefficient.
Such a scaling transformation preserves the variable selection property of the naive elastic
net and is the simplest way to undo shrinkage. Hence all the good properties of the naive elastic
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Computation of elastic net

e First solve the Naive Elastic Net problem, then rescale it.

e For fixed A,, the Naive Elastic Net problem is equivalent to a LASSO
problem, with a huge data matrix if p >>n

e LASSO already has an efficient solver called LARS (Least Angle
Regression).

e =>» LARS-EN algorithm.
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Elastic Net interpreted as a stabilized Lasso

Theorem 2. Given data (y, X) and (A, A»), then the elastic net estimates B are given by

A : XTX + M1
ﬂ=argmmﬂT( dile )ﬂ—zyTxmAl Bl1. (14)
8 1+ A
It is easy to see that
ﬁﬂasso) = arg min ,BT(XTX),B—ZyTXﬂ+)\1 18- (15)
I

Hence theorem 2 interprets the elastic net as a stabilized version of the lasso. Note that £ =XTX
is a sample version of the correlation matrix ¥ and

XTX 4+ )1

=1 =9 +41
EE (1—y2u+y

with v = A2/(1 + \;) shrinks ¥ towards the identity matrix. Together equations (14) and (15)
say that rescaling after the elastic net penalization is mathematically equivalent to replacing 3
with its shrunken version in the lasso. In linear discriminant analysis, the prediction accuracy
can often be improved by replacing 3. by a shrunken estimate (Friedman, 1989; Hastie et al,
2001). Likewise we improve the lasso by regularizing ¥ in equation (15).
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