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Today: Regularized multivariate linear regression

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) + Regularization 

Revised Normal Equation / 
revised GD / SGD 

Regression weights and bias => 
Regularized: Robust / Interpretable 
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular



We aim to make our trained model 

•1. Generalize Well 

• 2. Computational Scalable and Efficient

• 3. Trustworthy: Robust / Interpretable
•Especially for some domains, this is about trust! 
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Many real-world datasets have p  
larger than n 
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Example: Gene Expression based Cancer Diagnosis
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Golub et al, Science Vol 286:15 Oct. 1999

-1

+1

n

pʼ

{yi}, 



• https://www.kaggle.com/crawford/gene-expression/notebooks
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Example: Gene Expression based Cancer Diagnosis

https://www.kaggle.com/crawford/gene-expression/notebooks


SUPERVISED Prediction Tasks

• Target Y:  continuous or 
discrete target variable 
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f(x?)

Training dataset consists 

of input-output pairs
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Large p, small n: How?  

X

p

n

pʼ
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Another Example: Application of Text Regression
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Proceedings of 
HLT ’2010 
Human 
Language 
Technologies:  

http://www.cs.cmu.edu/~nasmith/papers/joshi+das+gimpel+smith.naacl10.pdf

http://www.cs.cmu.edu/~nasmith/papers/joshi+das+gimpel+smith.naacl10.pdf
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Predicting Revenue using Text
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e.g., Movie Reviews and Revenues: An Experiment in Text 
Regression,  Proceedings of HLT '10 (1.7k n / >3k features) 

e.g. counts 
of a ngram in 

the text 
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Large p, small n: How?  

X

p

n

pʼ



Regularized multivariate linear regression
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Regularized multivariate linear regression
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The feature weights can be 
directly interpreted as U.S. 
dollars contributed to the 
predicted value yˆ by each 

occurrence of the feature. 

to movies

A REAL APPLICATION: Movie 
Reviews and meta to Revenues



2/10/22 Dr. Yanjun Qi / UVA CS 18

Movie Reviews and Revenues: An Experiment in Text Regression, 
Proceedings of HLT '10 Human Language Technologies:  

Use linear regression to directly predict the opening weekend gross 
earnings, denoted as y, based on features x extracted from the movie 

metadata and/or the text of the reviews.



Thank you

19

Thank You
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Today: Regularized multivariate linear regression

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) + Regularization 

Revised Normal Equation / 
revised GD / SGD 

Regression weights and bias => 
Regularized: Robust / Interpretable 
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular



Review: Normal equation for LR
• Write the cost function in matrix form:

To minimize J(θ), take derivative and set to zero:
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Assume 
that XTX is 
invertible
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What if X has less than full column rank?  => Not Invertible 
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What if X has less than full column rank?  => Not Invertible 



Ridge Regression /  L2 Regularized Regression 

• If not invertible, a classical solution is to add a small positive element to 
diagonal
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β * = XTX +λI( )−1 XT !y

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

		 β
* = XTX( )−1 XT !y



Ridge Regression /  L2 Regularized Regression 

• Is the solution of
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β * = XTX +λI( )−1 XT !y

		 β
! ridge = argmin( y − Xβ)T( y − Xβ)+λβTβ

to minimize, take derivative and set to zero

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 
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Parameter Shrinkage by Ridge 
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		 βOLS = XTX( )−1 XT !y

		 βRg = XTX +λI( )−1 XT !y



Ridge Regression: 
Squared Loss+L2 penalty on weights 

• > 0 penalizes each

• if     = 0 we get the least squares estimator; 

• if               , then           to zero
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Parameter Shrinkage by Ridge 
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		 βOLS = XTX( )−1 XT !y

Page65 of ESL book @ 
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

When

When

		 βRg = XTX +λI( )−1 XT !y



Regularized multivariate linear regression
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• Ridge regression estimation:

• LR estimation:

• LASSO estimation:
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Lasso (least absolute shrinkage and selection operator)

• Let us change that ridge penalty           

• Be replaced by

• Due to the nature of the constraint, if tuning parameter is chosen large enough,  
then the lasso will set some coefficients exactly to zero. 
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Lasso: Implicit Feature Selection 
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X

p

n

pʼ

• LASSO does shrinkage and variable selection simultaneously 
for better prediction and model interpretation.



Common Regularizers

L2: Squared weights penalizes large values more

L1: Sum of weights will penalize small values more
	

β j
j

∑

β 2
j

j

∑

Generally, we don’t want huge weights

If weights are large, a small change in a feature can result in a 
large change in the prediction

Might also prefer weights of 0 for features that aren’t so useful



Model Selection & Generalization 

• Generalisation: learn function / hypothesis from past data in order to 
“explain”, “predict”, “model” or “control” new data examples 

•Underfitting: when model is too simple, both 
training and test errors are large

•Overfitting: when model is too complex and test 
errors are large although training errors are small.
• After learning knowledge, model tends to learn “noise”
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Issue: Overfitting and underfitting
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K-fold Cross 
Validation !!!! 

Generalisation: learn function / 
hypothesis from past data in order 
to “explain”, “predict”, “model” or 
“control” new data examples 

Under fit Looks good Over fit



Overfitting: Can be Handled by Regularization
A regularizer is an additional criteria 
to the loss function to make sure 
that we don’t overfit.  It’s called a 
regularizer since it tries to keep the 
parameters more normal/regular



WHY and How to Select λ? 

• 1. Generalization ability 
è k-folds CV to decide 

• 2. Control the bias and Variance of the model (details in future lectures) 
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L2: Squared weights penalizes large values more

L1: Sum of weights will penalize small values more
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Regularization 
path of 
a Ridge 
Regression

¥®l λ = 0

An example with 8 features  

when varying λ, 
how βj varies. 
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Regularization 
path of 
a Ridge 
Regression

¥®l λ = 0

Weight Decay

An example with 8 features  
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Regularization 
path of 
a Ridge 
Regression

¥®l λ = 0

An example with 8 features  

K-fold Cross 
Validation to

Choose λ that 
generalizes well !

when varying λ, 
how βj varies. 
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Regularization 
path of a Lasso 
Regression 

¥®l λ = 0

when varying λ, 
how βj varies. 

An example with 8 features  



Overfitting: Can be Handled by Regularization
A regularizer is an additional criteria to the loss function to 
make sure that we don’t overfit.  It’s called a regularizer
since it tries to keep the parameters more normal/regular

I will code-run: 
https://colab.research.goog
le.com/drive/16LCQGg5Be6
XH5yq9NwoVXcOFoAZIgQN
_?usp=sharing

Adapted from: 
https://colab.research.goog
le.com/github/jakevdp/Pyt
honDataScienceHandbook/
blob/master/notebooks/05
.06-Linear-
Regression.ipynb#scrollTo=
TNA3vumSulUH

https://colab.research.google.com/drive/16LCQGg5Be6XH5yq9NwoVXcOFoAZIgQN_?usp=sharing
https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.06-Linear-Regression.ipynb


Thank you
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Thank You
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Extra on Ridge and Lasso 
formulation and Geometric 
Interpretations 
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Roadmap: Linear Regression with Regularizations

üWhen p >n: How is Ordinary Least squares? 
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Choose Regularization Parameter 
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Review: Normal equation for LR
• Write the cost function in matrix form:

To minimize J(θ), take derivative and set to zero:
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that XTX is 
invertible



Comments on the normal equation

What if X has less than full column rank? 
àNot Invertible 
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Page11 0f 
Handout L2



Roadmap: Linear Regression with Regularizations

üWhen p >n: How is Ordinary Least squares? 
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Choose Regularization Parameter 
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A norm of a vector ||x|| is informally a measure of the 
“length” of the vector.

– Common norms: L1, L2 (Euclidean)

– Linfinity

Review: Vector norms
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Review: Vector Norm (L2, when p=2)

2/10/22 Dr. Yanjun Qi / UVA CS 52



Lasso Quadratic

Norms



Ridge Regression /  L2 Regularization 

• If not invertible, a classical solution is to add a small positive element to 
diagonal
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β * = XTX +λI( )−1 XT !y

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

		 β
* = XTX( )−1 XT !y
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One important property of positive definite matrices is that 

è They are always full rank, and hence, invertible. 

è Extra: See Proof at Page 17-18 of Linear-Algebra Handout

Extra: Positive Definite Matrix
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		 β
* = XTX +λI( )−1 XT !y

Extra: Positive Definite Matrix



Ridge Regression /  Squared Loss+L2 

• As the solution from

2/10/22 Dr. Yanjun Qi / UVA CS 58

β * = XTX +λI( )−1 XT !y

		 β
! ridge = argmin( y − Xβ)T( y − Xβ)+λβTβ

HW2

to minimize, take derivative and set to zero

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 



Ridge Regression /  Squared Loss+L2 
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β * = XTX +λI( )−1 XT !y

β!
ridge

= argmin( y − Xβ )T( y − Xβ )+λβTβ
to minimize, take derivative and set to zero

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

• As the solution from



Ridge Regression /  Squared Loss+L2 
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β * = XTX +λI( )−1 XT !y

β!
ridge

= argmin( y − Xβ )T( y − Xβ )+λβTβ

HW2

to minimize, take derivative and set to zero

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

• As the solution from

• Equivalently β!
ridge

= argmin( y − Xβ )T( y − Xβ )
subject		to		

j={1..p}
∑ β j

2 ≤ s2
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Surface 
map

Contour 
map

Review 
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β!
ridge

= argmin( y − Xβ )T( y − Xβ )
subject		to		

j={1..p}
∑ β j

2 ≤ s2



Objective Function’s Contour lines  
from Ridge Regression 
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OLS: Least 
Square 

solution

s

β!
ridge

= argmin( y − Xβ )T( y − Xβ )
subject		to		

j={1..p}
∑ β j

2 ≤ s2



Objective Function’s Contour lines  
from Ridge Regression 
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OLS: Least 
Square 

solution

Ridge 
Regression 

solution

s
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�1

�2

Least Square+L2: 
Ridge solution

s

Least 
Square 

solution

Ridge 
Regression 

solution
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Parameter Shrinkage
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		 βOLS = XTX( )−1 XT !y

Page65 of ESL book @ 
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

When

When

		 βRg = XTX +λI( )−1 XT !y



Extra: two forms of Ridge Regression

• Totally equivalent 
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http://stats.stackexchange.com/questions/1909
93/how-to-find-regression-coefficients-beta-in-
ridge-regression



Ridge Regression: Squared Loss+L2 

• > 0 penalizes each

• if     = 0 we get the least squares estimator; 

• if               , then           to zero
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�1

�2

üInfluence of Regularization Parameter 

Least 
Square 

solution

Ridge 
Regression 

solution
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�1

�2

�1

�2

λ→∞

üInfluence of Regularization Parameter 
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�1

�2 	λ→0üInfluence of 
Regularization 
Parameter 



Roadmap: Linear Regression with Regularizations

üWhen p >n: How is Ordinary Least squares? 
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Choose Regularization Parameter 
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(2) Lasso (least absolute shrinkage and 
selection operator) / Squared Loss+L1

• The lasso is a shrinkage method like ridge, but acts in a nonlinear manner 
on the outcome y.
• The lasso is defined by
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β̂ lasso = argmin( y − X β )T( y − X β )
subject		to		 β j ≤ s∑

By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 

( yi − xiTβ )2i=1
n∑



Lasso (least absolute shrinkage and 
selection operator)

• Suppose in 2 dimension
• β= (β1 , β2)
• | β1 |+| β2 |=const
• | β1 |+|- β2 |=const
• | -β1 |+| β2 |=const
• | -β1 |+| -β2 |=const
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s

Least 
Square 

solution

Lasso 
Solution



• In the Figure, the solution has 
eliminated the role of x2, 
leading to sparsity
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s

Least 
Square 

solution

Lasso 
Solution
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Ridge 
Regression

Lasso 
Estimator 

ss



Lasso (least absolute shrinkage and selection 
operator)

• Notice that ridge penalty            is replaced 
by

• Due to the nature of the constraint, if tuning parameter is chosen small enough,  
then the lasso will set some coefficients exactly to zero. 
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Lasso: Implicit Feature Selection 
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e.g., Leukemia Diagnosis
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Golub et al, Science Vol 286:15 Oct. 1999

-1

+1

n

pʼ

{yi}, 
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Roadmap: Linear Regression with Regularizations

üWhen p >n: How is Ordinary Least squares? 
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Choose Regularization Parameter 
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Lasso for when p>n

• Prediction accuracy and model interpretation are two important 
aspects of regression models.

• LASSO does shrinkage and variable selection simultaneously for 
better prediction and model interpretation.

Disadvantage:
-In p>n case, lasso selects at most n variable before it saturates 
-If there is a group of variables among which the pairwise 

correlations are very high, then lasso select one from the group
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=> Hybrid of Ridge and Lasso : 
Elastic Net regularization

• L1 part of the penalty generates a sparse model 
• L2 part of the penalty (extra): 
• Remove the limitation of the number of selected variables 
• Encouraging group effect
• Stabilize the L1 regularization path
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Naïve elastic net
• For any non negative fixed λ1 and λ2, naive elastic net criterion:

• The naive elastic net estimator  is the minimizer of above equation

• Equivalently: 
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Naïve elastic net
• For any non negative fixed λ1 and λ2, naive elastic net criterion:

• The naive elastic net estimator  is the minimizer of above

• Equivalently: 
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Geometry of elastic net
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e.g. A Practical Application of Regression Model 
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Proceedings of 
HLT ’2010 
Human 
Language 
Technologies:  
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Movie Reviews and Revenues: An Experiment in Text Regression, 
Proceedings of HLT '10 Human Language Technologies:  

Use linear regression to directly predict the opening weekend gross 
earnings, denoted as y, based on features x extracted from the movie 

metadata and/or the text of the reviews.
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An example of how real 
applications use the elastic net 
and its weights! 

Here, the features are from the text-only 
model annotated in Table 2. 

The feature weights can be directly 
interpreted as U.S. dollars contributed to 
the predicted value   by each occurrence 
of the feature. 

Sentiment-related text features are not as 
prominent as might be expected, and 
their overall proportion in the set of 
features with non-zero weights is quite 
small (estimated in preliminary trials at 
less than 15%). Phrases that refer to 
metadata are the more highly weighted 
and frequent ones. 
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A combination of the meta and text 
features achieves the best 
performance both in terms of MAE 
and pearson r. 



• Pearson correlation coefficient

• For regression:
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r(x , y)=
(xi − x)( yi − y)

i=1

m

∑

(xi − x)2 × ( yi − y)2
i=1

m

∑
i=1

m

∑

where	x = 1
m xi
i=1

m

∑ 		and		 y = 1
m yi
i=1

m

∑ .

		r(x , y) ≤1

More Ways for Measuring Regression Predictions: 
Correlation Coefficient

		 r(
!ypredicted ,

!yknown )

• Measuring the linear correlation 
between two sequences, x and y,

• giving a value between +1 and −1 
inclusive, where 1 is total positive 
correlation, 0 is no correlation, and 
−1 is total negative correlation.
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Advantage of Elastic net (Extra)

• Native Elastic set can be converted to lasso 
with augmented data form

• In the augmented formulation, 
• sample size n+p and X* has rank p 
• è can potentially select all the predictors

• Naïve elastic net can perform automatic 
variable selection like lasso
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Summary: 
Regularized multivariate linear regression
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• Model: pp xxY
^

11

^

0

^^
bbb +++= !

• Ridge regression estimation:

• LR estimation:

• LASSO estimation:

		
argmin Y −Y

^⎛

⎝⎜
⎞

⎠⎟

2

∑

argmin Y −Y
^⎛

⎝⎜
⎞

⎠⎟

2

i=1

n

∑ +λ β j
j=1

p

∑

		
argmin Y −Y

^⎛

⎝⎜
⎞

⎠⎟

2

i=1

n

∑ +λ β j
2

j=1

p

∑



Today: Regularized multivariate linear regression

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) + Regularization 

Revised Normal Equation / 
revised GD / SGD 

Regression weights and bias => 
Regularized: Robust / Interpretable 
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular

min J(β ) = Y −Y
^⎛

⎝
⎞
⎠

2

i=1

n

∑ + λ( β j
q )1/q

j=1

p

∑



More: A family of shrinkage estimators

• for q >=0,  contours of constant value of                   are shown for the case 
of two inputs.

2/10/22 Dr. Yanjun Qi / UVA CS 96

		

β = argminβ ( yi − xiTβ)2i=1
N∑

subject		to			 β j∑
q
≤ s

å j

q

jb



norms visualized

all p-norms penalize larger 
weights

q < 2 tends to create sparse 
(i.e. lots of 0 weights)

q > 2 tends to push for 
similar weights

q



We aim to make the learned model 

•1. Generalize Well 

• 2. Computationally Scalable and Efficient

• 3. Robust / Trustworthy / Interpretable
•Especially for some domains, this is about trust! 
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Roadmap: Linear Regression with Regularizations

üWhen p >n: How is Ordinary Least squares? 
üRidge regression: squared loss with L2 regularization
üLasso regression: squared loss with L1 regularization
üElastic regression: squared loss with L1 AND L2 regularization
üHow to Choose Regularization Parameter 
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Today: Regularized multivariate linear regression

Regression: y continuous

Y = Weighted linear sum of Xs

Sum of Squared Error (Least 
Squared) + Regularization 

Revised Normal Equation / 
revised GD / SGD 

Regression weights and bias => 
Regularized: Robust / Interpretable 
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular

min J(β ) = Y −Y
^⎛

⎝
⎞
⎠

2

i=1

n

∑ + λ( β j
q )1/q

j=1

p

∑



Common regularizers

L2: Squared weights penalizes large values more

L1: Sum of weights will penalize small values more
	

β j
j

∑

β 2
j

j

∑

Generally, we don’t want huge weights

If weights are large, a small change in a feature can result in a 
large change in the prediction

Might also prefer weights of 0 for features that aren’t useful



Model Selection & Generalization 

• Generalisation: learn function / hypothesis from past data in order to 
“explain”, “predict”, “model” or “control” new data examples 

•Underfitting: when model is too simple, both 
training and test errors are large

•Overfitting: when model is too complex and test 
errors are large although training errors are small.
• After learning knowledge, model tends to learn “noise”
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Issue: Overfitting and underfitting
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xy 10 qq += 2
210 xxy qqq ++= å =

=
5

0j
j

j xy q

K-fold Cross 
Validation !!!! 

Generalisation: learn function / 
hypothesis from past data in order 
to “explain”, “predict”, “model” or 
“control” new data examples 

Under fit Looks good Over fit



Overfitting: Handled by Regularization

A regularizer is an additional criteria to the loss function to make sure that 
we don’t overfit

It’s called a regularizer since it tries to keep the parameters more 
normal/regular

It is a bias on the model forces the learning to prefer certain types of 
weights over others, e.g., 

		 β
! ridge = argminβ ( yi − xiTβ)2i=1

n∑ +λβTβ



WHY and How to Select λ? 

• 1. Generalization ability 
è k-folds CV to decide 

• 2. Control the bias and Variance of the model (details in future lectures) 
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L2: Squared weights penalizes large values more

L1: Sum of weights will penalize small values more
	

β j
j

∑

β 2
j

j

∑
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Regularization 
path of 
a Ridge 
Regression

¥®l λ = 0
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Regularization 
path of 
a Ridge 
Regression

¥®l λ = 0

Weight Decay

An example with 8 features  
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Regularization 
path of a Lasso 
Regression 

¥®l λ = 0

when varying λ, 
how βj varies. 

An example with 8 features  



An example 
of  
Ridge Regression

when varying 
λ, how βj
varies.
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λ increases 

λ→∞ λ = 0

Choose λ that 
generalizes well !

An example with 8 features  
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¥®l λ = 0

Choose λ that 
generalizes well !

when varying λ, 
how βj varies. 

An example with 8 features  



Extra on Optimization of 
Regularized Regression Models
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Extra More Roadmap

• Optimization of regularized regressions: 
• See L6-extra slide

• Relation between λ and s 
• See L6-extra slide

• Why Elastic Net has a few nice properties 
• See L6-extra slide
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his slides
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q Regularization and variable selection via the elastic net, Hui Zou and 

Trevor Hastie, Stanford University, USA
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Extra Recap

q More about LR Model with Regularizations
q Ridge Regression 
q Lasso Regression 

q Extra: how to perform training
q Elastic net

q Extra: how to perform training
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Why Invertible In Ridge Regression? 

• NOT AN EASY PROOF If through SVD 
• https://www.quora.com/When-is-the-matrix-frac-1-n-X-T-X-+-lambda-I_-d-times-

d-invertible
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β* = XTX +λI( )
−1
XT !y

(NOT AN EASY PROOF from SVD 
angle), many concepts, SVD, 
PCA, Eigenvalues, relation to 
singular

https://www.quora.com/When-is-the-matrix-frac-1-n-X-T-X-+-lambda-I_-d-times-d-invertible


Why Invertible In Ridge Regression? 
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Extra: Intercept Term is usually 
not shrinked

• If the data is not centered, there exists bias term
• http://stats.stackexchange.com/questions/86991/reason-for-not-shrinking-the-bias-

intercept-term-in-regression

• We normally assume we centered x and y. If this is true, no need to have bias 
term, e.g., for lasso, 
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Extra Recap

q More about LR Model with Regularizations
q Ridge Regression 
q Lasso Regression 

q Extra: how to perform training
q Elastic net

q Extra: how to perform training
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due to the nature of L_1 norm, the viable solutions are 
limited to corners, which are on a few axis only 
- in the above case x1. Value of x2 = 0. This means that the 
solution has eliminated the role of x2, leading to sparsity
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http://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization

In mathematics, particularly in 
calculus, a stationary point or 
critical point of a 
differentiable function of one 
variable is a point of the 
domain of the function where 
the derivative is zero 
(equivalently, the slope of the 
graph at that point is zero).



How to train Parameter for  Lasso 
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β̂ lasso = argmin(y− Xβ)T (y− Xβ)

subject  to  β j ≤ s∑

Here assume x and y have been centered (normally), therefore no bias term needed in above ! 
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We just need 0 
in the region 
[-cj-λ, -cj+λ]
(subgradient

calculus )
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Coordinate 
descent based 
Learning of 
Lasso

soft-thresholding

Coordinate descent 
(WIKI)è one does 

line search along one 
coordinate direction 

at the current point in 
each iteration. 

One uses different 
coordinate directions 
cyclically throughout 

the procedure.



Least Angle Regression (LARS) 
(State-of-the-art LASSO solver)
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LARS: Least Angle Regression

• Starts like classic Forward Selection

• Find predictor xj1 most correlated with the current residual

•Make a step (epsilon) large enough until another predictor xj2

has as much correlation with the current residual

• LARS – now step in the direction equiangular between two 

predictors until xj3 earns its way into the “correlated set”
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Correlation: 



Extra Recap

q More about LR Model with Regularizations
q Ridge Regression 
q Lasso Regression 

q Extra: how to perform training
q Elastic net

q Extra: how to perform training
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Connecting LASSO and Naïve Elastic net
• Lemma: Given (λ1,λ2), define an artificial data set (y*,X*)

• Let, 

• Then 

naive
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Connecting LASSO and Naïve Elastic net
• Lemma: Given (λ1,λ2), define an artificial data set (y*,X*)

• Let, 

• Then 

naive
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Advantage of Elastic net
• Native Elastic set can be converted to lasso 

with augmented data

• In the augmented formulation, 
• sample size n+p and X* has rank p 
• è can potentially select all the predictors

• Naïve elastic net can perform automatic 
variable selection like lasso
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Grouping Effect 

2/10/22 Dr. Yanjun Qi / UVA CS 136

http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf

If there is a group of variables among which the pairwise correlations are very high, then the 
lasso tends to select only one variable from the group and does not care which one is selected. 

http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf


Grouping Effect of Naïve Elastic net

• Consider the following penalized regression model: Where J(.) positive 
for β ≠ 0.

• Clear Distinction between strictly convex penalty function and lasso
• Lasso doesn't even have a unique solution
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Grouping Effect of Naïve Elastic net

• Consider the following penalized regression model: Where J(.) positive 
for β ≠ 0.

• Clear Distinction between strictly convex penalty function and lasso
• Lasso doesn't even have a unique solution
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http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf

Lasso does not provide a unique solution

http://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf


Grouping Effect of Naïve Elastic net

• D is the difference between the coefficient paths of predictors i and j.
• If xi and xj are high correlated ρ=1, this theorem provides a quantitative 

description for the grouping effect of Naive Elastic Net.
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Grouping Effect of Naïve Elastic net

• D is the difference between the coefficient paths of predictors i and j.
• If xi and xj are high correlated ρ=1, this theorem provides a quantitative 

description for the grouping effect of Naive Elastic Net.
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Elastic Net 

• Deficiency of the Naive Elastic Net: Empirical evidence shows the Naive 
Elastic Net does not perform satisfactorily. The reason is that there are 
two shrinkage procedures (Ridge and LASSO) in it. Double shrinkage 
introduces unnecessary bias.

• Re-scaling of Naive Elastic Net gives better performance, yielding the 
Elastic Net solution:

• Reason: Undo shrinkage.
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Elastic Net
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Computation of elastic net

• First solve the Naive Elastic Net problem, then rescale it.
• For fixed λ2, the Naive Elastic Net problem is equivalent to a LASSO 

problem, with a huge data matrix if p >> n
• LASSO already has an efficient solver called LARS (Least Angle 

Regression).
• è LARS-EN algorithm.
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Elastic Net interpreted as a stabilized Lasso 
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Extra Recap

q More about LR Model with Regularizations
q Ridge Regression 
q Lasso Regression 

q Extra: how to perform training
q Elastic net

q Extra: how to perform training
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