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Task 

Machine Learning in a Nutshell

Representation 

Score Function 

Search/Optimization 

Models, Parameters

Hyperparameter, Metrics 
2

ML grew 
out of 
work in AI

Optimize a 
performance 
criterion 
using 
example data 
or past 
experience, 

Aiming to 
generalize to 
unseen data 

Data  
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Probability Review
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• The big picture
• Events and Event spaces
• Random variables
• Joint probability, Marginalization, 

conditioning, chain rule, Bayes Rule, law of 
total probability, etc.

• Structural properties, e.g., Independence, 
conditional independence

• Maximum Likelihood Estimation
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Sample space and Events

• O : Sample Space, 
• set of all outcomes 
• If you toss a coin twice O = {HH,HT,TH,TT}

• Event: a subset of O
• First toss is head = {HH,HT}

• S: event space, a set of events:
• Contains the empty event and O
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From Events to Random Variable
• Concise way of specifying attributes of outcomes
• Modeling students (Grade and Intelligence):
• O =  all possible students (sample space)
• What are events (subset of sample space)
• Grade_A = all students with grade A
• HardWorking_Yes = … who works hard

• Very cumbersome

• Need “functions” that maps from O to an attribute space T.
• P(H = YES) = P({student ϵ O : H(student) = YES})  
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If hard to directly estimate from data, most likely we 
can estimate  

•1. Joint probability 
• Use Chain Rule

•2. Marginal probability 
• Use the total law of probability 

•3. Conditional probability 
• Use the Bayes Rule 



If hard to directly estimate from data, most likely we 
can estimate  

• 1. Joint probability 
• Use Chain Rule

• 2. Marginal probability 
• Use the total law of probability 

• 3. Conditional probability 
• Use the Bayes Rule 
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Simplify Notation: 
To Calculate Conditional Probability

• Bayes Rule

• You can condition on more variables

( )
)|(

),|()|(,|
zyP

zxyPzxPzyxP =

P x | y( ) = P(x)P(y | x)
P(y)
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One Example: Joint

Adapt from Prof. Nando de Freitas’s review slides
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One Example: Marginal 
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One Example: Marginal 
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One Example: Conditional 

10/21/19 Dr. Yanjun Qi / UVA CS



One Example

P (B1 = r|B2 = r)

P (B2 = r)
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Today : MLE
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• The big picture
• Events and Event spaces
• Random variables
• Joint probability, Marginalization, 

conditioning, chain rule, Bayes Rule, law of 
total probability, etc.

• Structural properties, e.g., Independence, 
conditional independence

• Maximum Likelihood Estimation



Roadmap

q Basic MLE
q MLE for Discrete RV
q MLE for Continuous RV (Gaussian)
q MLE connects to Normal Equation of LR
q More about Mean and Variance
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A general Statement

Consider a sample set T=(Z1...Zn) which is drawn from a probability 
distribution P(Z|\theta) where \theta are parameters. 

If the Zs are independent with probability density function P(Zi|\theta),
the joint probability of the whole set is

this may be maximised with respect to \theta 
to give the maximum likelihood estimates.
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Maximum Likelihood Estimation
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It is often convenient to work with the Log of the likelihood function.

log(L(θ )) =
i=1

n

∑log(P( iX |θ ))

The idea is to 

ü assume a particular model with unknown parameters, 
üwe can then define the probability of observing a given event 

conditional on a particular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. In most cases it is both  consistent 
and efficient. It provides a standard to compare other estimation 
techniques.

P( iX |θ )

θ

θ̂ = argmax
θ

P( 1X ... nX |θ )
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It is often convenient to work with the Log of the likelihood function.

The idea is to 

ü assume a particular model with unknown parameters, 
üwe can then define the probability of observing a given event 

conditional on a particular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. 
In most cases it is both  consistent and efficient.

θ

10/23/19 Dr. Yanjun Qi / UVA CS

!"𝜃 = argmax
!

𝑃(𝑍!. . . 𝑍"|𝜃

)𝑃(𝑍#|𝜃

𝑙𝑜𝑔(𝐿(𝜃)) =.
#$!

"

𝑙𝑜𝑔(𝑃(𝑍!|𝜃)

23



It is often convenient to work with the Log of the likelihood function.

The idea is to 

ü assume a particular model with unknown parameters, 
üwe can then define the probability of observing a given event 

conditional on a particular set of parameters.
ü We have observed a set of outcomes in the real world.
ü It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. 
In most cases this scorer is both  consistent and efficient.

θ
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Roadmap

q Basic MLE
q MLE for Discrete RV
q MLE for Continuous RV (Gaussian)
q MLE connects to Normal Equation of LR
q More about Mean and Variance
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Review: Bernoulli Distribution
e.g. Coin Flips 

• You flip a coin
• Z: {Who is Up: Head or Tail} is a discrete Random Variable 

• Head with probability p
• Binary random variable
• Bernoulli trial with success probability p
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Review: Bernoulli Distribution
e.g. Coin Flips 

• You flip n coins
• Head with probability p (UNKNOWN, Need to estimate from data)
• Number of heads X out of n trial 
• Each Trial following Bernoulli distribution with parameters  p
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Review: Defining Likelihood for basic Bernoulli



Deriving the Maximum Likelihood Estimate for 
Bernoulli
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Observed data è x 
heads-up from n trials 

log(𝐿(𝑝)

= log +
!"#

$
𝑝%! 1 − 𝑝 #&%!

= ∑"#$% (𝑧"log 𝑝 + 1 − 𝑧" log(1 − 𝑝))

=log 𝑝∑"#$% 𝑧" + log 1 − 𝑝 ∑"#$% (1 − 𝑧")

=xlog 𝑝 + (n − x)log (1 − 𝑝)



Deriving the Maximum Likelihood Estimate for 
Bernoulli
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Deriving the Maximum Likelihood Estimate for Bernoulli

		
−l(p)= − log n

x
⎛

⎝⎜
⎞

⎠⎟
− x log(p)−(n− x)log(1− p)

€ 

dl(p)
dp

= 0 − x
p
−
−(n − x)
1− p

		
0= − x

p
+ n− x1− p

		
0= −x(1− p)+ p(n− x)

p(1− p)

		0= −x + px + pn− px

		0= −x + pn

€ 

ˆ p = x
n

The proportion of positives!

Minimize the negative log-likelihood

è MLE parameter estimation 

i.e. Relative 
frequency of a 
binary event



EXTRA 
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The Big Picture
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Model 
i.e. Data generating 

process 

Observed 
Data

Probability

MLE Estimation / learning / 
statistics / Data mining



Discrete Random Variables

• Random variables (RVs) which may take on only a countable number of 
distinct values
• E.g. Z as the total number of heads you get if you flip 100 coins

• Z is a RV with arity k if it can take on exactly one value out of a set size k
• E.g. the possible values that Z can take on are 0, 1, 2,…, 100
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e.g. Coin Flips cont.

• You flip a coin
• Z: {Who is Up: Head or Tail} is a discrete RV 
• Head with probability p
• Binary random variable
• Bernoulli trial with success probability p

• You flip a coin for k times
• How many heads would you expect
• Number of heads Z is also a discrete random variable
• Binomial distribution with parameters k and p
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Roadmap  - All the rest are EXTRA 

q Basic MLE
q MLE for Discrete RV
q MLE for Continuous RV (Gaussian)
q MLE connects to Normal Equation of LR
q More about Mean and Variance
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Review: Continuous Random Variables

• Probability density function (pdf) instead of probability mass function 
(pmf)
• For discrete RV: Probability mass function (pmf): P(X = xi)

• A pdf (prob. Density func.) is any function f(x) that describes the 
probability density in terms of the input variable x.
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Review: Probability of Continuous RV

• Properties of pdf
§

§

• Actual probability can be obtained by taking the integral of pdf
§ E.g. the probability of X being between 5 and 6 is 

		

f (x)≥0,∀x

f (x)=1
−∞

+∞

∫

		
P(5≤ X ≤6)= f (x)dx

5

6

∫



Review: Mean and Variance of RV

• Mean (Expectation): 
• Discrete RVs: 

• Continuous RVs:
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∑
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E(g(X)) = g(x) f (x)dx
−∞
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∫

Adapt From Carols’ prob tutorial 



Review: Mean and Variance of RV

•Variance: 

• Discrete RVs: 

• Continuous RVs:

•Covariance:
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( ) ( ) ( )2X P X
i

i iv
V v vµ= - =å

( ) ( ) ( )2XV x f x dxµ
+¥

-¥
= -ò

Var(X) = E((X −µ)2 )

€ 

Cov(X,Y ) = E((X − µx )(Y − µy )) = E(XY ) − µxµy

Adapt From Carols’ prob tutorial 
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Single-Variate Gaussian Distribution

Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm

( )2~ ,X N µ s
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Bi-Variate Gaussian Distribution

Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm

Bivariate normal 
PDF: .

• Mean of normal PDF is at peak 
value.  Contours of equal PDF 
form ellipses.

• The covariance matrix captures linear dependencies among the variables

X2

X1



Multivariate Normal (Gaussian) PDFs

Where |*| represents determinant

The only widely used continuous joint PDF is the multivariate normal (or Gaussian):

• Mean of normal PDF is at peak 
value.  Contours of equal PDF 
form ellipses.

• The covariance matrix captures linear dependencies among the variables
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Covariance Matrix
Mean



Example: the Bivariate Normal distribution 
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Surface Plots of the bivariate 
Normal distribution
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Contour Plots of the bivariate 
Normal distribution
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Scatter Plots of data from the 
bivariate Normal distribution
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Trivariate Normal distribution

x1

x2

x3
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How to Estimate 1D Gaussian:  MLE
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• In the 1D Gaussian case,  we simply set the 
mean and the variance to the sample mean and 
the sample variance:

𝜎% =
1
𝑛
2

#$!

"

3𝑥# − )𝜇
%

𝜇̅ =
1
𝑛
.
#$!

"

𝑥!



   
< X1, X2!, X p >~ N µ

"#
,Σ( )

How to Estimate p-D Gaussian:  MLE
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Today

q Basic MLE
q MLE for Discrete RV
q MLE for Continuous RV (Gaussian)
q MLE connects to Normal Equation of LR
q More about Mean and Variance
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DETOUR: Probabilistic 
Interpretation of Linear Regression

• Let us assume that the target variable and the inputs are related by 
the equation:

where ε is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian N(0,σ), then we have:

• By IID assumption:
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DETOUR: Probabilistic 
Interpretation of Linear Regression

• By IID (independent and identically distributed) assumption, we have data 
likelihood 
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L(θ )= p( yi |xi ;θ )
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We can learn \theta by maximizing the probability / likelihood of generating the 
observed samples:
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Thus under independence Gaussian residual assumption, 
residual square error is equivalent to MLE of θ !
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Today

q Basic MLE
q MLE for Discrete RV
q MLE for Continuous RV (Gaussian)
q MLE connects to Normal Equation of LR
q Extra: about Mean and Variance
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Mean and Variance

• Correlation:
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€ 

ρ(X,Y ) = Cov(X,Y ) /σ xσ y

€ 

−1≤ ρ(X,Y ) ≤1



Properties

•Mean

• If X and Y are independent, 

•Variance

• If X and Y are independent,
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Some more properties

• The conditional expectation of Y given X when the value of X = x is:

• The Law of Total Expectation or Law of Iterated Expectation:
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Some more properties

• The law of Total Variance:
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€ 

Var(Y ) =Var E(Y | X)[ ] + E Var(Y | X)[ ]



References 

q Prof. Andrew Moore’s review tutorial
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q Prof. Carlos Guestrin recitation slides
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