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Probability Review

* The big picture
* Events and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

e Structural properties, e.g., Independence,
conditional independence

e Maximum Likelihood Estimation



Sample space and Events

* O:Sample Space,
* set of all outcomes
* |f you toss a coin twice O = {HH,HT,TH,TT}

* Event: a subset of O
e Firsttossis head = {HH,HT}
e S:eventspace, a set of events:
* Contains the empty event and O
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From Events to Random Variable

e Concise way of specifying attributes of outcomes
 Modeling students (Grade and Intelligence):

O = all possible students (sample space)
 What are events (subset of sample space)
 Grade_ A =all students with grade A

 HardWorking_Yes = ... who works hard
* \Very cumbersome

Need “functions” that maps from O to an attribute space T.
P(H = YES) = P({student € O : H(student) = YES})
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If hard to directly estimate from data, most likely we
can estimate

* 1. Joint probability Y(X; Y)

e Use Chain Rule

* 2. Marginal probability ?(X)
* Use the total law of probability

* 3. Conditional probability V(Y(X)
* Use the Bayes Rule



If hard to directly estimate from data, most likely we

can estimate

* 1. Joint probability
e Use Chain Rule

e 2. Marginal probability

» Use the total law of probability

e 3. Conditional probability
* Use the Bayes Rule
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Simplify Notation:
To Calculate Conditional Probability

* Bayes Rule

P(xly)z P(x)P(ylx)

P(y)

* You can condition on more variables

_ P(x[2)P(y|x,z)

Pxl»z)=—=5015



One Example: Joint

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries?
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One Example: Joint

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries?

P(B,=r,B,=r1) = V;((Br/f) L(i(gz: f IB a:f>/

P(3A ~ T 2 \/Z
. 3
P(REL) T
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One Example: Joint

we have the set{r,r,;r,b} \What is the probability of drawing 2 red balls

Assume we hav@box with 3 red balls and 1 blue ball. That is,
in the first 2 tries:

P(B,=r,B,=r1) = K)(@("m F(Béck\&":o_

_ 3 2 _
-t Ty T2
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One Example: Marginal

What is the probability that the 2" ball drawn from the set {r,r,r,b}
will be red?

Using marginalization, P(B, =r) = g) ( @2: r A 611V>
+ (P Be=V, Bl:b)
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One Example: Marginal

What is the probability that the 2" ball drawn from the set {r,r,r,b}
will be red?

Using marginalization, P(B, =r) = P( Eth /\ = (>
Jvf (ZPZtY /\%(cw
= PlBi=r)CBy=t| By )P (Bi=b) PD.

i*/ft/\‘\

= M 7

beb)
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One Example: Conditional ek law Prob
F(%,cy\ %z’—‘Y) P QOSJ(
- pC o ‘va) P(B‘:K), %A%e
B P(%2$Y)
X&Lo‘ﬁi

\I

P( Bz'-'—'Y\Bl‘-—'Y) P(BI=Y )
0BT, Bi=Y) * P(Bi=F, Bi=b)




One Example

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries?

P(Bl "Bz F(Bc—r) F(Bz Y|BI Y) _
> 2

hY'—n

4 3
P(BZ — T) = F( BI=Y, Bz=r>"‘P(B.=‘o)Bz=Y)

P(Bl — TlBQ — ’)“) - F(Bf‘r: Bz=—f)
P(Bz-‘—f )
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Today : MLE

* The big picture
* Events and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

e Structural properties, e.g., Independence,
conditional independence

Maximum Likelihood Estimation




Roadmap

J Basic MLE

J MLE for Discrete RV

1 MLE for Continuous RV (Gaussian)

J MLE connects to Normal Equation of LR

J More about Mean and Variance
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Maximum Likelihood Estimation {H HTT. /"}
H Tk-__y{ZI,Zz - -’/'ZV\S’

eneral Statemen

Consider a sample set T=(Z,...Z,) which is drawn from a probability
distribution P(Z|\theta) where \theta are parameters.

If the Zs are independent with probability density function P(Z |\theta),
the joint probability of the whole set is

0= 0P ..Zn|9>8= | [Pzue>
L= |

this may be maximised with respect to \theta
to give the maximum likelihood estimates.
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The idea is to

v assume a particular model with unknown parameters, @
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The idea is to

v’ assume a particular model with unknown parameters, @
v’ we can then define the probability of observing a given event
conditional on a particular set of parameters. P(Z;|6)
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The idea is to

v assume a particular model with unknown parameters, @
v’ we can then define the probability of observing a given event

conditional on a particular set of parameters. P(Z;|6)
v" We have observed a set of outcomes in the real world.



The idea is to

v’ assume a particular model with unknown parameters, @

v’ we can then define the probability of observing a given event
conditional on a particular set of parameters. P(Z;|6)

v" We have observed a set of outcomes in the real world.g 2
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It is then possible to choose a set of parameters which are g
most likely to have produced the observed results.



The idea is to

v assume a particular model with unknown parameters, @
v’ we can then define the probability of observing a given event

conditional on a particular set of parameters. P(Z;|0)
v' We have observed a set of outcomes in the real world.

v' It is then possible to choose a set of parameters which are

most likely to have produced the observed results. n

6 = argmax P(Z1.. .Zn‘e) =0 ‘P(i&\@)
6 v

This is maximum likelihood.
In most cases it is both consistentgnd efficient.

& =ty Log(L(@N) = ) log(P(Z;]6)
o) i=1

It is often convenient to work with the Log of the likelihood function.
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The idea is to

v assume a particular model with unknown parameters, @
v’ we can then define the probability of observing a given event

conditional on a particular set of parameters. P(Z;|0)
v' We have observed a set of outcomes in the real world.

v' It is then possible to choose a set of parameters which are
most likely to have produced the observed results.

6 = argmax P(Z1.. .Zn‘e) <Like|ihood
6

This is maximum likelihood.
In most cases this scorer is both consistent and efficient.

log(L(0)) = z lOg(P(Zi|9)< Log-Likelihood
i=1

It is often convenient to work with the Log of the likelihood function.



Roadmap

J Basic MLE

J MLE for Discrete RV

1 MLE for Continuous RV (Gaussian)

J MLE connects to Normal Equation of LR

J More about Mean and Variance
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Review: Bernoulli Distribution
e.g. Coin Flips

e Z:{Who is Up: Head or Tail} is a discrete Random Variable

» You flip a coin BMOL“(/()> Vi y TI\—I

* Head with probability p
* Binary random variable
* Bernoulli trial with success probability p
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Review: Bernoulli Distribution
e.g. Coin Flips

* You flip n coins
* Head with probability p (UNKNOWN, Need to estimate from data)
* Number of heads X out of n trial
e Each Trial following Bernoulli distribution with parameters p

6 = argmax P(Zq.. .Zn|9)
0
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Review: Defining Likelihood for basic Bernoulli

‘ Grivem : {‘Zt)ll, T Zl’\}— |
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Deriving the Maximum Likelihood Estimate for
Bernoulli

log(L(p) i
= log ﬂ_Lzlpzi (1—-p)=

=Y (zilogp + (1 — z)log(1 — p))
=logp Xiti1z; +log(1—p) Xt (1 —2z)
=xlog p + (n — x)log (1 — p)

Observed data =» x
heads-up from n trials



Deriving the Maximum Likelihood Estimate for
Bernoulli

maximize
[

L(p)=p"(1-p)"

likelihood
0.00 0.04 0.08
L L L |

IIIIIIIIIIIII
00 01 02 03 04 05 06 07 08 09 1.0

maximize

—— :
log(L(p)=log| p*(1-p)"" | ﬁ

IIIIIIIIIII
00 01 02 03 04 05 06 07 08 09 1.0

50
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Minimize the negative log-likelihood

~I(p)=—log| p*(1-p)"" |

—log(likelihood)
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Deriving the Maximum Likelihood Estimate for Bernoulli

ﬂgg%l(p}\: ag{?f‘h{—xlog(p)—(n—x)log(l—p)}

dip) _ _x_-(n-x) _

-=- =0
ap po1=p 0=—x+pn
0= _£+ n—Xx Minimize the negative log-likelihood
p 1-p

=>» MLE parameter estimation

A X
p —_— i.e. Relative
frequency of a

binary event

o —X(1=p)+p(n-x)
p(1-p)

0=—x+px+ pn—px
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EXTRA
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The Big Picture

Probability ‘

Model
I.e. Data generating
process

Observed
Data

_ MLE Estimation / learning /

statistics / Data mining
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Discrete Random Variables

e Random variables (RVs) which may take on only a countable number of \
distinct values
e E.g. Z as the total number of heads you get if you flip 100 coins

e Zis a RV with arity k if it can take on exactly one value out of a set size k
e E.g. the possible values that Z can take on are O, 1, 2,..., 100

10/21/19 Dr. Yanjun Qi / UVA CS



e.g. Coin Flips cont.

* You flip a coin

e Z: {Who is Up: Head or Tail} is a discrete RV
* Head with probability p
* Binary random variable

* Bernoulli trial with success probability p

* You flip a coin for k times
* How many heads would you expect
* Number of heads Z is also a discrete random variable
e Binomial distribution with parameters k and p
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Roadmap - All the rest are EXTRA

‘ J Basic MLE

J MLE for Discrete RV

1 MLE for Continuous RV (Gaussian)

J MLE connects to Normal Equation of LR

J More about Mean and Variance
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Review: Continuous Random Variables

* Probability density function (pdf) instead of probability mass function

(pmf)
 For discrete RV: Probability mass function (pmf): P(X = x;)

* A pdf (prob. Density func.) is any function f(x) that describes the
probability density in terms of the input variable x.
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Review: Probability of Continuous RV

* Properties of pdf

' f(x)=0,Vx

By =
jf(X)=1 _ 5 O phexy.
oo 17|

 Actual probability can be obtained by taking the integral of pdf
» E.g. the probability of X being between 5 and 6 is

P(5<X<6)= j F(x)dx
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Review: Mean and Variance of RV

* Mean (Expectation):
* Discrete RVs:

* Continuous RVs:

u=E(X)

E(X)= Z vP(X=v)
E(g(X) =, 8W)P(X =v)
E(X)= [ xf (x)ax

E(g(X)) = [ g(x) f(x)dx

Adapt From Carols’ prob tutorial



Review: Mean and Variance of RV
e\/ari : = —u)’ 1
arlance Var(X)=E(X -u)") C\X _

V(X) = Zv,.(vi —,u)2 P(X = vl-)

* Discrete RVs:

e Continuous RVs:

C‘D\(VQ 6& X L\ W
Q (bW Ty 0
eCovariance: &

Cov(X.Y) = E((X - u)(Y - ) = E(XY) - uu,
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Single-Variate Gaussian Distribution

N(z|p, o?)

Nialio) = — e { =5 a -

A (2ma2)"/?

Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm



Bi-Variate Gaussian Distribution

Tob 0.2 0.14

10.1

0.14-
{0.08
0.05 b o
L1 0 0.04
> 5

0.02

Bivariate normal

* Mean of normal PDF is at peak
PDF; value. Contours of equal PDF
' form ellipses.

e The covariance matrix captures linear dependencies among the variables
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[

Multivariate Normal (Gaussian) PDFs

The only widely used continuous joint PDF is the multivariate normal (or Gaussian):

N, %) = i s exp { =5 - ™ - ) |

SN

Covariance Matrix
Where | *| represents Mean

Mean of normal PDF is at peak
value. Contours of equal PDF
form ellipses.

e The covariance matrix captures linear dependencies among the variables



Example: the Bivariate Normal distribution

I —(-a) =8
_ 2
f(xpxz)_ 72 ©
(27) ]
with i = i and
u
- 2 _Z\Ll_ \)6(\) CO\/(X]_)XZ>
- ] 2
5 _ O Oy _| % LO,0,
2x2 O O 0,0 o
O » | | PO,0, \2]%3_3 ')

_ 2 2 21 2
IZ\ = 01102 70, = 0,0, (1 P )



Surface Plots of the bivariate
Normal distribution
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Ha

Contour Plots of the bivariate
Normal distribution

10/21/19 Dr. Yanjun Qi / UVA CS

Hy



Scatter Plots of data from the
bivariate Normal distribution
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Trivariate Normal distribution
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How to Estimate 1D Gaussian: MLE

N(z|p, 0?)
e In the 1D Gaussian case, we simply set the

A mean and the variance to the sample mean and
the sample variance:

v

n
_1zx
_n l

=1

?:%Z(xi-mz

=1



How to Estimate p-D Gaussian: MLE c {Lz, q»}

<:)QJ)QY°3;YP>»VAJLUJZ) ‘iggb’
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Today

J Basic MLE

J MLE for Discrete RV

1 MLE for Continuous RV (Gaussian)

J MLE connects to Normal Equation of LR

» J More about Mean and Variance
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DETOUR: Probabilistic
Interpretation of Linear Regression

* Let us assume that the target variable and the inputs are related by
the equation:

. nT
v, =0"x. +¢

where € is an error term of unmodeled effects or random noise



DETOUR: Probabilistic
Interpretation of Linear Regression

* Let us assume that the target variable and the inputs are related by

the equation: R\/ 2/\[\[(0) 52>

T
Vi = 0 X; T&;
where € is an error term of unmodeled effects or random ngise

* Now assume that € follows a Gaussian N(0,0), then we have:

I —0"x,)?
PO exp[_ ot )

Y Y|x6 ~ N CED




DETOUR: Probabilistic
Interpretation of Linear Regression

* By IID (independent and identically distributed) assumption, we have data
likelihood

2n0 20

n " " (y.-0"x )
L(9)=Hp(y,.lxi:9)=[ L jeXp[—z”(y’ - x’)]

1 1 1n
[(0)=1og(L(8))=nlo S —0"x )’
(6)=10g(L(6))=nlog o Gzzzizl(y, )



1 > (0%
L(6)= Hp(y|x 0)= [ J—(y] exp[— - ]

We can learn \theta by maximizing the probability / likelihood of generating the
observed samples:

b { (X908 (Ko W)~ (K YN

4 ) = o
LD, 1)( % T ‘(D 7<1;;QW (X£>

* SV
g = s jﬁ(%\w@

g




Thus under independence Gaussian residual assumption,
residual square error is equivalent to MLE of O !

%\%9 ~ N <6TX>G>
Twe N know
U prrameterl - £9,af
1(6)=1log(L(6))=nlog \rg o 22, (-0x)

argmax £(0) =
U7 sgminT(e)
1 n

J(0) =§Z<xf9—yi>2
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Mﬁ.’bp(wzi), IU

(b) (6 points) (no explanation required) Suppose you decide to do a maximum likelihood estimation of w.
You do the math and figure out that you need w to satisfy one of the following equations. Which one?

A. X;ziexp(wz;) = Eiziyiexp(wz;)
B. X;zezp(2wz;) = I, z,y;exp(wz;)
C. Z,-:J:?emp(wzz') = X;z;yiexp(wz;)

1;. Sialerp(ws) = Tiziyieap(wa:/2) /ﬂv AL N ( 6?? ( (,JKL) ) (

. iexp(wz;) = Eiyiexp(wz;)

Answer: B (this is an extra credit question.)

L[6)
[b@\
\%

(O _qg = (%)

oL
ﬁ
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Today

J Basic MLE

J MLE for Discrete RV

1 MLE for Continuous RV (Gaussian)

J MLE connects to Normal Equation of LR
 Extra: about Mean and Variance
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Mean and Variance

 Correlation:
p(X.Y)=Cov(X,Y)/o0,
-1=p(X,Y) =1



Properties

E(X+Y)=E(X)+E(Y)
E(aX)=aE(X)

* Mean

o [f Xand Y are independent, E(XY) = E(X)E(Y)

*Variance V(aX+b):a2V(X)

e |[f Xand Y are independent,
V(X+Y)=VX)+V(Y)



Some more properties

* The conditional expectation of Y given X when the value of X = x is:

E(Y| X =x)=[y*p(y| x)dy

* The Law of Total Expectation or Law of Iterated Expectation:

E(Y)=E[E(Y | X)]= [ E(Y| X =x)py (x)dx



Some more properties

* The law of Total Variance:

Var(Y) = Var| EY 1 X)|+ E[Var(Y 1 X)]



References

3 Prof. Andrew Moore’ s review tutorial
[ Prof. Nando de Freitas’s review slides
[ Prof. Carlos Guestrin recitation slides
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