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Today Recap: Dimensionality Reduction (Two Ways)

Feature extraction: finds a set of new
features (i.e., through some mapping f())

from the existing features.

The mapping f()

3
Y

K<<N

Yk |

[ x, | could be linear or
X, non-linear
X = ACIIR y =
| Xy

Pattern Recognition Chapter 3 (Duda et al.) — Section 3.8

Feature selection: chooses a
subset of the original features.
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Roadmap

= Dimensionality Reduction (unsupervised)

with Principal Components Analysis (PCA)

‘ 0 Review of eigenvalue, eigenvector

0 How to project samples into a line capturing the variation of the
whole dataset = Eigenvector / Eigenvalue of covariance matrix

o PCA for dimension reduction
0 Eigenface =2 PCA for face recognition
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Review: Mean and Variance

* Variance: VCII‘(X)ZE((X—,U)Z) T
* Continuous RVs: V(X) — Zv,- (Vi - /u)z P(X = vi)
r(X)= [ (x-u) f(x)s

* Covariance:

Cov(X,Y)=E((X—p )Y - ))=E(XY)-u 1,



Review: Eigenvector / Eigenvalue

o The eigenvalues A; are found by
solving the equation j Cu=\u
det(C-?»I)=0 uz0

» Eigenvectors are columns of the
matrix U such that

C=uDU'

e Where D= |y

From Dr. S. Narasimhan



Review: Eigenvalue, e.g.

Let us take two variables with covariance ¢>0

¢y coar= (1-A c
c 1 c 1-A

det(CAD=(1-1)2c* <

Solving this we find A; =1+c

A, =1-Cc < A

From Dr. S. Narasimhan



Review: Eigenvector, e.g.

* Any eigenvector U satisfies the condition
Cu=)\u

I

U = e (a)_(a+ca, \a,
a, c 1) \a, ca, +a, _(Kaz

Solving we find U, = ( 1; \2) U, =
1/4/2 |

In practice, much more advance methods, e.g. power method from Dr. S. Narasimhan



Today

= Dimensionality Reduction (unsupervised)
with Principal Components Analysis (PCA)

0 Review of eigenvalue, eigenvector

‘ 0 How to project samples into a line capturing the variation of the
whole dataset = Eigenvector / Eigenvalue of covariance matrix

o PCA for dimension reduction
0 Eigenface =2 PCA for face recognition



So

S3

Sq a data matrix of n observations on p
variables x3,%,...X,

 Data/points/instances/examples/samples/records: [ FOWS ]

 Features/attributes/dimensions/independent
variables/covariates/predictors/regressors: [ colum ﬂS]

10/8/20 Dr. Yanjun Qi / UVA CS 10



The Goal

We wish to explain/summarize the T
underlying variance-covariance structure of
a large set of variables through a few linear
combinations of these variables.

PCA is introduced by Pearson (1901)
and Hotelling (1933)
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Trick: Rotate Coordinate Axes

Suppose we have a sample population measured on p random
variables  Xy,...,X,.

Our goal is to develop a new set of K (K<p) axes

(linear combinations of the original p axes) in the directions of
greatest variability: X, 4

(] “ 0- ‘\

This'could be accomplished by rotating the axes (if data is centered).
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Algebraic Interpretation

B

* Given n points in a p dimensional space,

e for large p, how to project on to a lower-dimensional (K<p)
space while preserving broad trends in the data and allowing
it to be visualized?

FROM NOW we assume Data matrix is centered: =2 (we subtract the mean
along each dimension, and center the original axis system at the centroid of
all data points, for simplicity)



Algebraic Interpretation — (k=1)

* Given n points in a p dimensional space, how to project on to
a 1 dimensional space?

* Choose a line that fits the data so the points are spread out
well along the line

10/8/20 Dr. Yanjun Qi / UVA CS
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Let us see it on a figure
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Algebraic Interpretation — (k=1)

* Formally, to find a line that =» Maximizing the sum of squares
of data samples’ projections on that line

10/8/20 Dr. Yanjun Qi / UVA CS
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Figure 1: The dot product is fundamentally a projection.
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Algebraic Interpretation — 1D

* Formally, to find a line (direction) that =2 Maximizing the sum
of squares of data samples’ projections on that line

subject to VTV — 1

x: p*1 vector
v: p*1 vector
10/8/20 Dr.YanjunQ‘\/u“s: 1*1 Scalar 19
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Algebraic Interpretation — 1D

* Formally, to find a line (direction) that =» Maximizing the sum
nf cniarec nf data camnlec<’ nrniections on that line

size of x’s projection on
vector v = u=x'v = v'x

subject to VTV — 1

x: p*1 vector
v: p*1 vector
10/8/20 &‘Q)\\%&\ Dr.YanjunQi/Uus: 1*1 Scalar 21



Algebraic Interpretation — 1D case
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Algebraic Interpretation — 1D

* How is the sum of squares of projection lengths T

expressed in algebraic terms? 5
. /\/\

Lime ppp. o | |Pointlix| | L

N I I i Point 2: x,' |

123..n Point 3: x;' n

: e

Point n: x,'
V! XT X y
n*p 0*1

From Dr. S. Narasimhan



Algebraic Interpretation — 1D

* How is the sum of squares of projection lengths T
expressed in algebraic terms?

max( v X" Xv), sujectto VIV =1
 J

10/8/20 Dr. Yanjun Qi / UVA CS 24



Algebraic Interpretation — 1D

LI . TXTX subject to U :1
* Rewriting this: max{ VXTX), siectio VIV

VIXIXv = A =Aviv=v(Av)

<=> Vv (X'Xv—=Av) =0

M AT T, Dr. Yanjun Qi / UVA CS
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Algebraic Interpretation — 1D

* Rewriting this: Max(VIXTXV), siectio VIV = 1 T
VIXIXv = A =Aviv=v(Av)
<=> Vv (X'Xv—=Av) =

* Show that the maximum value of VTXTXV is obtained for
those vectors / directions satisfying XTXV = \V

*So, find the largest A and associated v such that the

matrix X' X when applied to v, yields a new vector
which is in the same direction as v, only scaled by a

factor A. e



Algebraic Interpretation — 1D

* (X"X)v points in some other direction (different from vﬂ
general

(XTX)v

_—V
=» [f v is an eigenvector and A is corresponding eigenvalue

XIXv=Av
—

So, find the largest A and associated v such that the matrix XTX when applied to v,
yields a new vector which is in the same direction as v, only scaled by a factor A.

10/8/20 Dr. Yanjun Qi / UVA CS 27



Algebraic Interpretation — beyond 1D

e For matrices of the form (symmetric) X' X T

* All eigenvalues are non-negative
* See Handout-1 “linear algebra review” / Page 18,19,20

*\;...\, are the eigenvalues, ordering from large to small,
*j.e. Ordered by the PC’s importance

10/8/20 Dr. Yanjun Qi / UVA CS 28



PCA Eigenvectors =» Principal Components

5

2nd Prlincipa
Component,

6.0

%17/ N2 7 >\5>/7)W [P(/AY]
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PCA (k=1) : How the sum of squares of projection

Tlemgths relates to VARIANCE ? T

size of one sample x’s projection on vector v
= u=x'v =v'x

* [n a new coordinate system with v as axis, u is the position of sample x on
this axis

10/8/20 Dr. Yanjun Qi / UVA CS 30
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PCA (k=1) : How the sum of squares of projection
lengths relates to VARIANCE ?

Consider the variation along
Y direction v considering all of the
| points {x_1,x_2,..., Xx_n}

=» The variance of all positions
\ {ulu?2,.., un}

convert x_i onto V coordinate
e =P U_i=(x )TV

: From Dr. S. Narags2imhan



How the sum of squares of projection lengths

relates to VARIANCE ?
2 Assuming—‘

Var(u) = Zu(u, . .U)z P(” - ui) - Zu (ul) ot ot

This means the following two objectives
\JU\ are the same, for finding a line (direction
v ) by

yL}\f\f\@( =>» Maximizing the sum of squares of
\ data samples’ projections on thatv

‘E‘ line

=2 Maximizing the variance of data
samples’ projected representations
on the v axis

|

10/8/20 Dr. Yanjun Qi / UVA CS 33



Centered Vs. Not Centered Formulation

) Center X,«, Vs.
(7(;( (\\éﬁ @Ki:? not-centered X «,
O

K@/N@ subject to VTV — 1
4%
e x: p*1 vector
S\ O

v: p*1 vector
u: 1*1 scalar .



Today

= Dimensionality Reduction (unsupervised)
with Principal Components Analysis (PCA)

0 Review of eigenvalue, eigenvector

0 How to project samples into a line capturing the variation of the
whole dataset = Eigenvector / Eigenvalue of covariance matrix

‘ o PCA for dimension reduction
0 Eigenface =2 PCA for face recognition



Applications

* Uses: e Examples: T
* Data Visualization * How many unique “sub-sets” are in the
 Data Reduction sample?

* Data Classification * How are they similar / different?
* Trend Analysis * What are the underlying factors that
* Factor Analysis influence the samples?

Noise Reduction * How to best present what is “interesting”?

* Which “sub-set” does this new sample
rightfully belong?

From Dr. S. Narasimhan



Principal Components prgjection of the digits (time 0.02s)

e.g. the new
reduced

representation

is easier to
visualize and

interpret
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e.g. From scikit learn




Interpretation of PCA

From p original coordinates: x;,x,,...,x,:

Produce k new coordinates :

E When p=2
= 01X T X0 + .+ 0ypX,
10/8/20 Dr. Yanjun Qi / UVA CS 4 < 0 2 4



Interpretation of PCA

's are Principal Components T

such that:
are uncorrelated (orthogonal) from each other
explains as much as possible of original variance in data set
explains as much as possible of remaining variance

etc.

. kth PC retains the kth greatest fraction of the variation in the samples

From Dr. S. Narasimhan



Var(uk) = Z(ukl.)z = VkTXTXVk

i=1

* The new variables (PCs) have a variance equal to their corresponding
eigenvalue, since

Var(uk)= v/ XTXvi = viT N vie= Mevi" v = }\k

for all k:_Z,D

* Small }\k < small variance <> data change little in the direction of
component v,

PCA is useful for finding new, more informative,
uncorrelated features; it reduces dimensionality
o DYy rejecting low variance features .



PCA Eigenvalues

- &[/(/\'V\(Q
Ap=Ver
208 P et
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PCA Summary until now

e Rotates multivariate dataset into a new T
configuration which is easier to interpret

* PCA is useful for finding new, more informative,
uncorrelated features; it reduces dimensionality by
rejecting low variance features

v' PCA compresses (i.e. perform projection ) the data
points by only using the top few eigenvectors.

v' This corresponds to choosing a “linear subspace”
represent points on a line, plane, or “hyper-plane”



PCA for dimension reduction
e.g. p=3 =» (pick top k=2 PCs)

<=
Q L
L
2 3
g
£
o]
°
a
2 3
G %
© o o
cc) o.. .
& o ;
o B
I
o
' I 1 T 1 T
-1.0 -05 0.0 05 1.0
First principal component

corresponds to choosing a

“2D linear plane”
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How many components to keep?

* |. Variance: Enough PCs to have a cumulative variance explained by
the PCs that is >50-70%

* |I. Scree plot: represents the ability of PCs to explain the variation in
data, e.g. keep PCs with eigenvalues >1

10/8/20 Dr. Yanjun Qi / UVA CS 44
From Dr. S. Narasimhan



e.g. check eigenvalue (l)

Scree Plot
5
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e.g. check percentage of kept variance

Can ignore the components of lesser significance.

25

20 -

RN
9)
|

RN
o
|

Variance (%)

(&)}
\

The relative variance explained by each PC is
given by A/sum(Ay)

PC1

\ Hﬂﬂﬂﬂﬂm

PC2 PC3 PC4 PC5 PCo6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose much

10/8/20

p dimensions in original data

Calculate p eigenvectors and eigenvalues

choose only the first k eigenvectors, by keep enough variance
final projected data set has only k dimensions

Dr. Yanjun Qi / UVA CS 46



Why to Reduce Dimension?

* PCA as a general dimensionality reduction technique

* Preserves most of variance with a much more compact representation
— Lower storage requirements (eigenvectors + a few numbers (k) per sample)
— Faster matching (since matching within a lower-dim)



(1) Limitations of PCA

* PCA is not effective for some datasets.
e For example, if the data is a set of strings

(1,0,0,0,...), (0,1,0,0...),...,,(0,0,0,...,1) then the eigenvalues do not fall
off as PCA requires.

QE%@V\W\/\Q = [( ){ , (J

10/8/20 Dr. Yanjun Qi / UVA CS 48



(2) PCA and Discrimination

* The direction of maximum variance is not always good for
classification (Example 1)

For this case:

+ |deal for

capturing global
variance !

+ Not ideal for
discrimination

-

0/8/20 r. &y i S 49
1 . " FirstPCAe From Prof. Derek Hoiem



PCA and Discrimination

* PCA may not find the best directions for discriminating
between two classes. (Example 2)

* Example:

* suppose the two classes have 2D Gaussian densities as
ellipsoids.

* 15t eigenvector is best for representing the probabilities /
overall data trend

« 2nd eigenvector is best for discrimination.

7

10/8/20 50
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Algebraic Review

* How many eigenvectors are there?

* For Real Symmetric Matrices

* except in degenerate cases when eigenvalues repeat, there are p
eigenvectors

u;...,u, are the eigenvectors
A;...\, are the eigenvalues, large to small, ordered by its value

e all eigenvectors are mutually orthogonal and therefore form a new basis space

* Eigenvectors for distinct eigenvalues are mutually orthogonal

* Eigenvectors corresponding to the same eigenvalue have the property that any
linear combination is also an eigenvector with the same eigenvalue; one can
then find as many orthogonal eigenvectors as the number of repeats of the

eigenvalue.

10/8/20 Dr. Yanjun Qi / UVA CS
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Today

= Dimensionality Reduction (unsupervised)
with Principal Components Analysis (PCA)

0 Review of eigenvalue, eigenvector

0 How to project samples into a line capturing the variation of the
whole dataset = Eigenvector / Eigenvalue of covariance matrix

o PCA for dimension reduction
‘ 0 Eigenface =2 PCA for face recognition



Example 1: Application to image, e.g. a task
of face recognition

*S =)
1. Treat pixels as a vector X

2. Recognize face by 1-nearest neighbor

A face-image

yl '"yn database of totally n

different people

k = argininHykT — XH

Dr. Yanjun Qi / UVA CS
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Example 1: the space of all face images

* \When viewed as vectors of pixel values, face images are
extremely high-dimensional

+ 100x100 image =(10,000 dim@ 7}: (0 g0

 Slow and lots of storage

e But very few 10,000-dimensional vectors are valid face
Images

e We want to effectively model the subspace of face images

10/8/20

From Prof. Derek HoSiAem



Example 1:The space of all face images

eEigenface idea: construct a low-dimensional linear

Fﬂbrpace that best explains the variation in the set of
a

ce images

Pixel value 2

\

10/8/20

-

FAL

O
2 @ ‘... ./.

® 0,200 o — N e
® 00 7 o © blu Shm los
%o o 0 ® o
.o/{:‘ o ¢ o e
Ve
7 >

Pixel value 1

@ A face image
® A (non-face) image
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Example 1: Application to Faces, e.g.
Eigenfaces (PCA on face images)

1. Compute covariance matrix of face images

2. Compute the principal components (“eigenfaces”)
. K eigenvectors with largest eigenvalues

3. Represent all face images in the dataset as linear combinations of
eigenfaces
. Perform nearest neighbors on these projected low-d coefficients

oM, Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 .



http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

Example 1: Application to Faces

Training

PELE PR
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DEPREPRED R
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:?3@93@@&?
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ey g e %mge-u s %

Sl k) B2 bl S bl b

Images
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Example 1: Eigenfaces example

Top eigenvectors: Uy, ..Uy k:l{

(X% (X-%) T T

Mean:

_ 1%
—U=— )X
X Nk=1k

Bt it | - i
- = - - i
\ .‘ [ .

From Prof. Derek Hoiem
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Example 1: Visualization of eigenfaces

?Dz 0,200
Principal component (eigenvector) uk

EF EENSEEE

W W k=
- W o
@b B EEEE
M — 30kUgk

R AT
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Example 1: Representation and
reconstruction of original x

e Face x in “face space” coordina’g?;\/ _yTx

| (M)»\-- U (x — pu)]
[% e ’wkj New repr.esentation

Remarkably few eigenvector terms are needed
to give a fair likeness of most people's faces.

=» subtract the mean along each dimension, in order to center the
original axis system at the centroid of all data points

10/8/20 Dr. Yanjun Qi / UVA CS 60



Representation and reconstruction

e Face x in “face space” coordinates: \

x — [ (x — p1),... il (x — )]
= Wwi,y...,Wk

. _ New representation
* keconstruction:

= ” X = Q [/L € ConSmvinctsp €IV

o - @ + WAUTFWOUZ FW3UsHWals . 'H/\)K[\AK

L0/5/20 A human face may be considered to be a linear .
combination of these standardized eigen faces  From Prof. Derek Hoiem
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New representation in the lower-dim PC space

N

) 0 V‘ﬂ\nJ
r?< Xil, X, ]

6.0

10/8/20 6‘3
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Key Property of Eigenspace Representation

Given N A

* 2 images xl ° .X'2 that are used to construct the Eigenspace
« & isthe eigenspace projection of image X4

. g2 is the eigenspace projection of image X,

Then, A A A A
& —g |l =|x—X|

That is, distance in Eigenspace is approximately equal to the
distance between two original images.

10/8/20 Dr. Yanjun Qi / UVA CS 64



Classify / Recognition with eigenfaces

Step I: Process labeled training images T

* Find mean u and covariance matrix
* Find k principal components (i.e. eigenvectors of 2) = uy,...u,

* Project each training image x; onto subspace spanned by the top
principal components:

(Wi, oo, Wi) = (U (= 1), o, U (= 1)

M. Turk and A. Pentland, Face Recdghition Using Eigenfaces, CVPR 1991 >



http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

Classify / Recognition with eigenfaces

Step 2: Nearest neighbor based face classificaticﬂ

Given a novel image x
* Project onto k PC’s subspace:
(Wl,...,Wk) = (ulT(X_ H)/ ) ukT(X_ H))

* Optional: check reconstruction error x — x to determine whether the image is
really a face A

* Classify as closest training face(s) in the lower  k-dimensional subspace

M. Turk and A. Pentland, Face Recdghition Using Eigenfaces, CVPR 1991 *



http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

Is this a face or not?
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Onginal faces
trainingSet

—

E = exgenfaces(trainingSet)

y

W = weights(E trainingSet)

Input unknown image X

l

\ 4
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Wi = weight(E, X)

¥

D = avg(distance(W,Wx))

D<H?

Y

Xis a face

X is not a face

Store X and Wy

7

Figure 1: High-level functioning principle of the eigenface-based facial recognition

algorithm

End



Example 2: e.g. Handwritten Digits

\

\\

n ©
@ » S
a o —
O O O
W © c =0 m
© o W x o
oo 0 L~ Q
o N G X 5

No)
— = wu %o Q
X 08 o @© &
O o M £ @)
A 1 = 0
.....

components

M0 M MMM
AN -
MG
MMMV D)) /
MeoMMe MM -
MO—~MNMNAOMOCAN -
AOOMP NN ) -
MNONDDOMIN = o
NNMONMPAON) - < )
MMM -
VMMM &
NN =
ROMOOMMOMIONYY 25

\

e.g. From ESL book
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FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.
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Principal Components prgjection of the digits (time 0.02s)
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Extra: A 2D Numerical Example

10/8/20 Dr. Yanjun Qi / UVA CS
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PCA Example —STEP 1

e Subtract the mean from each of the data T
dimensions.

e  Subtracting the mean makes variance and
covariance calculation easier by simplifying their
equations. The variance and co-variance values are
not affected by the mean value.

From Dr. S. Narasimhan



PCA Example =STEP 1

DATA: (p=2)

x1

2.5
0.5
2.2
1.9
3.1
2.3

1.5
1.1

X2
2.4
0.7
2.9
2.2
3.0
2.7
1.6
1.1
1.6
0.9

/ERO MEAN DATA:

X1 X2
.69 49
-1.31] -1.21
.39 .99
.09 29
1.29 | 1.09
49 /9
.19 -.31
-81 | -.81
-31 | -31
-./1 | -1.01

From Dr. S. Narasimhan



PCA Example =STEP 2

e Calculate the covariance matrix T
CoV = 616555556 .615444444
615444444 716555556

*since the non-diagonal elements in this covariance
matrix are positive, we should expect that the x1 and
X2 variable increase together.
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PCA Example =STEP 3

 Calculate the eigenvectors and eigenvalues of the covariance matrix
eigenvalues = 1.28402771
0490833989

K
eigenvectors = -.6/77873399 -.7351/8656
-./3517/8656 .677873399

10/8/20 Dr. Yanjun Qi / UVA CS
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PCA Example =STEP 3

Mean adjusted data with eigenvectors overiayed

2 ™ T T T . T w T
PCAdataadJust.dat +
\ (-.740682469/ 671 855252;'x ------- "
(- 671855252/~ 740682469)*X ------a"
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Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of

the covariance matrix overlayed on top.
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ecigenvectors are plotted as
diagonal dotted lines on the
plot.

eNote they are perpendicular
to each other.

*Note one of the
eigenvectors goes through
the middle of the points, like
drawing a line of best fit.
*The second eigenvector
gives us the other, less
important, pattern in the
data, that all the points
follow the main line, but are
off to the side of the main
line by some amount.
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PCA Example —STEP 4

* Reduce dimensionality and form feature vector

the eigenvector with the highest eigenvalue is the principle
component of the data set.

In our example, the eigenvector with the largest eigenvalue was
the one that pointed down the middle of the data.

Once eigenvectors are found from the covariance matrix, the
next step is to order them by eigenvalue, highest to lowest. This
gives you the components in order of significance.

10/8/20 Dr. Yanjun Qi / UVA CS
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PCA Example —STEP 4

* Feature Vector
FeatureVector = (eig, eig, eigs ... eig,)

We can either form a feature vector with both of the
eigenvectors:

-.677873399 -.7351/8656
-./35178656 .6/7873399

or, we can choose to leave out the smaller, less
significant component and only have a single column:

-.677873399 o o
Now, if you like, you can decide to ignore the
- 735178656 components of lesser significance.

You do lose some information, but if
the eigenvalues are small, you don't lose much



PCA Example =STEP 5

*Deriving the new data T

FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the eigenvectors in the
columns transposed so that the eigenvectors are now in the
rows, with the most significant eigenvector at the top

RowZeroMeanData is the mean-adjusted data transposed,
ie. the data items are in each column, with each row
holding a separate dimension.
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PCA Example =STEP 5

FinalData transpose: dimensions

along columns

wl

-.827970186

1.77758033
-.992197494
-.274210416
-1.67580142
-.912949103
0991094375
1.14457216
438046137
1.22382056

w2

-.175115307

142857227
384374989
130417207
-.209498461
175282444
-.3498246598
0464172582
0177646297
-.162675287
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PCA Example =STEP 5

Data transformed with 2 eigenvectors
2 I 1 I

"A.’doﬁblevecﬂﬁal_dat" U

05 -

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.
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Reconstruction of original Data

e |f we reduced the dimensionality, obviously, when T
reconstructing the data we would lose those
dimensions we chose to discard.

*In our example let us assume that we considered only
the wl dimension...
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Reconstruction of original Data

wl

-.827970186
1.77758033
-.992197494
-.274210416
-1.67580142
-.912949103
.099109437/5
1.14457216
438046137
1.22382056

10/8/20

Criginal data restored using only a single eigenvector
4
".,.'lo'ssyplusmean.aat" +
3+
&
2L +
+
1
+
0
-1 1 1 1
-1 0 1 2 3 4

Figure 3.5: The reconstruction from the data that was derived using only a single eigen-
vector
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