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Curse of Dimensionality

• Increasing the number of features will not 
always improve classification accuracy.

• In practice, the inclusion of more features 
might actually lead to worse performance.

• The number of training examples required 
increases exponentially with 
dimensionality p

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



e.g., QSAR: Drug Screening

Binding to Thrombin
(DuPont Pharmaceuticals)

- 2543 compounds tested for their ability to 
bind to a target site on thrombin, a key 
receptor in blood clotting; 192 “active”
(bind well); the rest “inactive”. Training set 
(1909 compounds) more depleted in active 
compounds.

- 139,351 binary features, which describe 
three-dimensional properties of the 
molecule.

Weston et al, Bioinformatics, 2002

Number of features
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e.g., Leukemia Diagnosis

Golub et al, Science Vol 286:15 Oct. 1999
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10/15/20 Dr. Yanjun Qi / UVA CS 4



e.g., Text Categorization with many BOW featuers

Bekkerman et al, 
JMLR, 2003

Reuters: 21578 news wire, 114 semantic 
categories.

20 newsgroups: 19997 articles, 20 
categories.

WebKB: 8282 web pages, 7 categories.

Bag-of-words: >100,000 features.

10/15/20 Dr. Yanjun Qi / UVA CS 5



10/15/20 Dr. Yanjun Qi / UVA CS 

e.g., Movie Reviews and Revenues: An Experiment in Text 
Regression,  Proceedings of HLT '10 (1.7k n / >3k features) 

e.g. counts 
of a ngram in 

the text 
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Dimensionality Reduction

• What is the objective?
• Choose an optimum set of features of lower dimensionality to improve

classification accuracy.

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Dimension Reduction è Simpler models 

•Because: 
• Simpler to use (lower computational complexity)
• Easier to train (needs less examples)
• Less sensitive to noise
• Easier to explain (more interpretable)
• Generalizes better (lower variance)
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Adapted from Dr. Christoph Eick Slides 
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Today: Dimensionality Reduction (Two Ways)

Feature extraction: finds a set of new
features (i.e., through some mapping f()) 
from the existing features.

Feature selection: chooses a 
subset of the original features.

The mapping f() 
could be linear or 
non-linear

K<<N K<<N

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8
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Feature Selection

• Select the most relevant ones to build better, faster, and easier to understand
learning models.

X

p

n

pʼ

From Dr. Isabelle Guyon
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Summary: Feature Selection

• Filtering approach: 
ranks features or feature subsets independently of the predictor.

• …using univariate methods: consider one variable at a time
• …using multivariate methods: consider more than one variables at a time

•Wrapper approach:
uses a predictor to assess (many) features or feature subsets.

• Embedding approach:
uses a predictor to build a (single) model with a subset of 
features that are internally selected.
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Summary: filters vs. wrappers vs. 
embedding

n Main goal: rank subsets of useful features 

From Dr. Isabelle Guyon
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(I) Filtering: univariate filtering
e.g. T-test

xi

Density
P(Xi| Y=-1)
P(Xi| Y=1)

Legend: 
Y=1
Y=-1

-1

µ- µ+

s- s+ xj
s-
s+

µ-, µ+
n Goal: determine the relevance of a given single feature for two classes of samples.
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Filter Methods
• Select subsets of variables as a pre-processing step,

independently of the used classifier!!

• E.g. Group correlation 
• E.g. Information theoretic filtering methods such as 

Markov blanket

(I) Filtering : multi-variate:
Feature Subset Selection
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Filter Methods
• usually fast

• provide generic selection of features, not tuned by given 
learner (universal)

• this is also often criticised (feature set not optimized for 
used learner)

• Often used as a preprocessing step for other methods

(I) Filtering :  Summary 
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(I) Filtering : (many choices)

Dr. Yanjun Qi / UVA CS 10/15/20 16Guyon-Elisseeff, JMLR 2004; 
Springer 2006



(2) Wrapper 

•Wrapper approach:
uses a predictor to assess (many) 

features or feature subsets.
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Wrapper Methods
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Wrapper Methods
• Learner is considered a black-box
• Interface of the black-box is used to score subsets of 

variables according to the predictive power of the 
learner when using the subsets.

• Results vary for different learners

(2) Wrapper : Feature Subset Selection
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(b). Search: even more search 
strategies for selecting feature subset

§ Forward selection or backward elimination.

§ Beam search: keep k best path at each step.
§ GSFS: generalized sequential forward selection – when (n-k) 
features are left try all subsets of g features. More trainings at each 
step, but fewer steps.

§ PTA(l,r): plus l , take away r – at each step, run SFS l times 
then SBS r times.

§ Floating search: One step of SFS (resp. SBS), then SBS (resp. 
SFS) as long as we find better subsets than those of the same 
size obtained so far.

From Dr. Isabelle Guyon
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(3) Embedded

•Embedding approach:
uses a predictor to build a (single) model 
with a subset of features that are internally 
selected.
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In practice…

•No method is universally better:
• wide variety of types of variables, data distributions, 

learning machines, and objectives. 

•Feature selection is not always necessary to achieve 
good performance.

From Dr. Isabelle Guyon
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Today: Dimensionality Reduction (Two Ways)

Feature extraction: finds a set of new
features (i.e., through some mapping f()) 
from the existing features.

Feature selection: chooses a 
subset of the original features.

The mapping f() 
could be linear or 
non-linear

K<<N K<<N

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8
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Feature Extraction
• Linear combinations are particularly attractive because they are 

simpler to compute and analytically tractable.

• Given x ϵ Rp, find an N x K matrix U such that: 

y = UTx  ϵ RK where K<P 

24

UT

This is a 
projection 
from the N-
dimensional 
space to a K-
dimensional 
space.

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8
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Feature Extraction (cont’d)

• From a mathematical point of view, finding an optimum
mapping y=𝑓(x) is equivalent to optimizing an objective
function.

• Different methods use different objective functions, e.g.,
• Information Loss: The goal is to represent the data as accurately as 

possible (i.e., no loss of information) in the lower-dimensional space.
• Discriminatory Information: The goal is to enhance the class-

discriminatory information in the lower-dimensional space.

25
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Feature Extraction (cont’d)

• Commonly used linear feature extraction methods:
• Principal Components Analysis (PCA): Seeks a projection that 

preserves as much information in the data as possible.
• Linear Discriminant Analysis (LDA): Seeks a projection that best

discriminates the data.

•More methods:
• Retaining interesting directions (Projection Pursuit),
• Making features as independent as possible (Independent Component 

Analysis or ICA),
• Embedding to lower dimensional manifolds (Isomap, Locally Linear 

Embedding or LLE).

26
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Principal Component Analysis

Dimension Reduction 

Gaussian assumption 

Direction of maximum 
variance 

Eigen-decomp

Principal 
components

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters
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How does PCA work?

• Principal Components Analysis (PCA): approximating a high-
dimensional data set with a lower-dimensional linear subspace

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



How does PCA work?

• Find line of best fit, passing through the origin

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



How does PCA work? Explaining Variance

• Each PC always explains some proportion of the total variance in the 
data. Between them they explain everything

• PC1 always explains the most
• PC2 is the next highest etc. etc.
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Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Explaining Variance – Scree Plots

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Recap: “Block View”

x

1st 

hidden layer
2nd

hidden layer Output layer
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an auto-encoder-decoder is trained to reproduce the input
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Reconstruction Loss: force the ‘hidden layer’ units to become good 
/ reliable feature detectors

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt

𝑥⃗

#⃗𝑥

ℎ | #⃗𝑥- 𝑥⃗|
Minimize diff



Autoencoders: structure

• Encoder:  compress input into a latent-space of usually smaller 
dimension.  h = f(x)
• Decoder: reconstruct input from the latent space.   r = g(f(x)) with r as 

close to x as possible

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f



Autoencoders:  many variations
• Denoising:  input clean image + 

noise and train to reproduce 
the clean image.

https://www.edureka.co/blog/autoencoders-tutorial/

• Neural network autoencoders
Can learn nonlinear dependencies
Can use convolutional layers
Can use transfer learning
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Today Recap: Dimensionality Reduction (Two Ways)

Feature extraction: finds a set of new
features (i.e., through some mapping f()) 
from the existing features.

Feature selection: chooses a 
subset of the original features.

The mapping f() 
could be linear or 
non-linear

K<<N K<<N

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8
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Thank you
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Thank You
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Module IV 
Notebook PCA



I will run notebook using PCA on face images / Iris 
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https://drive.google.com/fi
le/d/10zwaPdAYdz9kzCg5Q
h03idASiCm9sKUw/view?u
sp=sharing

https://drive.google.com/file/d/10zwaPdAYdz9kzCg5Qh03idASiCm9sKUw/view?usp=sharing


References 

q Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. 
New York: Springer, 2009.

q Dr. S. Narasimhan’s PCA lectures
q Prof. Derek Hoiem’s eigenface lecture 
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So PCA is great then?

• Kind of…

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



tSNE to the rescue…

• T-Distributed Stochastic Neighbour Embedding

• Aims to solve the problems of PCA
• Non-linear scaling to represent changes at different levels

• Optimal separation in 2-dimensions

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Perplexity Robustness

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



tSNE Projection

• X and Y don’t mean anything (unlike PCA)
• Distance doesn’t mean anything (unlike PCA)

• Close proximity is highly informative
• Distant proximity isn’t very interesting
• Can’t rationalise distances, or add in more data

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Word2vec

• Input: large corpus of text 
• Embed words into a high-dim space
• words with common contexts in 

the corpus are close in the space

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



http://nlp.yvespeirsman.be/blog/visualizing-word-embeddings-with-tsne/


