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Today : Probability Review

» * The big picture

* Events and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

e Structural properties, e.g., Independence,
conditional independence

e Maximum Likelihood Estimation



The Big Picture
Probability ‘

Model
I.e. Data generating
process

Observed
Data

_ Estimation / learning /

Statistics / Data mining
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Probability

* Counting

* Basics of probability

» Conditional probability

* Random variables

* Discrete and continuous distributions
* Expectation and variance

* Tail bounds and central limit theorem



Statistics

* Maximum likelihood estimation
* Bayesian estimation

* Hypothesis testing

* Linear regression

* [Machine learning]



Probability as frequency

*Consider the following questions:

*1. What is the probability that when | flip a coin it

is “heads’ ?
*2. why ? We can count =» ~1/2

*3. What is the probability of Blue Ridge Mountains
to have an erupting volcano in the near future ?

=» could not count

Message: The frequentist view is very useful, but it seems that we

can also use domain knowledge to come up with probabilities.
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Probability as a measure of uncertainty

* Imagine we are throwing darts at a w
size 1x1 and that all darts are guarant
to fall within this 1x1 wall.

* What is the probability that a dart wil
the shaded area?
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Probability as a measure of uncertainty

* Probability is @ measure of certainty

of an event taking place.
ST
* i.e. in the example, we were n
measuring the chances of hitting the ARTAREY \
shaded area. Y
|/ /
/ 4
VA
Vi |/ »
Its area is 1~
#RedBoxes
prob =
# Boxes

/18/
e Adapt from Prof. Nando de Freitas’s review slides



Today : Probability Review

* The big picture
» * Events and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

e Structural properties, e.g., Independence,
conditional independence

e Maximum Likelihood Estimation



Probability

Probability is the formal study of the laws of chance. Probability
allows us to manage uncertainty.

The sample space is the set of all outcomes. For example, for a die we

have 6 outcomes: Odie = {1,2,3,4.,5,6}

- SNS09S

“ ,, The elements of O are called
Elementary Event "Throw 2
elementary events.
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Probability

* Probability allows us to measure many events.

* The events are subsets of the sample space O. For
example, for a die we may consider the following

events: e.q.,
J GREATER = {5, 6}
EVEN = {2, 4. 6)

*Assign probabilities to these events: e.q.,

P(EVEN) = 1/2

Adapt from Prof. Nando de Freitas’s review slides



Sample space and Events

* O:Sample Space,

* result of an experiment / set of all

outcomes

* |f you toss a coin twice O = {HH,HT,TH,TT]
* Event: a subset of O

e Firsttossis head = {HH,HT}
* S:eventspace, a set of events:

* Contains the empty event and O
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Axioms for Probability

Sample Space Event Space

* Defined over (O,S) s.t.
e 1>=P(a)>=0forallainS$
e P(O)=1

e |f A, Bare disjoint, then
* P(AUB)=p(A) + p(B)



% NI

Impossible Unlikely = Even Chance Likely Certain
0 A A 1
1-in-6 Chance 4-in-5 Chance

Probability is always between 0 and 1
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Axioms for Probability

P(0) = EP(Bi)

——
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OR operation for Probability

* We can deduce other axioms from the above ones
*Ex: P(A U B) for non-disjoint events

P(A or B) = P(A) + P(B) - P(A and B)

P( Union of A set and B set)
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NOT operation for Probability

e 0<=PA) <=1,

e P(AorB)=P(A) + P(B) - P(A and B)
From these we can prove:
P(not A) = P(~A) = 1-P(A)

Copyright © Andrew W. Moore




Law of Total Probability

e 0<=PA) <=1,

e P(AorB)=P(A) + P(B) - P(A and B)
From these we can prove:
P(A) = P(A: B) + P(A N ~B)

P( Intersection of A and B)

Copyright © Andrew W. Moore




Law of Total Probability

e 0<=PA) <=1,
e P(AorB)=P(A) + P(B) - P(A and B) P//\) /\&7
A

From these we can prove: = (7 ( . w
P(A) =P(ANB)+PAAN~B) WN\(W
NG
- W\“w
A QL N
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Today : Probability Review

* The big picture
* Events and Event spaces

» * Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

e Structural properties, e.g., Independence,
conditional independence

e Maximum Likelihood Estimation



From Events to Random Variable (RV)

e Concise way of specifying attributes of outcomes
 Modeling students (Grade and Intelligence):

O = all possible students (sample space)
 What are events (subset of sample space)
 Grade_ A =all students with grade A
 Grade_ B = all students with grade B

 HardWorking_Yes = ... who works hard
* Very cumbersome

e Need “functions’ that maps from O to an attribute space T.
e P(H=VYES)=P({student € O : H(student) = YES})
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Random Variables (RV) P(H:‘reg)

H: hardworking

P(H = Yes) = P( {all students who is working hard on the course})

* “functions” that maps from O to an attribute space T.
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Notations

P(A) is shorthand for P(A=true)
P(~A) is shorthand for P(A=false)

Same notation applies to other binary RVs:
P(Gender=M), P(Gender=F)

Same notation applies to multivalued RVs:
P(Major=history), P(Age=19), P(Q=c)

Note: upper case letters/names for variables, lower case letters/names
for values
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Discrete Random Variables

e Random variables (RVs) which may take on only a countable number of
distinct values

e Xis a RV with arity k if it can take on exactly one value out of {xy, ..., X}



Probability of Discrete RV

* Probability mass function (pmf): P(X = x;)

*Easy facts about pmf
=3 P(X=x)=1
"P(X=xNX=x)=0ifi#]
"P(X=x,UX=x)=P(X=x)+P(X=x)ifi#]

P(X=x,UX=xU.. UX=x)=1 .
>0 (X=x2)
-L;\ [

—-——
—

\—-

10/18/20 X = )C%:X4_

=X X= Ig)



e.g. Coin Flips

* You flip a coin
* Head with probability p, e.g. =0.5

* You flip a coin for k, e.g., =100 times
* How many heads would you expect
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e.g. Coin Flips cont.

* You flip a coin %im&'g: l/( ) ( K
* Head with probability p
* Binary random variable
* Bernoulli trial with success probability p

* You flip a coin for k times

* How many heads would you expect
* Number of heads X is a discrete random variable 'P (‘H‘HQ,(JS)
k

e Binomial distribution with parameters k and p

Tckegn x\ﬂ'
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Discrete Random Variables

e Random variables (RVs) which may take on only a countable number
of distinct values
e E.g. the total number of heads X you get if you flip 100 coins

e Xis a RV with arity k if it can take on exactly one value out of
* E.g. the possible values that X can take on are 0, 1, 2,..., 100

T
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e.g., two Common Distributions

* Uniform
* X takes values 1, 2, ..., N XNUI:I”N:I
* E.g. picking balls of different colors from a box P(X _ l) _ I/N

* Binomial
e X takes valuesO, 1, ..., k

X~Bin(k, p)

* E.g. coin flips k times P(X _ i) _ ( ]lc jpi (1 B p)k_i
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Today : Probability Review

* The big picture
* Events and Event spaces
 Random variables

» e Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule,
law of total probability, etc.

e Structural properties

* Independence, conditional
iIndependence



If hard to directly estimate from data, most likely we

can estimate

* 1. Joint probability
e Use Chain Rule

e 2. Marginal probability

» Use the total law of probability

e 3. Conditional probability
* Use the Bayes Rule

10/18/20

b(A,

fg (B)=P (8,A) +P(B,~A)

P(A
Te

B) — (& P(A(B)
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(1). To calculate Joint Probability:
Use Chain Rule

e Two ways to use chain rules on joint probability

/_) 302%/(

P(A,B) =
P(A,B) =

10/18/20
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(2). To calculate Marginal Probability:
Use Rule of total probability (e.g. event version)

P(A)=
PIANB) +
1 P(AN~B)
Y(?%L/\M
EP AIB WHY 7?7

(A\ (A (\5&>
P B (AN (BIU B U BR)

_ ZV(\[\\@M\

11111111



(2). To calculate Marginal Probability:
Use Rule of total probability (e.g. RV version)

* Given two discrete RVs X and Y, which take values in:

ETUE A S S

P(X=x)=) P(X=xY=y)

:ZJP(szi Y=y p(Y=y)

L]

11111111 P(A) = P(A " B) + P(A " ~B)



(3). To calculate Conditional Probability:
Use Bayes Rule (e.g. RV version)

P(X=xNY=y)

P(X=x|Y=y)= Y =)
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One Example

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries?

PB,=r,B,=r) =

P(BQZT)

P(B:L:T‘BQZT)

10/18/20



One Example: Joint

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries?

PB,=r,B,=r) =

10/18/20
Adapt from Prof. Nando de Freitas’s review slides



One Example: Joint

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries?

P(B,=r,B,=r) = W%: -1 ) (DU%Z"*’B f}
P(% 2 \4
Q)'\%.f \9>“/ ’I | 5

10/18/20
Adapt from Prof. Nando de Freitas’s review slides



One Example: Joint

we have the set{r,r,r,b} \What is the probability of drawing 2 red balls

Assume we haveCajbox with 3 red balls and 1 blue ball. That is,
in the first 2 tries:

P(B,=r,B,=r1) = K)(@("m F(Béck\&":o_

_ 3 2 _
-t Ty T2

10/18/20
Adapt from Prof. Nando de Freitas’s review slides



One Example: Marginal

What is the probability that the 2" ball drawn from the set {r,r,r,b}
will be red?

Using marginalization, P(B, =r) = g) ( @2: r A 611V>
+ (P Be=V, Bl:b)
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One Example: Marginal

What is the probability that the 2" ball drawn from the set {r,r,r,b}
will be red?

Using marginalization, P(B, =r) = P ( EZEY s [ >
Jvf (B =1 /\%f@
= PlBi=r)CBy=t| By )P (Bi=b) PD.

i*/ft/\‘\

= M 7

beb)
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One Example

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls
in the first 2 tries?

P(Bl=r?B2=r) = F(B.z'r) F(B)-‘-Y' BI"Y) — _é_
"3 i 2
¢ 3
P(BZ — T) = F( BI=Y, B2=r>+P(Bl=b)Bz=Y)
P(Bl — TlBZ — ’)“) - F(Bf‘r: Bz’-f)
P(Bz-‘—f)
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C‘I‘ﬁ;h ?b'e

One Example: Conditional Ltk law Prob
F(%,cy\ %z’—‘Y) P QOSJ(
- pC o ‘va) P(B‘:K), %A%e
B P(%2$Y)
Y

| 05K
$( Bz'-'-'Y\Bl‘—'Y) ?(BFY)

0BT, Bi=Y) * P(Bi=F, Bi=b)

\I
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Bayes Rule

G e — S —
P(A) P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

10/18/20
Copyright © Andrew W. Moore

P@f (x I‘F.- tes)

7 PO




More General Forms of Bayes Rule
P(B| A)P(A P(ez=v 8°t)
A= P(B] A)P(z(él) P)(B( \~)A) P(~ A)P(BPY&'Y)"'
P(B=Y.B74)
P(B| ANX)P(ANKX)
P(A —
A1) P(BAX)
P(A=a1 |B) = P(B|A=a1)P(A=a1)
Y P(BIA=a,)P(A=a)




E.g.: Use both Bayes Rule and Marginal

e Xand Y are discrete RVs...

PX=xiNY = yj)

P(X = xilY = yj) = P(Y = yj)

S l

P(Y=y;[X=x)P(X=x)

P(sz.

l

Y:yj):xZLP(Yzyj\X:xk)P(\X:x")
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Simplify Notation:
Conditional Probability

events
P(X =x|Y = Y) = P(Xﬁ

But we will always write it this way:

Plx|y)= L)

p(»y)
P(X=x true) -> P(X=x) -> P(x)

11111111

P(Y=y)

|

NV}

PDq( Wz )Pl (¥ 4t

\I(/\Q

eudi.



Simplify Notation:
An Example of estimating conditional

 We know that P(rain) = 0.5

* |f we also know that the grass is wet, then
how this affects our belief about whether it
rains or not?

P(rain)P(wet | rain)

P(wet)

P(rain | wet) =

Wz G-=
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Simplify Notation:
An Example of estimating conditional

 We know that P(rain) = 0.5

* |f we also know that the grass is wet, then
how this affects our belief about whether it
rains or not?

W= = P(rain)P(wet | rain)
P(rain | wet) = .
P(wet)

P (=5 | wet)

P(x)P(y | x) (X))
P(xly)= xp(yi'x = %

10/18/20



Simplify Notation:
Conditional

* Bayes Rule

P(xly)z P(x)P(ylx)

P(y)

* You can condition on more variables

_ P(x[2)P(y|x,z)

Pxl»z)=—=5015



Simplify Notation: Marginal

 We know p(X, Y), what is P(Y=y) or P(X=x)?
* We can use the law of total probability

plx)= ZylP(x,y)

U\\\ \O% \0\9-\{ Ja uQﬁ

lllll

%P(y)f’(x y)
{yl ’ym}

plx)=2

P(x,y.z)
—ZP( z)P(x| )

Zi o (Y%=
v ¥




Simplify Notation:
An Example

 We know that P(rain) = 0.5

* |f we also know that the grass is wet, then
how this affects our belief about whether it

rains or not? 0.5
/ [ (/\>
, P(rain)P(wet | razn) P
P(rain | wet) = K\’m‘;ﬂf@
Voo M@Lf(wﬂ\fwﬁ
ety GAS)

P (12) et rain) + Py )

%\(N\ Sw\j\ i\M d} Ww@k @mﬁ
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Today : Probability Review

* The big picture
* Events and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

e Structural properties, e.g., Independence,
conditional independence

e Maximum Likelihood Estimation



Independent RVs

*Definition: X and Y are independent iff

P(X=xNY=y)=P(X=x)P(Y=y)



More on Independence

P(X=xNnY=y)=P(X=x)P(Y=y)

-
P(X=x|Y =y)=P(X=x) ‘

P(Y=y|X=x)=P(Y=y)

* E.g. no matter how many heads you get, your friend will not be affected,
and vice versa

11111111



More on Independence

e Xisindependent of Y means that knowing Y
does not change our belief about X.

* The following forms are equivalent:
* P(X=x, Y=y) = P(X=x) P(Y=y)
e P(X=x]|Y=y) = P(X=x)

* The above should hold for all x;, v,

* Itis symmetricand writtenas y | vy
J

10/18/20



Conditionally Independent RVs Qg \G:

* Intuition: X and Y are conditionally independent given Z means that
once Z is known, the value of X does not add any additional
information about Y

 Definition: X and Y are conditionally independent given Z iff

P(X=xnY=y|Z=z)=P(X=x|Z=z)P(Y =y|Z=2z)

If holding for all x;, y; z, X1Y|Z @

® ©
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More on Conditional Independence

P(X=xNY=y|Z=z)=P(X=x|Z=z)P(Y=y|Z=2)

.

P(X=x|Z=2z) ‘

P(Y=y|X=x,Z=z)=P(Y=y|Z=z)

P(X:x\Y:y,zzz)

11111111



independence and conditional independence

* Independence does not imply conditional independence.

 Conditional independence does not imply independence.

10/18/20



Today Recap: Probability Review

* The big picture
* Events and Event spaces
 Random variables

* Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

e Structural properties, e.g., Independence,
conditional independence

Maximum Likelihood Estimation (next class)
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