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Today : Probability Review

• The big picture
• Events and Event spaces
• Random variables
• Joint probability, Marginalization, 

conditioning, chain rule, Bayes Rule, law of 
total probability, etc.

• Structural properties, e.g., Independence, 
conditional independence

• Maximum Likelihood Estimation
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The Big Picture

Model 
i.e. Data generating 

process 

Observed 
Data

Probability

Estimation / learning / 
Statistics / Data mining
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Probability

• Counting
• Basics of probability
• Conditional probability
• Random variables
• Discrete and continuous distributions
• Expectation and variance
• Tail bounds and central limit theorem
• ……
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Statistics

• Maximum likelihood estimation
• Bayesian estimation
• Hypothesis testing
• Linear regression
• [Machine learning]
• ……
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Probability as frequency 

•Consider the following questions:
•1. What is the probability that when I flip a coin it 

is “heads”? 
•2. why ? 
•3. What is the probability of Blue Ridge Mountains 

to have an erupting volcano in the near future ? 

Message: The frequentist view is very useful, but it seems that we 

can also use domain knowledge to come up with probabilities.

We can count è ~1/2

è could not count 

Adapt from Prof. Nando de Freitas’s review slides
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Probability as a measure of uncertainty

• Imagine we are throwing darts at a wall of 
size 1x1 and that all darts are guaranteed 
to fall within this 1x1 wall. 

• What is the probability that a dart will hit 
the shaded area? 

Adapt from Prof. Nando de Freitas’s review slides
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Probability as a measure of uncertainty

• Probability is a measure of certainty 
of an event taking place.

• i.e. in the example, we were 
measuring the chances of hitting the 
shaded area. 

prob = #RedBoxes
#Boxes

Adapt from Prof. Nando de Freitas’s review slides
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Today : Probability Review

• The big picture
• Events and Event spaces
• Random variables
• Joint probability, Marginalization, 

conditioning, chain rule, Bayes Rule, law of 
total probability, etc.

• Structural properties, e.g., Independence, 
conditional independence

• Maximum Likelihood Estimation
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Probability 

O:
Elementary Event “Throw 2”

Odie = {1,2,3,4,5,6}

The elements of O are called 
elementary events.
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Probability 

•Probability allows us to measure many events.
•The events are subsets of the sample space O. For 
example, for a die we may consider the following 
events: e.g., 

•Assign probabilities to these events: e.g., 

EVEN = {2, 4, 6}
GREATER = {5, 6}

P(EVEN)  = 1/2

Adapt from Prof. Nando de Freitas’s review slides
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Sample space and Events

• O : Sample Space, 
• result of an experiment / set of all 

outcomes 
• If you toss a coin twice O = {HH,HT,TH,TT}

• Event: a subset of O
• First toss is head = {HH,HT}

• S: event space, a set of events:
• Contains the empty event and O
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Axioms for Probability

• Defined over (O,S) s.t.
• 1 >= P(a) >= 0 for all a in S
• P(O) = 1

• If A, B are disjoint, then 
• P(A U B) = p(A) + p(B)
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Sample Space Event Space
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Axioms for Probability

B1

B2B3

B4

B5

B6B7

P Bi( )∑•P(O) =
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OR operation for Probability

•We can deduce other axioms from the above ones
•Ex: P(A U B) for non-disjoint events

P( Union of A set and B set)
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A
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NOT operation for Probability



A

B

P( Intersection of A and B)
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Law of Total Probability



A

B
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Law of Total Probability



Today : Probability Review

• The big picture
• Events and Event spaces
• Random variables
• Joint probability, Marginalization, 

conditioning, chain rule, Bayes Rule, law of 
total probability, etc.

• Structural properties, e.g., Independence, 
conditional independence

• Maximum Likelihood Estimation
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10/18/20

From Events to Random Variable (RV)

• Concise way of specifying attributes of outcomes
• Modeling students (Grade and Intelligence):
• O =  all possible students (sample space)
• What are events (subset of sample space)
• Grade_A = all students with grade A
• Grade_B = all students with grade B
• HardWorking_Yes = … who works hard

• Very cumbersome

• Need “functions” that maps from O to an attribute space T.
• P(H = YES) = P({student ϵ O : H(student) = YES})  



Random Variables (RV)
O

Yes

No

A

B A+

H: hardworking

G:Grade

P(H = Yes) = P( {all students who is working hard on the course})

• “functions” that maps from O to an attribute space T.
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Notations

• P(A) is shorthand for P(A=true)
• P(~A) is shorthand for P(A=false)
• Same notation applies to other binary RVs:

P(Gender=M), P(Gender=F)
• Same notation applies to multivalued RVs:

P(Major=history), P(Age=19), P(Q=c)
• Note: upper case letters/names for variables, lower case letters/names 

for values
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Discrete Random Variables

• Random variables (RVs) which may take on only a countable number of 
distinct values

• X is a RV with arity k if it can take on exactly one value out of {x1, …, xk}
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Probability of Discrete RV

•Probability mass function (pmf): P(X = xi)
•Easy facts about pmf
§Σi P(X = xi) = 1
§P(X = xi∩X = xj) = 0 if i ≠ j
§P(X = xi U X = xj) = P(X = xi) + P(X = xj) if i ≠ j
§P(X = x1 U X = x2 U … U X = xk) = 1 
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e.g. Coin Flips

• You flip a coin
• Head with probability p, e.g. =0.5

• You flip a coin for k, e.g., =100 times
• How many heads would you expect
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e.g. Coin Flips cont.

• You flip a coin
• Head with probability p
• Binary random variable
• Bernoulli trial with success probability p

• You flip a coin for k times
• How many heads would you expect
• Number of heads X is a discrete random variable
• Binomial distribution with parameters k and p
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Discrete Random Variables

• Random variables (RVs) which may take on only a countable number 
of distinct values
• E.g. the total number of heads X you get if you flip 100 coins

• X is a RV with arity k if it can take on exactly one value out of 
• E.g. the possible values that X can take on are 0, 1, 2,…, 100

x1,…,xk{ }
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e.g., two Common Distributions

• Uniform
• X takes values 1, 2, …, N

• E.g. picking balls of different colors from a box

• Binomial
• X takes values 0, 1, …, k

• E.g. coin flips k times

   
X ∼U 1,..., N⎡⎣ ⎤⎦
( )P X 1i N= =

   
X ∼ Bin k, p( )

  
P X = i( ) = k

i
⎛

⎝⎜
⎞

⎠⎟
pi 1− p( )k−i
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Today : Probability Review

• The big picture
• Events and Event spaces
• Random variables
• Joint probability, Marginalization, 

conditioning, chain rule, Bayes Rule, 
law of total probability, etc.

• Structural properties
• Independence, conditional 

independence
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If hard to directly estimate from data, most likely we 
can estimate  

• 1. Joint probability 
• Use Chain Rule

• 2. Marginal probability 
• Use the total law of probability 

• 3. Conditional probability 
• Use the Bayes Rule 
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(1). To calculate Joint Probability: 
Use Chain Rule

• Two ways to use chain rules on joint  probability

P(A,B) = p(B|A)p(A)
P(A,B) = p(A|B)p(B)

10/18/20



(2). To calculate Marginal Probability: 
Use Rule of total probability (e.g. event version) 

A

B1

B2B3

B4

B5

B6B7

p A( ) = P Bi( )P A | Bi( )∑ WHY ??? 
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(2). To calculate Marginal Probability: 
Use Rule of total probability (e.g. RV version)

• Given two discrete RVs X and Y, which take values in: 

   
x1,…,xk{ }    

y1,…, ym{ }

( ) ( )
( ) ( )

P X P X Y

P X Y P Y

i i jj

i j jj

x x y

x y y

= = = Ç =

= = = =

å
å
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(3). To calculate Conditional Probability: 
Use Bayes Rule (e.g. RV version)

( ) ( )
( )

P X Y
P X Y

P Y
x y

x y
y

= Ç =
= = =

=
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One Example

P (B1 = r|B2 = r)

P (B2 = r)
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One Example: Joint

Adapt from Prof. Nando de Freitas’s review slides
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One Example: Joint

Adapt from Prof. Nando de Freitas’s review slides
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One Example: Joint

Adapt from Prof. Nando de Freitas’s review slides
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One Example: Marginal 
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One Example: Marginal 
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One Example

P (B1 = r|B2 = r)

P (B2 = r)

10/18/20



One Example: Conditional 
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Bayes Rule
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P(A = a1 | B) =
P(B | A = a1)P(A = a1)
P(B | A = ai )P(A = ai )

i
∑
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E.g.: Use both Bayes Rule and Marginal  

• X and Y are discrete RVs…

( ) ( ) ( )
( ) ( )

P Y X P X
P X Y

P Y X P X
j i i

i j
j k kk

y x x
x y

y x x

= = =
= = =

= = =å
10/18/20

   
x1,…,xk{ }

P X = 𝑥𝑖|Y = 𝑦𝑗 =
P X = 𝑥𝑖 ∩ Y = 𝑦𝑗

P Y = 𝑦𝑗



Simplify Notation: 
Conditional Probability

( ) ( )
( )

P X Y
P X Y

P Y
x y

x y
y

= Ç =
= = =

=

( )
)(
),(|

yp
yxpyxP =

But we will always write it this way:

events

X=x

Y=y

P(X=x true) -> P(X=x) -> P(x)
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Simplify Notation: 
An Example of estimating conditional 

• We know that P(rain) = 0.5
• If we also know that the grass is wet, then 

how this affects our belief about whether it 
rains or not?

€ 

P rain |wet( ) =
P(rain)P(wet | rain)

P(wet)
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Simplify Notation: 
An Example of estimating conditional 

• We know that P(rain) = 0.5
• If we also know that the grass is wet, then 

how this affects our belief about whether it 
rains or not?

€ 

P rain |wet( ) =
P(rain)P(wet | rain)

P(wet)

€ 

P x | y( ) =
P(x)P(y | x)

P(y)



Simplify Notation: 
Conditional 

• Bayes Rule

• You can condition on more variables

( )
)|(

),|()|(,|
zyP

zxyPzxPzyxP =

P x | y( ) = P(x)P(y | x)
P(y)
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Simplify Notation:  Marginal 

• We know p(X, Y), what is P(Y=y) or P(X=x)?
• We can use the law of total probability

( ) ( )

( ) ( )å

å

=

=

y

y

yxPyP

yxPxp

|

,

   
y1,…, ym{ }

( ) ( )

( ) ( )å

å

=

=

yz

zy

zyxPzyP

zyxPxp

,

,

,|,

,,
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Simplify Notation: 
An Example

• We know that P(rain) = 0.5
• If we also know that the grass is wet, then 

how this affects our belief about whether it 
rains or not?

€ 

P rain |wet( ) =
P(rain)P(wet | rain)

P(wet)



Today : Probability Review

• The big picture
• Events and Event spaces
• Random variables
• Joint probability, Marginalization, 

conditioning, chain rule, Bayes Rule, law of 
total probability, etc.

• Structural properties, e.g., Independence, 
conditional independence

• Maximum Likelihood Estimation
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Independent RVs

•Definition: X and Y are independent iff

( ) ( ) ( )P X Y P X P Yx y x y= Ç = = = =
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More on Independence

• E.g. no matter how many heads you get, your friend will not be affected, 
and vice versa

( ) ( )P X Y P Xx y x= = = =

( ) ( )P Y X P Yy x y= = = =

( ) ( ) ( )P X Y P X P Yx y x y= Ç = = = =
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More on Independence

• X is independent of Y means that knowing Y 
does not change our belief about X. 

• The following forms are equivalent: 
• P(X=x, Y=y) = P(X=x) P(Y=y)
• P(X=x|Y=y) = P(X=x)  

• The above should hold for all xi, yj

• It is symmetric and written as !X ⊥Y
10/18/20



Conditionally Independent RVs

• Intuition: X and Y are conditionally independent given Z means that 
once Z is known, the value of X does not add any additional
information about Y
• Definition: X and Y are conditionally independent given Z iff

( ) ( ) ( )P X Y Z P X Z P Y Zx y z x z y z= Ç = = = = = = =

If holding for all xi, yj, zk !!X ⊥Y |Z
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More on Conditional Independence

( ) ( ) ( )P X Y Z P X Z P Y Zx y z x z y z= Ç = = = = = = =

( ) ( )P X Y ,Z P X Zx y z x z= = = = = =

( ) ( )P Y X ,Z P Y Zy x z y z= = = = = =
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independence and conditional independence

• Independence does not imply conditional independence. 
• Conditional independence does not imply independence.
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Today Recap: Probability Review

• The big picture
• Events and Event spaces
• Random variables
• Joint probability, Marginalization, 

conditioning, chain rule, Bayes Rule, law of 
total probability, etc.

• Structural properties, e.g., Independence, 
conditional independence

• Maximum Likelihood Estimation (next class)
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