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J Support Vector Machine (SVM)
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This: Kernel Support Vector Machine

_______________________________________________________________
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Classifying in 1-d

Can an SVM correctly classify
this data?

What about this?
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Classifying in 1-d

Can an SVM correctly classify
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Classitying in 1-d
{‘,5 gg({)mmk/(ﬂ

__7 ﬂ DY\[Q (\/\ QM/
Can an SVM correctly classify And now? (extend with polynomial basis )
this data? ®
/
/Q(X\ :rx’ xz] //
/
(x) " g
/
/
/
/
/
i
/
/
/
’®
’
/
o/
o—0 0 O @ @ s

11/10/20



RECAP: Polynomial regression

For example, ¢(z) = [1, z, 2°]

Y
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Dr. Nando de Freitas’s tutorial slide



Non-linear SVMs: 2D

 The original input space (x) can be mapped to some higher-dimensional feature
space (p(x) )where the training set is separable:

di(X) :(Xlzl X221 2 Xlxz)

[ ’
4
. X
- > 2
>
>
4
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This'slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



0 Kernel - Given a feature mapping ¢, we define the kernel K to be defined as:
K(z2) = ¢(z)" 8(2)

2
In practice, the kernel K defined by K(z,2) = exp (—%) is called the Gaussian kernel

and is commonly used. /R‘;fv‘ B CP 2( X ;rce[ a)
9
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\a?en'-\linear separability === Use of a kernel mapping ¢ === Decision boundary in the original space

®eres@d we say that we use the "kernel trick” to compute the cost function using the kernel
B ®: we actually don’t need to know the explicit mapping ¢, which is often very complicated.
Instead, only the values K (z,2) are needed.

11/10/20 Credit: Stanford ML course



A little bit theory: X —‘;,fl’_‘:’

Vapnik-Chervonenkis (VC) dimension

If data is mapped into sufficiently high dimension, then samples

will in general be linearly separable;
N data points are in general separable in a space of N-1

dimensions or more!!!

* VC dimension of the set of oriented lines in RZis 3
* |t can be shown that the VC dimension of the family of oriented separating hyperplanes in
RN is at least N+1

N

O O

o ® e o
.// O// ¢ ©
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If data is mapped into sufficiently high dimension, then
samples will in general be linearly separable;

N data points are in general separable in a space of N-1
dimensions or more!!!

X — D00
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Kernel Support Vector Machine
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Optimization Reformulation (for

linearly separable case) Xi = dlx:)

f(x,w,b) = sign(w'x + b)
1. Correctly classifies all points )
2. Maximizes the margin (or equivalently minimizes w'w)

J

Y€ §H ,-IK‘

Quadratic Objective

Min (w'w)/2
. p 2 T,
subject to the following constraints: argml mZ,-:l W, = ".;' w W
Forall xinclass + 1 » subject to Vx, € Dirain : yl.(WTXl. +Vbl21
T — A total of n
wixth >=1 constraints if 1X| \’r\"' D(,
we have n ')‘ '
For all xin class - 1 input samples Quadratic programming i.e.

- Quadratic objective
- Linear constraints

wix+b <=-1

11/10/20 17



An alternative representation of the SVM QP

i T
*|nstead of encoding the correct classification rule and Min (w'w)/2
constraint we will use Lagrange multiplies to encode it as st
part of the our minimization problem

(wixi+b)y; >=1

~

Recall that Lagrange multipliers can be

applied to turn the following problem: V y ) N\,Z 0 evely
—(—,ﬂum%
1 7T A T
Lpl‘imal( ’b’a):Eww_ggk(%]l(w Xi +Ii)_1)
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The Dual Problem (Extra)

max . minw,b L(w,b,) DU@( Mubﬁm
i~ = ——

* We minimize L with respect to w and b first:

train

VWL(W;b;a) =W- zaiyixi = 0’ ( *)
i=1

train

V. Lwba)=> oy =0, ()

i=1

; %tb)
Note that (*) implies: & ‘gVé S‘S“ (

szociyixi (% % %)

i=1
* Plus (***) backto L , and using (**), we have: (

0]/
QM 3
11/10/20 (/(W b a) za __2 i ]yy ( X )7
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Summary: Dual SVM for linearly separable
case

Dual formulation

Min (w'w)/2
max EO{ ——Ealajylijl X, subject to the following inequality

constraints:

Forall xin class + 1
Ea

wix+b >=1 A total of n

_ constraints if

o, =0 Vi Forall xin class - 1 we have n

WIx+b <= -1 input samples
a,

Easier than original QP, more efficient algorithms exist to find a;, e.g. SMO (see extra slides)
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Dual SVM for linearly separable case — Training /
Testing

. {Q(I )OlZ <t o(}\%
Our dual target function: 7
XEOC——EZ ijyXX
i=1 j=1 /
Eaiyi =0 Dot product for all

training samples

o, >0 Vi



Dual SVM for linearly separable case — Training /
Testing

11]1

Our dual target function: % ZO‘ __22 oYy X
///)V

Eaiyi =0 Dot product for all
' training samples

o 20 Vi
I Dot product with (“all” ?7?)

training samples
To evaluate a new sample x,, we /
need to compute:

WX _+b= Zayx X, +b \4( w &()({Q\

N B . T
» yts _Slgn Z ai-yi(xi th)+b -
ieSupportVectors
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T _ T
WX, +b= z:()ciyixi X, +b
i

)//; = sign( D aiyi(xfxts)+b]

ieSupportVectors
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Input space Feature space

SVM solves these two issues simultaneously

* “Kernel tricks” for efficient computation

e Dual formulation only assigns parameters to samples, not to
features

25



* SVM solves these two issues simultaneously

» “Kernel tricks” for efficient computation
e Dual formulation only assigns parameters to samples, not features

(1). “Kernel tricks” for efficient computation

Never represent features explicitly
Compute dot products in closed form
Very interesting theory — Reproducing Kernel Hilbert Spaces

Not covered in detail here
k(X &)
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* SVM solves these two issues simultaneously

» “Kernel tricks” for efficient computation
e Dual formulation only assigns parameters to samples, not features

(1). “Kernel tricks” for efficient computation

—— - >\
Never represent features Lexplicitly _]

Compute dot products in closed form
Very interesting theory — Reproducing Kernel Hilbert Spaces

Not covered in detail here
k(X &)
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K(x;,%x;) = ¢(x;)T¢(x;) is called the kernel function

x ¢ R
K(x,2)=x"z 5 € ”ﬁf’

* Linear kernel (we've seen it)

e Polynomial kernel (we will see an example)

K(x,z)zél(ji—)))fz) — _C_PF(K) 4—9?@>

where d = 2, 3, ... To get the feature vectors we concatenate all dth order polynom/'fal 20 (TM)
terms of the components of x (weighted appropriately) <)

T
* Radial basis kernel K(x,2)= exp( Hx Z‘ ‘2) — g@l%) ?}f@>
O((?) \/—J/FQ:DO

In this case., r is hyperpara. The feature space of the RBF kernel has an infinite
number of dimensions

Never represent features explicitly

Compute dot products with a closed form

Very interesting theory — Reproducing Kernel Hilbert Spaces
Not covered in detail here

11/10/20
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Example: Quadratic kernels

K(X,Z)=(1+xTz)d » Q‘{“XT})Z

K(x,2) = (%) ©(2)

* Consider all quadratic terms for xy, X, ... X,

max, Eal. —E aay,y ®x;) O(x;)

i i
Eaiyi =0

a. =0 Vi

l
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d(x) " D(2)

O(p”d) operations if using the basis

The kernel triCk function representations in

building a poly-kernel matrix

So, if we define the kernel function as follows, there is no
need to carry out basis function explicitly

T _\d
K(x,z)=(1+x z)
O(p) operations if building a poly-kernel
matrix directly through the K(x,z)

function =»

T
This is because X Z gives a scalar,
max ZOC ——ZOC x.y.y, K(X X, ) then its power of d only costs constant

2 FLOPS.
ay =0

C>o0. 2 0,Vietrain
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Kernel Matrix

* Kernel function creates the kernel matrix, which summarize all the
(train) data

X, a3 X,
[ |
X1 ,'
. L KEiE) - )<
', ~> Y
| \<€W\@(J
Xn B N AP |

11/10/20



summary:
Modification Due to Kernel Trick

* Change all inner products to kernel functions

* For training, 1
T

max ) o0.—— ) 00y yX. X.

Original “Z‘ ’ 2%‘ YR

Linear Za.y_ —0

C>o. 2 0,Vietrain

_ 1
With kernel maxazi:oci —E;aiajyi)’jK(Xi,xj)

function - —
nonlinear Yoy =0 V,é::f—@—
! ol

C>o. 2 0,Vietrain
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summary:
Modification Due to Kernel Trick

* For testing, the new data x_ts

Original y. = sign( 2 “iYiXiTXtS + bj

|—| near iesupportVectorn

With kernel

function - e
. -yts = Slgn Z aiyiK(Xi’th)+b
nonlinear iesupportVectors



Kernel trick has helped Non-traditional :
. . When numerical x and z do not
data like strings and trees able to be .
. . exist, we can calculate
used as input to SVM, instead of

feature vectors

Vector vs. Relational data l< ( >< ) %)

. ’ ,/ \\\ k o \I
I
1 . \I \ . ’l

1
! ’
1
1 e | \ /
4 ’ N S
\ , ~ _-
\ , -
A .,
\\—_—’
-
.

-

»
-
/7

~

e.g. Graphs,
Sequences,
3D structures,

1110020 Original Space Feature Space .
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This: Kernel Support Vector Machine

_______________________________________________________________

Data Tabular/Text/ Image/ Structured
| 1
Task . Classification / Regression / Ranking
. 5 1
Representation . Kernel Trick Func K(xi, xj)

| Kx2) =D(x)' CD(Z)

v
Score Function Margin + Hinge Loss
} — |
Search/Optimization QP with Dual form

v 1 w= zaixiyi
Models, . l
- Parameters ! Dual Weights

______________________________________________________________

argmmz W?-FCié‘i max ZO‘ __ZO‘O‘ Y.y X

w,b

subject to Vx, € Dtrain: yi(xl. -w+b) 2l-¢ zai}’i =0, . 20 . Vi




Software

* A list of SVM implementation can be found at
* http://www.kernel-machines.org/software.html

* Some implementation (such as LIBSVM) can handle multi-
class classification

* SVMLight is among one of the earliest implementation of SVM
e Several Matlab toolboxes for SVM are also available



Summary: Steps for Using SVM in HW

* Prepare the feature-data matrix
 Select the kernel function to use

* Select the parameter of the kernel function and the value
of C

* Execute the training algorithm and obtain the \a,

* Unseen data can be classified using the a,and the support
vectors



Practical Guide to SVM

 From authors of as LIBSVM:

* A Practical Guide to Support Vector Classification Chih-Wei Hsu, Chih-Chung
Chang, and Chih-Jen Lin, 2003-2010

e http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

11/10/20
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http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

LIBSVM

* http://www.csie.ntu.edu.tw/~cjlin/libsvm/
v'Developed by Chih-Jen Lin etc.
v'Tools for Support Vector classification
v'Also support multi-class classification
v C++/Java/Python/Matlab/Perl wrappers
v Linux/UNIX/Windows
v'SMO implementation, fast!!!

A Practical Guide to Support Vector
Classification

11/10/20

43


http://www.csie.ntu.edu.tw/~cjlin/libsvm/

(a) Data file formats for LIBSVM

* Training.dat

+1 1:0.708333 2:1 3:1 4:-0.320755

-1 1:0.583333 2:-1 4:-0.603774 5:1

+1 1:0.166667 2:1 3:-0.333333 4:-0.433962
-1 1:0.458333 2:1 3:1 4:-0.358491 5:0.374429

* Testing.dat



(b) Feature Preprocessing

* (1) Categorical Feature
* Recommend using m numbers to represent an m-category attribute.
* Only one of the m numbers is one, and others are zero.

* For example, a three-category attribute such as {red, green, blue} can be represented as
(OIOI]‘)I (Olllo)l and (1IOIO)

A Practical Guide to Support Vector
45

11/10/20 P .
Classification



A Practical Guide to Support Vector
Classification

(b) Feature Preprocessing

* (2) Scaling before applying SVM is very important

* to avoid attributes in greater numeric ranges dominating those in smaller numeric
ranges.

* to avoid numerical difficulties during the calculation
* Recommend linearly scaling each attribute to the range [1, +1] or [0, 1].

wmewn O

D st\f W[Z(TMIM =9 e |

X = Xudn ™ S[/L /% 59 G
| e X & :

11/10/20 46
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Of course we have to use the same method to scale both training and testing
data. For example, suppose that we scaled the first attribute of training data from
[—10,+10] to [—1, +1]. If the first attribute of testing data lies in the range [—11, +8],
we must scale the testing data to [—1.1,+0.8]. See Appendix B for some real examples.

If training and testing sets are separately scaled to [0, 1], the resulting accuracy is
lower than 70%.

$ ../svm-scale -1 0 svmguide4 > svmguide4.scale

$ ../svm-scale -1 0 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 69.2308% (216/312) (classification)

Using the same scaling factors for training and testing sets, we obtain much better

accuracy.

$ ../svm-scale -1 0 -s range4 svmguide4 > svmguide4.scale
$ ../svm-scale -r range4 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 89.4231% (279/312) (classification)



(b) Feature Preprocessing

* (3) missing value

e Very very tricky !
* Easy way: to substitute the missing values by the mean value of the variable

A little bit harder way: imputation using nearest neighbors

e Even more complex: e.g. EM based (beyond the scope)

A Practical Guide to Support Vector
Classification .

11/10/20



(b) Feature Preprocessing

* (4) out of dictionary token issue

* For discrete feature variable, very trick to handle

e Fasy way: to substitute the values by the most likely value (in train) of the variable
* Easy way: to substitute the values by a random value (in train) of the variable

* More solutions later in the NaiveBayes slides!

11/10/20 50



(C) Pipeline Procedures for model selection

* (1) train / test
* (I) k-folds cross validation

* (Ill) k-CV on train to choose hyperparameter / then test



Many beginners use the following procedure now:
e Transform data to the format of an SVM package

e Randomly try a few kernels and parameters

We propose that beginners try the following procedure first:

e Transform data to the format of an SVM package We use lower
option
e Conduct simple scaling on the data for HW

e Consider the RBF kernel K (x,y) = e~/x¥/’
e Use cross-validation to find the best parameter C' and ~
e Use the best parameter C' and + to train the whole training set®

11/10/20 @ . . e 52
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(c) Model Selection

Our goal: find the model M which minimizes the test error:

A

test error
error —/

training error

model complexity

11/10/20



Model Selection, find right C

Pergo ©

Select the

rlght (a) Training data and an overfitting classifier (b) Applying an overfitting classifier on testing
data
penalty
param eter

ondh C

11/10/20

(c) Training data and a better classifier (d) Applying a better classifier on testing data



Model Selection, find right C |
Trainigs Test
A ’ A 0

Pergo ©

Select the
rlght (a) Training data and an overfitting classifier (b) Applying an overfitting classifier on testing
data
penalty
parameter AA
C
A

11/10/20
(c) Training data and a better classifier (d) Applying a better classifier on testing data



Model Selection, find right C

C

A large value of C
means that
misclassifications are
bad - resulting in
smaller margins and
less training error (but
more expected true
error).

A small C results in
more training error,
hopefully better true
error.

é

ondh C

11/10/20

A

(a) Training data and an overfitting classifier

(c) Training data and a better classifier

(b) Applying an overfitting classifier on testing
data

(d) Applying a better classifier on testing data



(c) Model Selection

e radial basis function (RBF): K (x;,x;) = exp(—7||x; — x;||°), v > 0.

two parameters for an RBF kernel: C and v

e polynomial: K(x;,x;) = (yx;7x; +1)% v > 0.

Three parameters for a polynomial kernel

A Practical Guide to Support Vector
Classification Y

11/10/20



Choosing the Kernel Function

* Probably the most tricky part of using SVM.

* The kernel function is important because it creates the kernel
matrix, which summarize all the data

* Many principles have been proposed (diffusion kernel, Fisher
kernel, string kernel, tree kernel, graph kernel, ...)

* Kernel trick has helped Non-traditional data like strings and trees able to
be used as input to SVM, instead of feature vectors

* In practice, a low degree polynomial kernel or RBF kernel with a
reasonable width is a good initial try for most applications.

11/10/20 58



Kernel Trick: Implicit Basis Representation

* For some kernels (e.g. RBF ) the implicit transform basis form \phi( x ) is
infinite-dimensional!
e But calculations with kernel are done in original space, so
computational burden and curse of dimensionality aren’t a

problem.
0) (’Y) =>» Gaussian RBF Kernel corresponds to an
2 infinite-dimensional vector space.
K(x,z)=exp —r‘ ‘x — Z‘ ‘

YouTube video of Caltech: Abu-Mostafa
explaining this in more

O(p*n”2) operations in building detailhttps://www.youtube.com/watch?v=XU
a RBF-kernel matrix for training  [5JbQihlU&t=25m53s

11/10/20 59
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Kernel Functions (Extra)

* In practical use of SVM, only the kernel function (and not basis
function ) is specified

* Kernel function can be thought of as a similarity measure
between the input objects

* Not all similarity measure can be used as kernel function,
however Mercer's condition states that any positive semi-definite

kernel K(x, y), i.e.
le (zi,zj)cic; > 0

can be expressed as a dot product in a high dimensional space.



This: Kernel Support Vector Machine

Data

v
Task

v
Representation

v
Score Function

v

-Em Search/Optjmization

v

Models,
Parameters

_______________________________________________________________

Tabular / Text / Image/ Structured

1

' Classification / Regression / Ranking

1

Kernel Trick Func K(xi, xj) |
1 K(x,7):=Dd(x)" CD(z)

Margin + Hinge Loss

—

QP with Dual form

______________________________________________________________

argmin E wl.2 +C§ €
i=1

w,b

max Z(x ——20505 Yy X

subject to Vx, € Dtrain: yi(xi 'W+b) 2l-¢ zai}’i =0, . >0 . Vi



Why SVM Works? (Extra)

* Vapnik argues that the fundamental problem is not the number of
parameters to be estimated. Rather, the problem is about the flexibility of a
classifier

* Vapnik argues that the flexibility of a classifier should not be characterized by
the number of parameters, but by the capacity of a classifier

* This is formalized by the “VC-dimension” of a classifier

* The SVM objective can also be justified by structural risk minimization: the
empirical risk (training error), plus a term related to the generalization ability
of the classifier, is minimized

* Another view: the SVM loss function is analogous to ridge regression. The
term % | |w||? “shrinks” the parameters towards zero to avoid overfitting
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Mercer Kernel vs. Smoothing Kernel (Extra)

* The Kernels used in Support Vector Machines are different from the
Kernels used in LocalWeighted /Kernel Regression.

* We can think
» Support Vector Machines’ kernels as Mercer Kernels
* Local Weighted / Kernel Regression’s kernels as Smoothing Kernels



A4 2L /3
lkaet'j(\bovs »og XS

- . fw\a k '\cjilakw r‘% X4s ~0 (nlx)

U Fte= S okt k(K %) +b
depurt ~ () e sV _

g et/ L ety +h)

QM Now\ {4. z

1111111




Time Cost Comparisons
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o) e-ﬁ. RBF
Why do SVMs work” Vs ‘P (3

4 If we are using huge features spaces (e.g., with
kernels), how come we are not overfitting the data”

v" Number of parameters remains the same (and most
are set to 0) o(n) O 3=,

v While we have a lot of inputs, at the end we only
care about the support vectors and these are usually a
small group of samples

v" The maximizing of the margin acts as a sort of
regularization term leading to reduced overfitting
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