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What Left in SVM?

q Support Vector Machine (SVM)
ü History of SVM 
ü Large Margin Linear Classifier 
ü Define Margin (M) in terms of model parameter
ü Optimization to learn model parameters (w, b) 
ü Linearly Non-separable case (soft SVM)
ü Optimization with dual form 
ü Nonlinear decision boundary
ü Practical Guide
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This: Kernel Support Vector Machine

Classification / Regression / Ranking

Kernel Trick Func K(xi, xj)

Margin + Hinge Loss 

QP with Dual form

Dual Weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)

3

		

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑ , α i ≥0 ∀i
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Optimization Step 
i.e. learning optimal parameter for SVM
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Predict class +1

Predict class -1
wTx+b=+1

wTx+b=0

wTx+b=-1

Mx+

x-

€ 

M =
2
wTw



Optimization Reformulation
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Min (wTw)/2 
subject to the following constraints:

For all  x in class + 1

wTx+b >= 1

For all  x in class - 1

wTx+b <= -1

} A total of n 
constraints if 
we have n 
input samples



Optimization  Reformulation
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Min (wTw)/2 
subject to the following constraints:

For all  x in class + 1

wTx+b >= 1

For all  x in class - 1

wTx+b <= -1

} A total of n 
constraints if 
we have n input 
samples

   

argmin
w,b

wi
2 / 2i=1

p∑

subject to  ∀x i ∈Dtrain : yi x i ⋅w + b( ) ≥1



Linearly Non separable case
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• So far we assumed that a linear hyperplane can perfectly  separate the points

• But this is not usually the case

- noise, outliers How can we convert this to a QP 
problem?

- Minimize training errors?

min wTw/2

min  #errors

Hard to solve (two 
minimization problems)



Linearly Non separable case
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• So far we assumed that a linear plane can perfectly  separate the 
points

• But this is not usally the case

- noise, outliers
How can we convert this to a QP 
problem?

- Minimize training errors?

min wTw/2

min  #errors

- Penalize training errors:

min wTw/2+C*(#errors)

Hard to solve (two 
minimization problems)

Hard to encode in a QP 
problem
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Linearly Non separable case
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• Instead of minimizing the number of misclassified points we can minimize 
the distance between these points and their correct plane

-1 plane

+1 plane

jk

The new optimization problem is:

		
minw

wTw
2 +C ε i

i=1

n

∑

ε ε



Linearly Non separable case
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• Instead of minimizing the number of misclassified points we can minimize 
the distance between these points and their correct plane

-1 plane

+1 plane

jk

The new optimization problem is:

subject to the following inequality constraints:

For all  xi in class + 1

wTxi+b >= 1- i

For all  xi in class - 1

wTxi+b <= -1+   i

		
minw

wTw
2 +C ε i

i=1

n

∑

Wait. Are we missing something?

ε

ε
ε ε



Final optimization for linearly 
non-separable case
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The new optimization problem is:

subject to the following inequality 
constraints:

		
minw

wTw
2 +C ε i

i=1

n

∑

For all i

} A total of n 
constraints

} Another n 
constraints!!ε i ≥0
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Two optimization problems: 

For the separable and non separable cases

For all  x in class + 1

wTx+b >= 1

For all  x in class - 1

wTx+b <=-1

		
minw

wTw
2 +C ε i

i=1

n

∑

For all i

€ 

minw
wTw
2

!!ε i ≥0



Model Selection, find right C 
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Select the 
right 

penalty 
parameter 

C 



Model Selection, find right C 
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A large value of C 
means that 
misclassifications are 
bad - resulting in 
smaller margins and 
less training error (but 
more expected true 
error). 

A small C results in 
more training error, 
hopefully better true 
error.



Hinge Loss for Soft SVM
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argmin
w,b

wTw
2

+C max(0,1− yi wT x i + b( ))
i=1

n

∑

subject to:

yi wT x i + b( ) ≥1− ε i   

ε i ≥ 0

		
minw

wTw
2 +C ε i

i=1

n

∑

For all i

		ε i ≥0

soft

   

argmin
w,b

wi
2

i=1
p∑ / 2

subject to  ∀x i ∈Dtrain : yi wT x i + b( ) ≥1

vs. Hard 
SVM

   
max(0,1− yi f x i( ))

i=1

n

∑



What Left in SVM?

q Support Vector Machine (SVM)
ü History of SVM 
ü Large Margin Linear Classifier 
ü Define Margin (M) in terms of model parameter
ü Optimization to learn model parameters (w, b) 
ü Linearly Non-separable case (soft SVM)
ü Optimization with dual form 
ü Nonlinear decision boundary
ü Practical Guide
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This: Kernel Support Vector Machine

Classification / Regression / Ranking

Kernel Trick Func K(xi, xj)

Margin + Hinge Loss 

QP with Dual form

Dual Weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)
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maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑ , α i ≥0 ∀i

Data Tabular / Text / Image/ Structured 



Two optimization problems: For the separable and non separable cases

Min (wTw)/2 		
minw

wTw
2 +C ε i

i=1

n

∑

For all i

• Instead of solving these QPs directly we will solve  a dual 
formulation of the SVM optimization problem

• The main reason for switching to this type of representation is that 
it would allow us to use a neat trick that will make our lives easier 
(and the run time faster)
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!!ε i ≥0



Optimization Review: 
Ingredients

• Objective function
• Variables
• Constraints
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Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints



Optimization Review: 
Constrained Optimization
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minu u2

s.t. u >= b

b
Global min

Allowed min

b Global min

Allowed min

Case 1: 

Case 2: 



Optimization Review: 
Constrained Optimization
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minu u2

s.t. u >= b

b
Global min

Allowed min

b Global min

Allowed min

Case 1: 

Case 2: 



Optimization Review: 
Constrained Optimization
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minu u2

s.t. u >= b

b
Global min

Allowed min

b Global min

Allowed min

Case 1: 

Case 2: 
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minu u2

s.t. u >= b
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minu u2

s.t. u >= b
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minu u2

s.t. u >= b
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minu u2

s.t. u >= b

Dual

Primal
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minu u2

s.t. u >= b

Dual

Primal
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minu u2

s.t. u >= b

Dual

Primal
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minu u2

s.t. u >= b

Dual

Primal
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Optimization Review: Dual Problem (Extra)

• Solving dual problem if the dual form is 
easier than primal form

• Need to change primal minimization to 
dual maximization (OR è Need to 
change primal maximization to dual 
minimization)

• Only valid when the original 
optimization problem is convex/concave 
(strong duality)
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Dual 
Problem, 

Primal Problem
Strong duality
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Concrete derivation in L11Extra-SVMoptimDual

*

*

*

*



Optimization Review: 
Lagrangian Duality (Extra)

• The Primal Problem

Primal:

The generalized Lagrangian:

the a's (ai≥0) are called the Lagarangian multipliers 

Lemma:

A re-written Primal:
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minw
s.t.

f0(w)
fi(w)≤0,			i =1,…,k

		 
L(w ,α )= f0(w)+ α i fi(w)

i=1

k

∑

		 
maxα ,α i≥0	L(w ,α )=

f0(w) if	w 	satisfies	primal	constraints
∞ o/w

⎧
⎨
⎪

⎩⎪

		 minwmaxα ,α i≥0	L(w ,α )
© Eric Xing @ CMU, 2006-2008

“Method of Lagrange multipliers” 
convert to a higher-dimensional problem



Optimization Review: 
Lagrangian Duality, cont. (Extra)
• Recall the Primal Problem:

• The Dual Problem:

• Theorem (weak duality): 

• Theorem (strong duality):
Iff there exist a saddle point of 

we have

4/14/22
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		 minwmaxα ,α i≥0	L(w ,α )

		 maxα ,α i≥0minwL(w ,α )

		 d
* =maxα ,α i≥0minwL(w ,α )			 ≤ 			minwmaxα ,α i≥0	L(w ,α )= p

*

** pd =
		 L(w ,α )



Dual representation of the hard SVM QP
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• We will start with the linearly separable case

• Instead of encoding the correct classification rule and 
constraint we will use Lagrange multiplies to encode it as 
part of the our minimization problem

Min (wTw)/2

s.t.

(wTxi+b)yi >= 1

Recall that Lagrange multipliers can be 
applied to turn the following problem:

			 
Lprimal(w ,b,α )=

1
2w ⋅w− α i yi(w ⋅x i +b)−1( )

i=1

N

∑



The Dual Problem (Extra)

• We minimize L with respect to w and b first:

Note that (*) implies:    

• Plus (***) back to L , and using (**), we have:

4/14/22
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***(          )

		 maxα i≥0minw ,bL(w ,b,α )

!! 
∇wL(w ,b,α )! =w− α i yixi =0

i=1

train

∑ ,

!! 
∇bL(w ,b,α )! = α i yi =0

i=1

train

∑ ,

!!
w = α i yixi

i=1

train

∑

*(   )

!!! 
L(w ,b,α )= α i

i=1
∑ − 12 α iα j yi y j(x iTx j )

i , j=1
∑

**(       )



Summary: Dual for hard SVM (Extra)

Solving for w that gives maximum margin:
1. Combine objective function and constraints into new 

objective function, using Lagrange multipliers \alphai

2. To minimize this Lagrangian, we take derivatives of w and 
b and set them to 0:
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Lprimal =

1
2w ⋅w− α i yi(w ⋅x i +b)−1( )

i=1

N

∑



Summary: Dual for hard SVM (Extra)

3. Substituting and rearranging gives the dual of the Lagrangian:

which we try to maximize (not minimize).

4. Once we have the \alphai, we can substitute into previous 
equations to get w and b.

5. This defines w and b as linear combinations of the training 
data.
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Ldual = α i

i=1

N

∑ − 12 i
∑ α iα j yi y jx i ⋅x j

j
∑

!!
w = α i yixi

i=1

train

∑



Summary: Dual SVM for linearly separable 
case 
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Dual formulation

maxα αi −
i
∑ 1

2
αiα jyiyj

i,j
∑ xi

Txj

αiyi = 0
i
∑

αi ≥ 0 ∀i

Easier than original QP, more efficient algorithms exist to find ai; e.g. SMO (see extra slides)  



Dual formulation for linearly 
non-separable case
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Dual target function:

		

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C ≥α i ≥0,∀i

The only difference is that 
the \alpha are now 
bounded 

Hyperparameter C 
should be tuned 

through k-folds CV
This is very similar to the 
optimization problem in the linear 
separable case, except that there 
is an upper bound C on ai now

Once again, efficient algorithm 
exist to find ai
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Dual target function: To evaluate a new sample xts we 
need to compute:

		
wTxts +b= α iyi

i	∈supportV
∑ xi

Txts +b

The only difference is that 
the \alpha are now 
bounded 

Hyperparameter C 
should be tuned 

through k-folds CV
This is very similar to the 
optimization problem in the linear 
separable case, except that there is 
an upper bound C on ai now

Once again, efficient algorithm exist 
to find ai

		

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C ≥α i ≥0,∀i

Prediction via Dual Weights
for linear case



Dual SVM – Training using Kernel Matrix 
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Our dual target function:

Dot product among all 
training samples 

		

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C ≥α i ≥0,∀i



This: Kernel Support Vector Machine

Classification / Regression / Ranking

Kernel Trick Func K(xi, xj)

Margin + Hinge Loss 

QP with Dual form

Dual Weights

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)
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maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑ , α i ≥0 ∀i

Data Tabular / Text / Image/ Structured 



Support vectors: non-zero ai
• only a few ai can be nonzero!!
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			 α i yi(w ⋅x i +b)−1( ) =0,				i =1,…,n
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a6=1.4

Class 1

Class 2

a1=0.8

a2=0

a3=0

a4=0

a5=0

a7=0

a8=0.6

a9=0

a10=0

!!! α i yi(w ⋅x i +b)−1( ) =0,!!!!i =1,…,n
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• only a few ai can be nonzero! Ie.

			 α i yi(w ⋅x i +b)−1( ) =0,				i =1,…,n

a6=1.4

Class 1

Class 2

a1=0.8

a2=0

a3=0

a4=0

a5=0
a7=0

a8=0.6

a9=0

a10=0

			yi(w ⋅x i +b)=1



Support vectors: non-zero ai
• only a few ai can be nonzero!!
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			 α i yi(w ⋅x i +b)−1( ) =0,				i =1,…,n

We call the training data points whose ai's are 
nonzero the support vectors (SV) 



Dual SVM - interpretation
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€ 

w = α ixiyi
i
∑

For     i that are 0, no 
influence

α



Dual SVM– Testing 
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To evaluate a new sample xts we 
need to compute:

		 
yts
! = sign(wTxts +b)= sign( α iyi

i=1..n
∑ xi

Txts +b)

Dot product with (“all” ??)  
training samples 

			 
yts
! = sign α i yi x i

Txts( )
i∈SupportVectors

∑ +b
⎛

⎝⎜
⎞

⎠⎟

For  \alphai that are 0, 

no influence



Support Vectors for the Soft-SVM

• Support vectors are 

• Samples on the margin:

• Samples violating the margin (mostly inside the margin area):

   

yi x i ⋅w + b( ) = 1,

0 <α i < C

   

yi x i ⋅w + b( ) <1,

α i = C

More in L11Extra-SVMoptimDual

			 α i yi(w ⋅x i +b)−1+ ε i( ) =0,				i =1,…,n



Value C and Number of Support Vectors (no clear 
relation!!!)
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https://github.com/scikit-learn/scikit-learn/issues/7955

https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-
svms-with-linear-kernel

https://github.com/scikit-learn/scikit-learn/issues/7955
https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel


Why do SVMs work?
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q If we are using huge features spaces (e.g., with 
kernels), how come we are not overfitting the data?

ü Number of parameters remains the same (and most 
are set to 0)

ü While we have a lot of inputs, at the end we only 
care about the support vectors and these are usually a 
small group of samples

ü The maximizing of the margin acts as a sort of 
regularization term leading to reduced overfitting



Summary of SVM

q Support Vector Machine (SVM)
ü History of SVM 
ü Large Margin Linear Classifier 
ü Define Margin (M) in terms of model parameter
ü Optimization to learn model parameters (w, b) 
ü Non linearly separable case
ü Optimization with dual form 
ü Nonlinear decision boundary 
ü Practical Guide

ü File format / LIBSVM
ü Feature preprocsssing
ü Model selection 
ü Pipeline procedure 

4/14/22 54



4/14/22 55

(Recap)
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