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This: Kernel Support Vector Machine
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Optimization with Quadratic programming
(QP)

Quadratic programming solves optimization problems of the following form:

N — v arisd 8

subject to n inequality constraints:

a,u, + a,u, +...< b, ‘Em/O — Oé} (Q/C’t

Quadratic term

a, u +au,+..<b %(’M) —) (O/\ngx«’(iﬁ

and k equivalency constraints: When a problem can be

Aoy + Ay olly +o=b specified as a QP problem we
can use solvers that are better
than gradient descent or

) simulated annealing
Aoy T 4oy .= 0,
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SVM as d QP pr0b|em R as | matrix, d as zero

vector, c as 0 value

l

T
u Ru
+d u+c

min,,

subject to n inequality constraints:

\NT)(—\"O;O ass A
+o=) dict c\ a, u, + a,u, + ...<b,
\NT Pre

, a . u +a,u,+..<b
Min (wTw)/2 e

subject to the following inequality and k equivalency constraints:

constraints: Aoy + Gy olly + .= b,
For all xinclass + 1

wix+b >= 1 A total of n Ayoglhy + Gy slly + = b,
. constraints if

For all xin class - 1 we have n

wTx+b <= -1 input samples
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Optimization Review:
Ingredients

e Objective function
e Variables
 Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints
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Optimization Review:
Lagrangian Duality

* The Primal Problem min fo(w)

w

Primal: s.t. f,(w)=<0, i=1,...,k

“Method of Lagrange multipliers”
The generalized Lagrangian: convert to a higher-dimensional problem

L(w,a)= f,(Ww)+ Zaifi (W)

the o's (¢, 20) are called the Lagarangian multipliers

Lemma: _ o _ _
f,(w) if w satisfies primal constraints

max, . ., L(w,x)= {

A re-written Primal:

oo o/w

min max, . ., L(w,x)



Optimization Review:
Lagrangian Duality, cont.

e Recall the Primal Problem:

min maxomi20 L(w,x)
 The Dual Problem:

max___ min /L(w,)

* Theorem (weak duality):

d = max, , min [L(w,x) < min_ max, , ., L(w,ax)=p

* Theorem (strong duality):

Iff there exist a saddle point of L(w,x)

we have d = p*



min, u?

st.u>=b
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Optimization Review:
Constrained Optimization

. , [
min, u? N . /Allowed min
/

st.u>=b N ~ %/\
b Global min
Case 1: |
I
, "
N /7 Allowed min
N /7
~ ~ ~ <
b Global min
Case 2: |




Optimization Review:
Constraer}ed Optimization

min, u? N . owed min
st.u>=b N e
—y
lobal min
Case 1: /
(
, .
Allowed min

Case 2

/4)& in
K /
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Optimization Review:
Constrained Optimization

{(M)
it b > N %/Allowed min l@ > 0
s.t.u>= N - _ P 1
AV ~ | | A
(S@E(@Cﬁ ('0] Case 1: 4‘\Ila\GIObal min {(U) = b

|

, "
h ;(Anowed - L <O
~ ~ .\ P

b | Global min gw\\: )

Case 2: !




N (PHW\KL(
e b-U <0 Q)WELQM

st.u>=b

— Min @Co (W)=Y *
o1
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— Min @Co (W)=Y *
o1

st.u>=b
St b-uU<0
(‘k(/n/(‘@l/ WVC‘C%(/Q

oy R
o L(w, &) = 47+ (eh),

(W] (X =0
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Optimization Review: Dual Problem

e Solving dual problem if the dual
form is easier than primal form

Primal Problem

* Need to change primal
minimization to dual
maximization (OR =2 Need to
change primal maximization to
dual minimization)

Dual Problem,

* Only valid when the original
optimization problem is
convex/concave (strong duality)
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KKT Condition for Strong Duality

Min, iy L @)

Primal Problem

minimize Cfo(x)j Strong .
subject to sz(a:) <0,) i=1,...,m duality
hi(z) =0, i=1,...,p

Dual Problem,

Lagrangian: L : R" x R x R? - R, with dom L =D x R™ x R?,
m p
L(z,\v) = fo(z) + > _ Nifi(z) + Y vihi(z)
i=1 i=1

complementary slackness: \;fi(z) =0,i=1,...,m Key for SYM C

—
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Optimization Review: Lagrangian (even

more general standard form)
standard form problem (not necessarily convex)

minimize C (:c)j
subject to Efz(:v < 07 i=1,...,m
hi(x) =0, i=1,...,p

variable x € R", domain D, optimal value p*

Lagrangian: L : R" x R x R? — R, with dom L =D x R™ x R?,

L(CE, A, V) — fO(m) + Z)"&fZ(x) + Z Vih’i(x)

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(x) <0
. is Lagrange multiplier associated with h;(x) = 0

®
10/16/19 Dr. Yanjun Qi / @V 30

From Stanford “Convex Optimization 5. Duality — Boyd & Vandenberghe



Optimization Review: Lagrange dual function
Lagrange dual function: ¢ : R™ x RP — R,

g\ v) = ;glf)L(az,)\,V)

= inf (fo(iv) + Z Aifi(z) + Z Vz'hv:(l‘))

g is concave, can be —oo for some A, v

lower bound property: if A > 0, then g(\,v) < p*

e o~ . Inf(.): greatest
proof: if Z is feasible and A > 0, then lower bound

fo(@) 2 L(z, A, v) 2 inf L(z,A,v) = g(A,v)

10/16/19 or vaniun AMiMIMIizing over all feasible z gives p* > g(\, v) -
From Stanford “Convex Optimization 5. Duality — Boyd & Vandenberghe



Optimization Review:

Complementary slackness

assume strong duality holds, z* is primal optimal, (A*,v*) is dual optimal
inf (.): greatest lower bound

fol@) = g(W*,v*) = inf ( fol(z) + Z Xifi(z) + Z I/,Z‘hz-(:c)>

m p

< fo@®) + ) N filz*) + ) vihi(a?)
=1 1=1

< fo(z¥)

hence, the two inequalities hold with equality
e x* minimizes L(z, \*,v*)

o \fi(x*) =0fori=1,...,m (known as complementary slackness):

)\: >0 = fz(:v*) = 0, fz(:c*) <0= )\: =0 .
From Stanford “Convex Optimization 5. Duality — Boyd & Vandenberghe
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Optimization Review:

omplementary slackness

—_—

assume strong duality holds, z* is primal optimal, (A*,v*) is dual optimal
inf (.): greatest Iower bound

P
1nf ( )+ Z Ar fi(z) + Z V:hz($)>
i=1

O\o)é jC(V @(Oiﬁ
o) =2
A {L ”lA b !

¢ VWO | o' =0 3' l
hence, the two inequalities hold with equality >> O<'L (\,\) 10 m],
e x* minimizes L(x, \*,v*) O =0
o \fi(x*) =0fori=1,...,m (known as complementary slackness):

) 00
)\: >0 = fz(:v*) = 0, f,,(a:*) <0= }\: =0 .
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Optimization Review:
Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: fi(z) <0,i=1,...,m, hy(z)=0,i=1,...,p

2. dual constraints: A > 0
3. complementary slackness: \;fi(z) =0,i=1,...,m Key for SVM Dual

4. gradient of Lagrangian with respect to x vanishes:

Vo(x +§:AVﬁ +§:th

D pap@@S¥: if strong duality holds and x, A\, v are optimal, then they
must satlsfy the KKT conditions

35
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Dual formulation for linearly non
separable case (soft SVM)

Substituting (1), (2), and (3) into the Lagrange, we have:

N N N N
1
L(a) = E aj — 5 E E a,-ozky,-ykx,-Txk, with 0 < ¢;< C and E a;yi = 0. (4)
i=1

i=1 k=1 i=1

o &; > 0: which implies y;(x”W + b) — 1 + & = 0 according to (5). These
points are the support vectors.
o & = 0: which implies f; > 0 from (6) and so & < C from (3). There are the
support points which lie on the edge of the margin.
o & > 0: which implies f; = 0 from (6) and so & = C from (3). There are the
support points which violate the margin.

@ &; = 0: These points are not support vectors, which play no role in
determining the hyperplane.
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Dual formulation for linearly ngn,
separable case R

Substituting (1), (2), and (3) into the Lagrange, we have: Loy

L) = ZOJ: — _ZZO‘ akyiyeXx: Xk, with 0 < ;< C and Za,y, =0. (4)

i=1 k=1

o &; > 0: which implies y;(x”W + b) — 1 + & = 0 according to (5). These

points are the support vectors.
o & = 0: which implies f; > 0 from (6) and sfrom (3). There are the

support points which lie on the edge of the margin-
o & > 0: which implies ;i = 0 from (6) and s@rom (3). There are the,

St&port points which violate the margin.

@ &; = 0: These poin?are not support vectorsjvhich play no role in
determining the hyperplane.
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Support Vectors for the Soft-case

* Support vectors are
* Samples on the margin: (Xi'W+b):1»

I

O<(xl.<C

e Sample violate (mostly inside the margin area):

y (xi-w+b)<l,

i

ocl.:C
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Fast SVM Implementations

* SMO: Sequential Minimal Optimization
e SVM-Light
* LibSVM
 BSVM

J. Platt (1999),
Fast Training of Support Vector Machines Using Sequential Minimal Optimization
https://pdfs.semanticscholar.org/d1fa/8485ad749d51e7470d801bc1931706597601.pdf
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SMO: Sequential Minimal Optimization

* Key idea

* Divide the large QP problem of SVM into a series of smallest possible QP
problems, which can be solved analytically and thus avoids using a time-
consuming numerical QP in the loop (a kind of SQP method).

e Space complexity: O(n).

* Since QP is greatly simplified, most time-consuming part of SMO is the
evaluation of decision function, therefore it is very fast for linear SVM and
sparse data.

10/16/19 Dr. Yanjun Qi / UVA
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SMO

* At each step, SMO chooses 2 Lagrange multipliers to jointly optimize,
find the optimal values for these multipliers and updates the SVM to
reflect the new optimal values.

* Three components
* An analytic method to solve for the two Lagrange multipliers
* A heuristic for choosing which (next) two multipliers to optimize

* A method for computing b at each step, so that the KTT conditions are
fulfilled for both the two examples (corresponding to the two multipliers )



Choosing Which Multipliers to Optimize

* First multiplier
* |terate over the entire training set, and find an example that violates the KTT
condition.
e Second multiplier
* Maximize the size of step taken during joint optimization.
* |E;-E, |, where E; is the error on the i-th example.
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