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Model Inference through
Maximum Likelihood Estimation (MLE)

Assumption: the data is coming from a known probability distribution
The probability distribution has some parameters that are unknown to you

2
Example: data is distributed as Gaussian  Yi; — N(,LL, o )
so the unknown parameters here are 6 — (Iu’ 0-2)

——————————————————————————————————————————————————————

MILE is a tool that estimates the unknown parameters of the probability
distribution from data

10/19/20 3
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MILE: e.g. Single Gaussian Model (when

e Need to adjust the 04
parameters (= model "
0.3f

inference) o
0.2}

e So that the resulting ol
distribution fits the 0.05(

Ao

observed data well
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Maximum Likelihood revisited

Yi; — N(:ua 0-2)
Y={y, ,V,uy,}

[(0)=log(L(0;Y))=log HP(J/,-)

Choose 6 that maximizes [(6 )

ol __
00
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MILE: e.g. Single Gaussian Model

* Assume observation data y; are independent

e Form the Likelihood:

(y,. —u)z)_
202 7

L(6;Y)= HP(J’) H\/r
o

Y={y, Y, -V}

 Form the Log-likelihood:

N

(v, —u) Y (y.—u)

1(6)= 10g(H \/—GeXp(— > ))=-

- oo —Nlog(+2mo)
i=1
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MILE: e.g. Single Gaussian Model

* To find out the unknown parameter values, maximize the log-likelihood
with respect to the unknown parameters:

Choose 6 that maximizes 1(6 )

ol _
90 —
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MLE: A Challenging Mixture Example

YlNN(lulao-lz); YzNN(:uzao-g) ; | Po, Py,
Y =(1-MY, +AY,; Ae{0]} /\I/\
Indicator variable ; :ai“- --!!lq‘s
histogram
Mixture model: - gy (y) = (1 =m) Py, (y) +7Py, () (r=Pr(A=1))

0 =(u,00);  0,=(1,0,)
70 is the probability with which the observation is chosen from density model 2

(131%197[5) is the probability with which the observation is chosen from density 1 8
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MLE: A Challenging Mixture Example

YlNN(:ulaO-]z); YzNN(:uzao-g) ; ] Po, Py,
Y =(1-A)Y, +AY,; Ae{0,]) /\l/\
Indicator variable ; :-l-- = lIllIIl
@/\ 5 . 4 .
Y\A(Nﬁm NJ\ ﬂ; f/\l 61’ histoygram
grée 2 w\/;

Mixture model: — (1 77)(1)01 (y)‘l'ﬂ'(b@z(y)

0 =(u,00);  0,=(1,0,)
70 is the probability with which the observation is chosen from density model 2

(Lﬂzf197[5) is the probability with which the observation is chosen from density 1 9
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MLE: Gaussian Mixture Example

+(416)
(or W)= RRCIACI t
i/\ﬁ\ ),Vh” N

Maximum likelihood fitting for parameters: ()= (z, 1, u,,0,,0,)

10.) =i 1log[(1 —m)Pg, (y;) + TPg, ()]

ol __
00

Numerically (and of course analytically, too)
Challenging to solvel!!
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Bayesian Methods &
Maximum Likelihood

* Bayesian
Pr(model|data) i.e. posterior
=>Pr(data| model) Pr(model)
=> Likelihood * prior

* Assume prior is uniform, equal to MLE
argmax ,oqe Pr(data | model) Pr(model)
= argmax oqe Pr(data | model)
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Here is the problem

/U\l)GI /{Al)dl
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All we have is

o8r -

2 =
o8k ] =

x -
o7 - =

Py

- © 1 ()
b 7 =t 0o
oSk 1 A |

el
O4r - —

o~ |
[ 3

- J/JHEEEEE EN ESsSs
02F - L= r v T 1
o1k J o] 2 4 (S
i - = i histogram
0’ - . e A .
‘s - ) 2 -1 0 1 2 ) 4 5

From which we need to infer the likelihood function which
generate the observations

10/19/20 14
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Expectation Maximization: add
latent variable A => latent data

EM augments the data space— assumes with latent data

A; € 0,1 (latent data)

if(A; =0)
y; Was generated from first component
if(A;, =1)

y; Was generated from second component

p(t;|0) = p(yi, 2i]0) = p(y;| Dy, 0) Pr(A;)

p(4:10) = [®g, () (1 — M) A2 [y, (y)m] A

10/19/20
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Expectation Maximization: add
latent variable A=>latentdata A4

EM augments the data space— as@ latent data \)
—_— = =

A; € 0,1 (latent data) -

if(A; =0)
y; Was generated from first component g s ”J/\\J
if(A;, =1)

{i&§l [>.1 N ?y
y; Was generated from second component

. Complete)data: t; = (y;, ;) E

p(t;10) = p(yi, A;|0) = p(y;| A, 0) Pr(A;)
p(t;]0) = [y, (y;) (1 — M)A =B [dy (y;) 7] A

10/19/20 16
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Computing log-likelihood based on complete
data

p(t;]0) = [®g, () (1 — m)]E=2D [ndy, (y;) 7] A
lo(0; T) 1T = {tz — (yZ,Az),Z: 1N}
= YL (1=A)log[(1—m) g, (y)] + Ajlog[r Py, (y;)]

= YN (1 = A)logPy, (y;) + DlogPy, (y:)]
+ SN L [(1 - A)log(1l — ) + Ajlogr (8.40)

Maximizing this form of log-likelihood is now tractable

N%%g)g@t we cannot analytically maximize the previous log-likelihood with only .

observed Y={y 1,y 2, ..,y n}



EM: The Complete Data Likelihood

By simple differentiations we have:

> (-2~ )’

_ 2 _ i=l
D =07 =

So, maximization of the complete data likelihood is much easier!

How do we get the latent variables?



EM: The Complete Data Likelihood

| ol
oy simple - =0= =S
differentiations we au N
have: 2 Z Ai
=1
N
2
al ZAZ (yl lu2)
—L =00, =
80_2 2 N ”
2 >
l
C =1
So, maximization N
of the complete
data likelihood is 8] Z Ai
el -
much easier! 0 _ O — = 1 :
Oor N

How do we get the latent variables?
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Obtaining Latent Variables

The latent variables are computed as expected values
given the data and parameters:

A'\,—% Vi(‘g) :E(Ai |‘99yi) :Pr(Ai :1|€’yi)

Apply Bayes’ rule:
Pr(y, |A, =1,0)Pr(A, =1|0)

7,(0)=Pr(A; =1|0,y,) =
Pr(y, |A; =LO)Pr(A, =1|0)+Pr(y, | A, =0,0) Pr(A, =0]0)

gbez (v)m

()
= €a
D, (y,)1—7)+ D, (y)m @V 0 >~/—>E(A\h>
)

10/19/20 20
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Dilemma Situation

 We need to know latent variable / data to maximize the complete log-
likelihood to get the parameters

 We need to know the parameters to calculate the expected values of
latent variable / data

e =>» Solve through iterations

10/19/20 21



So we iterate =
EM for Gaussian Mixtures...

~~

1. Initialize parameters ;Il,o?,;fg,a%,% )
- . © v L =>EDY
2. Expectation Step: 5 Y
vi(0) = E(A]0,Y) = Pr(A; =110,Y)
By Bayes’ theroem:

PT(AZ' — 1|97yi — p(y;l p(y)zw)( 6)

B Py, (yi)-7
- (=m)Pg (h) +7Pg, (yi)

Elig(0; T|Y,00)] = SN [(1 — 9)log®g, (yi) + YilogPg, (yi)]
+ SN L [(1 = 9)log(1 — ) + ;logn]



EM for Gaussian Mixtures...

3. Maximization Step: a\( (&L} @M
QY,01)) = Ello(¢"; T|Y, 61)]
= YN, [(1 = 9)log®g, (y;) + ilogPg, (y;)]
+ 20081 [(1 = 9)log(1 — m) + logn]
Find ¢’ that maximizes Q(¢',8()) ..

0Q 0Q 0Q 0Q 3Q_
Set 55 iy’ 961 965 9% — O

to get #U+1)

4. Use this 8711 to compute the expected val-
ues ; and repeat...until convergence
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EM for Two-component Gaussian Mixture

* Initialize Hi,01, 2,092, T
* |terate until convergence
— Expectation of latent variables A
) (0) = Dy, ()7 _ 1
B 10 GO Rt X CAL I bl A W €7V L C/ VN
T o, 20! 20,

— Maximization for finding parameters

N N N N N
Z(l_yz')yi Zyiyi Z(l_yi)(yi_lul)z Zyi(yi_lu2)2 Zyi
U, = i:;r : Ly = l:}v : 0.12 — _i=l - : 0.; — _i=l R C o= i:]lv :
> -y > > -y D
i=1 i=l i=1 i=1

10/19/20 24
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EM in....simple words

* Given observed data, you need to come up with a
generative model

* You choose a model that comprises of some hidden
variables A\ ;(this is your belief!)

* Problem: To estimate the parameters of model
— Assume some initial values parameters

— Replace values of hidden variable with their expectation (given
the old parameters)

— Recompute new values of parameters (given Az

— Check for convergence using log-likelihood
() ctahimary

| blrmetors
10/19/20 @Wﬁ \ Sfctu\o“ [“%QJW 25
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EM — Example (cont’ d)
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Figure 8.6: EM algorithm: observed data log-likelihood

as a function of the iteration number.

Iteration ﬂ-
| | _ 1 0.485
ielectgd |terat|ons|of the EM algorithm 5 0.493
or mixture example 10 0.523
10/19/20 15 0544 °
20 0.546




EM Summary

An iterative approach for MLE

Good idea when you have missing or latent data

Has a nice property of convergence

Can get stuck in local minima (try different starting points)

Generally hard to calculate expectation over all possible
values of hidden variables

Still not much known about the rate of convergence
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Today Outline

* Principles for Model Inference

— Maximum Likelihood Estimation

Bovasian Estimat

e Strategies for Model Inference
— EM Algorithm — simplify difficult MLE
e Algorithm
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Applications of EM

— Mixture models

— HMMs

— Latent variable models
— Missing data problems
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Applications of EM (1)

e Fitting mixture models

A
21 .

gl

5 1 N LI PR 1 1 1 1 M
-5 -4 -3 -2 -1 0 1 2 3 4 5 -5
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Applications of EM (2)

* Probabilistic Latent Semantic Analysis (pLSA)

— Technique from text for topic modeling

P(z|d)

P(w,d) R P(w]z)
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Applications of EM (3)

e Learning parts and structure models

Shape model

20+

10 099
+

oA 0.85

10+

20+

30

18 0.75

rt 1 — Def

l%fﬂﬂlﬁﬁ@ﬂl
IEGE FEEE
lﬂgﬂémﬂﬁlﬁg
P L LETTITI.1L
l“ﬂWJEMhlﬂﬁ
EE0EBECECSE

SBESN&EEE"
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Applications of EM (4)

* Automatic segmentation of layers in video

http://www.psi.toronto.edu/images/figures/cutouts vid.gif



http://www.psi.toronto.edu/images/figures/cutouts_vid.gif

Expectation Maximization (EM)

e Old idea (late 50" s) but formalized by Dempster,
Laird and Rubin in 1977

e Subject of much investigation. See McLachlan &
Krishnan book 1997.
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Today Outline

* Principles for Model Inference
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Bovasian Estimat

e Strategies for Model Inference
— EM Algorithm — simplify difficult MLE
e Algorithm
* Application

) - Theory

MCMC | e t]
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Why is Learning Harder?

* |n fully observed iid settings, the complete log
likelihood decomposes into a sum of local

terms. %@z Y Oy
(.(0;D)=logp(x,z|0)=log p(z|6,)+log p(x|z,0,)
_J (C— _ )

 When with latent variables, all the parameters
become coupled together via marginalization

/(e;D)=logp(x|9)=log2p(z|e£p(x|z,ex)

T M

10/19/20
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Gradient Learning for mixture models

* We can learn mixture densities using gradient descent on
the observed log likelihood. The gradients are quite
interesting:

¢(0)=log p(x|6) =log > 7, p,(x/6,)
k

oo 1 apk(x‘ek)
20 p(x|0) Zk:”k 00
B dlog p, (x/6,)
R

p(x6,) dlog p,(x|6,) OZk
R T R )

* |n other words, the gradient is the responsibility weighted
sum of the individual log likelihood gradients.

*»sCan pass this to a conjugate gradient routine.



Parameter Constraints

* Often we have constraints on the parameters, e.g. Ek
being symmetric positive definite.

* We can use constrained optimization, or we can re-
parameterize in terms of unconstrained values.

— For normalized weights, softmax to e.g. i” —1
J=1 !

— For covariance matrices, use the Cholesky decomposition:
>T=ATA

where A is upper diagonal with positive diagonal:

A= exp(/i,-)> O A,;=n, (J>N A,;=0(j</)

— Use chain rule to compute
o o
o OA



|dentifiability

A mixture model induces a multi-modal likelihood.
Hence gradient ascent can only find a local maximum.

Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

Hence we should be careful in trying to interpret the
“meaning” of latent variables.

likelihood

/

parameter Space
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Expectation-Maximization (EM) Algorithm

* EM is an Iterative algorithm with two linked steps:
— E-step: fill-in hidden values using inference: p(z|x \thetat).

— M-step: update parameters (t+1) rounds using
standard MLE/MAP method applied to completed data
 We will prove that this procedure monotonically
improves (or leaves it unchanged). Thus it always
converges to a local optimum of the likelihood.

10/19/20
479



Theory underlying EM

What are we doing?

Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

But we do not observe z, so computing
£(6;D)=log " p(x,z|0)=log ¥ p(z|6,)p(x| z,6,)

is difficult!

What shall we do?
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(1) Incomplete Log Likelihoods

* Incomplete log likelihood

With z unobserved, our objective becomes the log of a marginal probability:

— This objective won't decouple
J ’ @M SWFUJ
/(G;X)=10g(P(X|9)71082P(X,Z|é<
Mg i |
@{Mv\ O\DQWWUJZ <

10/19/20
44
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(2) Complete Log Likelihoods

 Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s).
If Z could be observed, then

def

/ (0;x,z)=logp(x,z|0)=logp(z|6 )p(x|z,0 )

— Usually, optimizing |.() given both zand x is
straightforward (c.f. MLE for fully observed models).

— Recalled that in this case the objective for, e.g., MLE,
decomposes into a sum of factors, the parameter for
each factor can be estimated separately.

— But given that Z is not observed, |.() is a random
quantity, cannot be maximized directly.

10/19/20
45



Three types of log-likelihood
over multiple observed samples (x_1,x_2, ..., x_N)

Werveddata T = (Cljl’CCQ,,CCN) —‘

Latent variables z == (21, 22, ¢« ooy ZN)

Iteration index t

Log-likelihood [Incomplete log-likelihood (ILL)]

1(0; ) = log p(x|0) = log 1, p(x|6)
Complete log-likelihood (CLL) — ZCB lOg ZZ p(ﬂj, 2‘9)

l(0;2,2) = > logp(z, 2 | 0)

Expected complete log-likelihood (ECLL)

E%%c%ﬂsﬂc(@;m,z ZCEZQ z | x,0)log p(x,z | 0)



Three types of log-likelihood
over multiple observed samples (x_1, x_2, .

Observed data O m ajN)

o — (217Z27°°E é(]\,;%/ii 'Q{(}D

Latent variables

Log-likelihood [Incomplete log-likelihood {|LL)

1(0;2) = log pL(\xJH) = log [I,p(x|0)
Complete Iog—likelihood@ — ZCB l()g ZZ p(ﬂj, Z‘H)
(02, 2) = > plogp(xz, 2 |0) 8 Nc% (%\0<,@>
Expected complete log-likelihood //‘)
E%f{d)]( (0;2,2)) Zx2q2|$ﬁilogp($z\9

A1 XA 2
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(3) Expected Complete Log Likelihood

* For any distribution g(z), define expected
complete log likelihood (ECLL):

e CLL is random variable =» ECLL is a deterministic
function of g

* Linear in CLL() --- inherit its factorizabiility

* Does maximizing this surrogate yield a maximizer of the
likelihood?

def

ECLL=(/ (0;x,z)>q =Y q(z|x,0)logp(x,2|6)

10/19/20 48



Thriyambakam Krishnan

Jensen’ s inequality

e f@t ( >
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Jensen’ s inequality

* Jensen’ sinequality

def

ECLL=(/ (6;x,2)) =Y q(z]x,0)logp(x,z|6)
ILL=/(0;x)=logp(x|6) Ty

:logZp(x,Z|9)

_ p(x,216)
‘loggqn-—(z'x)( a(z1) T .
s pxzle) _ <

Jangns = Xalzl)log™ o ]{ﬂ ﬂ Z

=Y q(z|x)logp(x,2]6)- Y q(z|x)logq(z| x) /

Entropy term

=ECLL+Hq

= ¢(0;x)2(¢.(6;x, z))q +H,
ILL =z ECLL + He

10/19/20
50
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Lower Bounds and Free Energy

* For fixed data x, define a funct|ona| c)alled the
free energy; (E%(%”C( x.2|0)
F(g,0) = Zq(z|x)log 2215 </(0;X)

y4

 The EM algorithm is coordinate-ascent on F :
— E-step: ¢ —argmaxF(q,0")
q

Vi

— M-step: 6?”1:argmgXF(7M»9f) 7

10/19/20
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How EM optimize ILL 7

10/19/20 52
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E-step: maximization of w.r.t. @

e Claim: iy
g™ =argmax F(¢,0") = p(z| x,6")
q

— This is the posterior distribution over the latent variables given the
data and the parameters. Often we need this at test time anyway
(e.g. to perform clustering).

* Proof (easy): this setting attains the bound of ILL

F(p(z]x,6"),6") =) p(z]x,6")log p(x.2]0)

p(z|x,0")
=3 p(efr.0)log p(x|6)

=log p(x|0")=2(6";x)

e (Can also show this result using variational calculus or the fact
that

10/19/20

¢(0;x)-F(g,0)=KL(¢| p(z | X,0))

53
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E-step: Alternative derivation

)
K@ﬂa 7/? (%/8
7
¢(6:x)-F(9.0)=KL(g | p(z| x,6))
B ST vl ) o plz, 2| 0)
= 1(0;2) Z 1= 2)log = 7= RUES 0)9(x,9)
n(x.z |60 =
= D_alz]a)logp(a|0) =) a(| "'““’gl«(z(: | .|,')>

- e(x0
= % 1(3 %) gfh(g[;:,@)

= D(q(z|2) | p(z|x0)).

) T?@Hco A G-f "

10/19/20 54



M-step: maximization w.r.t. \theta

* Note that the free energy breaks into two
terms:

_ p(x,z|0)
@‘5"”'” log g(z|x)

=Y g(z|x)log p(x,z|0)- > q(z|x)logg(z| X)

=(£.(0; x, Z)>q +H,

FcLl F ewtnot )y,
— The first term is the expected complete log
likelihood (energy) and the second term, which
does not depend on g, is the entropy.



M-step: maximization w.r.t. \theta

* Thus, in the M-step, maximizing with respect
to g for fixed g we only need to consider the

first term:
EcLL

0! = arg m§1X</C (6; x, z))qm = arg meaxzq(z | x)log p(x,z|6)

— Under optimal g™1, this is equivalent to solving a
standard MLE of fully observed model p(x,z|q),
with the sufficient statistics involving z replaced by
their expectations w.r.t. p(z|x,q).
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Summary: EM Algorithm

A way of maximizing likelihood function for latent variable models.

Finds MLE of parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data
and current parameters.

2. Using this “complete” data, find the maximum likelihood parameter
estimates.

e Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

— E-step: Pl #

_ M-step: q —argmanF(q,é’ )

97‘+1 = arg mg.X F(qf+1,97‘)

In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.

10/19/20
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How EM optimize ILL 7

10/19/20 58



A Report Card for EM

 Some good things about EM:
— no learning rate (step-size) parameter
— automatically enforces parameter constraints
— very fast for low dimensions
— each iteration guaranteed to improve likelihood
— Calls inference and fully observed learning as subroutines.

 Some bad things about EM:
— can get stuck in local minima

— can be slower than conjugate gradient (especially near
convergence)

— requires expensive inference step ﬁ/‘fﬂé\% 26»
— is a maximum likelihood/MAP method
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