
UVA CS 4774:
Machine Learning

S5: Lecture 26:
Reinforcement Learning

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

Course Content Plan è Regarding Tasks
q Regression (supervised)

q Learning theory

q Classification (supervised)

q Unsupervised models

q Graphical models

q Reinforcement Learning

4/28/22 2

Y is a continuous

Y is a discrete

NO Y

About f()

About interactions among Y,X1,. Xp

Learn to Interact with environment

Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Geoff Hulten

Eric Xing Credit: Eric Xing @ CMU, 4

Where Machine Learning is being used or can
be useful?

Speech recognition

Information retrieval

Computer vision

Robotic control

Planning

Games

Evolution

Pedigree

5

Rich Nguyen

6

Classes of Learning Problems
Supervised Learning:

Data: (x, y)

x is data, y is label

Goal: Learn function
to map x → y

Example:

Unsupervised Learning:

Data: x

x is data, no labels!

Goal: Learn underlying
structure

Example:

Reinforcement Learning:

Data: state-action pairs

Goal: Maximize future
rewards over many steps

Example:

Rich Nguyen

The Machine Learning Stack!

7

What can be learned?

Rich Nguyen

Sensors

8

Rich Nguyen

Representations

9

Rich Nguyen

Knowledge / Reasoning

10

Rich Nguyen
Rich Nguyen

Actions

11

Rich Nguyen

The Full Stack

12

The promise of
Deep Learning

The promise of
Deep Reinforcement Learning

Rich Nguyen

Reinforcement Learning

Agent

Environment

Action

Re
w

ar
d State

• Learning to interact with an environment
• Robots, games, process control
• With limited human training
• Where the ‘right thing’ isn’t obvious

• Supervised Learning:
• Goal: 𝑓 𝑥 = 𝑦
• Data: [< 𝑥!, 𝑦! >,… ,< 𝑥", 𝑦" >]

• Reinforcement Learning:
• Goal:

Maximize ∑!"#$ 𝑅𝑒𝑤𝑎𝑟𝑑(𝑆𝑡𝑎𝑡𝑒!, 𝐴𝑐𝑡𝑖𝑜𝑛!)

• Data:
𝑅𝑒𝑤𝑎𝑟𝑑!, 𝑆𝑡𝑎𝑡𝑒!%# = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡(𝑆𝑡𝑎𝑡𝑒!, 𝐴𝑐𝑡𝑖𝑜𝑛!)

credit: Geoff Hulten

Eric Xing © Eric Xing @ CMU, 2006-2008 14

History of Reinforcement Learning

• Roots in the psychology of animal learning (Thorndike,1911).

• Another independent thread was the problem of optimal control, and its
solution using dynamic programming (Bellman, 1957).

• Idea of temporal difference learning (on-line method), e.g., playing board
games (Samuel, 1959).

• A major breakthrough was the discovery of Q-learning (Watkins, 1989).

Eric Xing © Eric Xing @ CMU, 2006-2008 15

A Success Story

• TD Gammon (Tesauro, G., 1992)
- A Backgammon playing program.
- Application of temporal difference learning.
- The basic learner is a neural network.
- It trained itself to the world class level by playing against itself and

learning from the outcome. So smart!!
- More information:

http://www.research.ibm.com/massive/tdl.html

TD-Gammon – Tesauro ~1995

P(win)

• Net with 80 hidden units,
initialize to random weights

• Select move based on network
estimate & shallow search

• Learn by playing against itself

• 1.5 million games of training
-> competitive with world class players

State: Board State
Actions: Valid Moves
Reward: Win or Lose

credit: Geoff Hulten

Eric Xing © Eric Xing @ CMU, 2006-2008 17

Examples of Reinforcement Learning

• How should a robot behave so as
to optimize its “performance”? (Robotics)

• How to automate the motion of
a helicopter? (Control Theory)

• How to make a good chess-playing
program? (Artificial Intelligence)

Resource allocation in datacenters

• A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation
• Tesauro, Jong, Das, Bennani (IBM)
• ICAC 2006

loadbalancer

application A application B application C

Atari 2600 games

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

• Same model/parameters for
~50 games

State: Raw Pixels
Actions: Valid Moves
Reward: Game Score

credit: Geoff Hulten

Robotics and
Locomotion

2017 paper https://arxiv.org/pdf/1707.02286.pdf

https://youtu.be/hx_bgoTF7bs

State:
Joint States/Velocities
Accelerometer/Gyroscope
Terrain

Actions: Apply Torque to Joints
Reward: Velocity – { stuff }

credit: Geoff Hulten

Alpha Go
• Learning how to beat humans at ‘hard’ games

(search space too big)

• Far surpasses (Human) Supervised learning

• Algorithm learned to outplay humans at chess in 24
hours

State: Board State
Actions: Valid Moves
Reward: Win or Lose

https://deepmind.com/documents/119/agz_unformatted_nature.pdf

credit: Geoff Hulten

Deep Reinforcement
Learning

• Human

4/28/22 22

• So what’s DEEP RL?
Environment

{Actions}{Raw Observation, Reward}

Adapt from Professor Qiang Yang of HK UST
Dr Yanjun Qi / UVA CS

4/28/22 23
Silver, David et al. (2017b). “Mastering the Game of Go without Human Knowledge”. In: Nature 550.7676, pp. 354–359.

Dr Yanjun Qi / UVA CS

AlphaGO: Learning Pipeline
• Combine Supervised Learning (SL) and RL to learn the search

direction in Monte Carlo Tree Search

• SL policy Network
• Prior search probability or potential

• Rollout:
• combine with MCTS for quick simulation on leaf node

• Value Network:
• Build the Global feeling on the leaf node situation

4/28/22 24

Silver, David, et al. 2016.

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.
Dr Yanjun Qi / UVA CS

4/28/22 25Silver, David et al. (2017b). “Mastering the Game of Go without Human

Knowledge”. In: Nature 550.7676, pp. 354–359.
Dr Yanjun Qi / UVA CS

4/28/22 26Dr Yanjun Qi / UVA CS

Eric Xing © Eric Xing @ CMU, 2006-2008 27

What is special about RL?

• RL is learning how to map states to actions, so as to maximize a numerical
reward over time.

• Unlike other forms of learning, it is a multistage decision-making process
(often Markovian).

• An RL agent learn by trial-and-error. (Not entirely supervised, but
interactive)

• Actions may affect not only the immediate reward but also subsequent
rewards (Delayed effect).

Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Geoff Hulten

Eric Xing © Eric Xing @ CMU, 2006-2008 29

Elements of RL

• A policy
- A map from state space to action space.
- May be stochastic.

• A reward function
- It maps each state (or, state-action pair) to
a real number, called reward.

• A value function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

Setup for Reinforcement Learning

Markov Decision Process (environment)
• Discrete-time stochastic control

process

• Each time step, 𝑠:
• Agent chooses action 𝑎 from set 𝐴!
• Moves to new state with probability:

• 𝑃&(𝑠, 𝑠')
• Receives reward: 𝑅"(𝑠, 𝑠#)

• Every outcome depends on 𝑠 and 𝑎
• Nothing depends on previous

states/actions

Policy
(agent’s behavior)
• 𝜋(𝑠) – The action to take in state 𝑠

• Goal maximize: ∑!"#$ 𝛾!𝑅%#(𝑠!, 𝑠!&')
• 𝑎$ = 𝜋 𝑠$
• 0 ≤ 𝛾 < 1 – Tradeoff immediate vs future

• 𝑉(𝑠 =
∑)$ 𝑃() (𝑠, 𝑠*) ∗
(𝑅() 𝑠, 𝑠* + 𝛾𝑉(𝑠*)

Probability of moving to each state

Reward for making that move Value of being in that state
credit: Geoff Hulten

Simple Example of Agent in an Environment
State:

Map Locations

{< 0,0 >,< 1,0 > ⋯ < 3,3 >}

Actions:
Move within map
Reaching chest ends episode

𝐴!,! = { 𝑒𝑎𝑠𝑡, 𝑠𝑜𝑢𝑡ℎ }
𝐴#,! = { 𝑒𝑎𝑠𝑡, 𝑠𝑜𝑢𝑡ℎ, 𝑤𝑒𝑠𝑡 }
𝐴$,! = 𝜙
…
𝐴$,$ = { 𝑛𝑜𝑟𝑡ℎ, 𝑤𝑒𝑠𝑡 }

Reward:
100 at chest
0 for others

𝑅%&'(< 1,0 >,< 2,0 > = 100
𝑅)*+(, < 2,1 >,< 2,0 > = 100
𝑅∗ ∗,∗ = 0

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

Score: 0Score: 100

100

credit: Geoff Hulten

Policies

𝜋 𝑠 = 𝑎

𝜋 < 0,0 > = { 𝑠𝑜𝑢𝑡ℎ }
𝜋 < 0,1 > = { 𝑒𝑎𝑠𝑡 }
𝜋 < 0,2 > = { 𝑒𝑎𝑠𝑡 }
𝜋 < 1,0 > = {𝑒𝑎𝑠𝑡 }
𝜋 < 1,1 > = { 𝑛𝑜𝑟𝑡ℎ }
𝜋 < 1,2 > = { 𝑛𝑜𝑟𝑡ℎ }
𝜋 < 2,0 > = { 𝜙 }
𝜋 < 2,1 > = { 𝑤𝑒𝑠𝑡 }
𝜋 < 2,2 > = { 𝑛𝑜𝑟𝑡ℎ }

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

1, 2 2, 20, 2

𝑉< 𝑠 =&
=>?

@

𝛾= 𝑟=AB

𝑉% < 1,0 > = 𝛾& ∗ 100

𝑉% < 1,1 > = 𝛾& ∗ 0 + 𝛾' ∗ 100

Policy Evaluating Policies

𝑅%&'(< 1,0 >,< 2,0 > = 100
𝑅)*+(, < 2,1 >,< 2,0 > = 100
𝑅∗ ∗,∗ = 0

𝛾 = 0.5

𝑉! < 0,0 > = 𝛾" ∗ 0 + 𝛾# ∗ 0 + 𝛾$ ∗ 0 + 𝛾% ∗ 100

Move to <0,1>Move to <1,1>Move to <1,0>Move to <2,0>

10012.5

50

Policy could be better

credit: Geoff Hulten

Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

• reward +1 at [4,3], -1 at [4,2]
• reward -0.04 for each step

• what’s the strategy to achieve max reward?
• what if the actions were deterministic?

credit: Geoff Hulten

Other examples

• pole-balancing
• TD-Gammon [Gerry Tesauro]
• helicopter [Andrew Ng]

• no teacher who would say “good” or “bad”
• is reward “10” good or bad?
• rewards could be delayed

• similar to control theory
• more general, fewer constraints

• explore the environment and learn from experience
• not just blind search, try to be smart about it

credit: Geoff Hulten

How Reinforcement Learning is Different

• Delayed Reward

• Agent chooses training data

• Explore vs Exploit (Life long learning)

• Very different terminology (can be confusing)

credit: Geoff Hulten

Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Peter Bodí

Eric Xing © Eric Xing @ CMU, 2006-2008 37

The Precise Goal / Popular RL Algorithms

• To find a policy that maximizes the Value function.
• transitions and rewards usually not available

• There are different approaches to achieve this goal in various situations.

• Value iteration and Policy iteration are two more classic approaches to this
problem. But essentially both are dynamic programming.

• Q-learning is a more recent approaches to this problem. Essentially it is a
temporal-difference method.

(1) Dynamic programming

• main idea
• use value functions to structure the search for good policies
• need a perfect model of the environment

• two main components
• policy evaluation: compute Vp from p
• policy improvement: improve p based on Vp

• start with an arbitrary policy
• repeat evaluation/improvement until convergence

Value functions
• state value function: Vp(s)
• expected return when starting in s and following p

• state-action value function: Q-function: Qp(s,a)
• expected return when starting in s, performing a, and

following p

• useful for finding the optimal policy
• can estimate from experience
• pick the best action using Qp(s,a)

• Bellman equation

s

a

s’

r

credit: Peter Bodí

Using DP

• need complete model of the environment and rewards
• robot in a room

• state space, action space, transition model

• can we use DP to solve
• robot in a room?
• back gammon?
• helicopter?

credit: Peter Bodí

Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Peter Bodí

Monte Carlo methods

• don’t need full knowledge of environment
• just experience, or
• simulated experience

• but similar to DP
• policy evaluation, policy improvement

• averaging sample returns
• defined only for episodic tasks

credit: Peter Bodí

Computing return from rewards

• episodic (vs. continuing) tasks
• “game over” after N steps
• optimal policy depends on N; harder to analyze

• additive rewards
• V(s0, s1, …) = r(s0) + r(s1) + r(s2) + …
• infinite value for continuing tasks

• discounted rewards
• V(s0, s1, …) = r(s0) + γ*r(s1) + γ2*r(s2) + …
• value bounded if rewards bounded

credit: Peter Bodí

Monte Carlo policy evaluation
• want to estimate Vp(s)

= expected return starting from s and following p
• estimate as average of observed returns in state s

• first-visit MC
• average returns following the first visit to state s

s0
s s

+1 -2 0 +1 -3 +5
R1(s) = +2

s0
s0
s0
s0
s0

R2(s) = +1
R3(s) = -5

R4(s) = +4

Vp(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5
credit: Peter Bodí

Maintaining exploration

• deterministic/greedy policy won’t explore all actions
• don’t know anything about the environment at the beginning
• need to try all actions to find the optimal one

• maintain exploration
• use soft policies instead: p(s,a)>0 (for all s,a)

• ε-greedy policy
• with probability 1-ε perform the optimal/greedy action
• with probability ε perform a random action

• will keep exploring the environment
• slowly move it towards greedy policy: ε -> 0

credit: Peter Bodí

Simulated experience

• 5-card draw poker
• s0: A§, A¨, 6ª, A©, 2ª
• a0: discard 6ª, 2ª
• s1: A§, A¨, A©, Aª, 9ª + dealer takes 4 cards
• return: +1 (probably)

• DP
• list all states, actions, compute P(s,a,s’)

• P([A§,A¨,6ª,A©,2ª], [6ª,2ª], [Aª,9ª,4]) = 0.00192

• MC
• all you need are sample episodes
• let MC play against a random policy, or itself, or another algorithm

credit: Peter Bodí

Summary of Monte Carlo

• don’t need model of environment
• averaging of sample returns
• only for episodic tasks

• learn from sample episodes or simulated experience

• can concentrate on “important” states
• don’t need a full sweep

• need to maintain exploration
• use soft policies

credit: Peter Bodí

Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Peter Bodí

Temporal Difference Learning
• combines ideas from MC and DP

• like MC: learn directly from experience (don’t need a model)
• like DP: learn from values of successors
• works for continuous tasks, usually faster than MC

• constant-alpha MC:
• have to wait until the end of episode to update

• simplest TD
• update after every step, based on the successor

target

credit: Peter Bodí

Value functions
• state value function: Vp(s)
• expected return when starting in s and following p

• state-action value function: Q-function: Qp(s,a)
• expected return when starting in s, performing a, and

following p

• useful for finding the optimal policy
• can estimate from experience
• pick the best action using Qp(s,a)

• Bellman equation

s

a

s’

r

credit: Peter Bodí

Optimal value functions

• there’s a set of optimal policies
• Vp defines partial ordering on policies
• they share the same optimal value function

• Bellman optimality equation

• system of n non-linear equations
• solve for V*(s)
• easy to extract the optimal policy

• having Q*(s,a) makes it even simpler

s

a

s’

r

credit: Peter Bodí

Q-learning
• before: on-policy algorithms

• start with a random policy, iteratively improve
• converge to optimal

• Q-learning: off-policy
• use any policy to estimate Q

• Q directly approximates Q* (Bellman optimality eqn)
• independent of the policy being followed
• only requirement: keep updating each (s,a) pair

• Sarsa

credit: Peter Bodí

Sarsa
• again, need Q(s,a), not just V(s)

• control
• start with a random policy
• update Q and p after each step
• again, need e-soft policies

st st+1at st+2at+1 at+2
rt rt+1

credit: Peter Bodí

The RL Intro book
Richard Sutton, Andrew Barto
Reinforcement Learning,
An Introduction

http://www.cs.ualberta.ca/
~sutton/book/the-book.html

credit: Peter Bodí

Summary
Agent

Environment

Action

Re
w

ar
d State

Challenges:
• When the episode can end without reward
• When there is a ‘narrow’ path to reward
• When there are many states and actions

(Simple) Approaches:
• Q-Learning 5𝑄 𝑠, 𝑎 -> discounted reward of action
• Policy Gradients -> Probability distribution over 𝐴&
• Reward Shaping
• Memory
• Lots of parameter tweaking…

Reinforcement Learning:
• Goal: Maximize ∑'(#) 𝑅𝑒𝑤𝑎𝑟𝑑(𝑆𝑡𝑎𝑡𝑒' , 𝐴𝑐𝑡𝑖𝑜𝑛')
• Data: 𝑅𝑒𝑤𝑎𝑟𝑑'*#, 𝑆𝑡𝑎𝑡𝑒'*# = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡(𝑆𝑡𝑎𝑡𝑒' , 𝐴𝑐𝑡𝑖𝑜𝑛')

Many (awesome) recent successes:
• Robotics
• Surpassing humans at difficult games
• Doing it with (essentially) zero human knowledge

credit: Geoff Hulten

credit: Geoff Hulten

https://spinningup.openai.com/en/latest/

References

• RL slides from Rich Nguven
• RL Slides from Geoff Hulten
• RL slides from Eric Xing
• RL slides from Peter Bodik

credit: Geoff Hulten

Gym – toolkit for reinforcement learning
import gym

env = gym.make('CartPole-v0')

import random
import QLearning # Your implementation goes here...
import Assignment7Support

trainingIterations = 20000

qlearner = QLearning.QLearning(<Parameters>)

for trialNumber in range(trainingIterations):
observation = env.reset()
reward = 0
for i in range(300):

env.render() # Comment out to make much faster...

currentState = ObservationToStateSpace(observation)
action = qlearner.GetAction(currentState, <Parameters>)

oldState = ObservationToStateSpace(observation)
observation, reward, isDone, info = env.step(action)
newState = ObservationToStateSpace(observation)

qlearner.ObserveAction(oldState, action, newState, reward, …)

if isDone:
if(trialNumber%1000) == 0:

print(trialNumber, i, reward)
break

Now you have a policy in qlearner – use it...

https://gym.openai.com/docs/

Reward +1 per step the pole remains up

Reward 200 at flag -1 per step

CartPole

MountainCar

Q learning
Learn a policy 𝜋(𝑠) that optimizes 𝑉< 𝑠 for all states, using:
• No prior knowledge of state transition probabilities: 𝑃%(𝑠, 𝑠*)
• No prior knowledge of the reward function: 𝑅%(𝑠, 𝑠*)

Approach:
• Initialize estimate of discounted reward for every state/action pair: /𝑄 𝑠, 𝑎 = 0
• Repeat (for a while):

• Take a random action 𝑎 from 𝐴!
• Receive 𝑠" and 𝑅#(𝑠, 𝑠") from environment
• Update F𝑄(𝑠, 𝑎) = (1−∝$) F𝑄%&'(𝑠, 𝑎) + ∝$ [𝑅# 𝑠, 𝑠" + 𝛾max#D

F𝑄%&' 𝑠", 𝑎"]

• Random restart if in terminal state

∝$=
1

1 + 𝑣𝑖𝑠𝑖𝑡𝑠(𝑠, 𝑎)
Exploration Policy: 𝑃 𝑎(, 𝑠 =)EF(H,IJ)

∑L)
EF(H,IL)

𝑅+ 𝑠, 𝑠, + 𝛾max+!
5𝑄 𝑠,, 𝑎,

credit: Peter Bodí

Example of Q learning
(round 1)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 0

0
0

0 0
0

0

00

0
0

0 0
0

0

0
0

0 0

0 0

• Initialize 5𝑄 to 0

• Random initial state = < 1,1 >
• Random action from 𝐴-#,#/ = 𝑒𝑎𝑠𝑡

• 𝑠' =< 2,1 >
• 𝑅& 𝑠, 𝑠' = 0

• Update F𝑄 < 1,1 >, 𝑒𝑎𝑠𝑡 = 0

5𝑄 𝑠, 𝑎 = 𝑅+ 𝑠, 𝑠, + 𝛾max
+!

5𝑄01# 𝑠,, 𝑎,

• Random action from 𝐴-$,#/ = 𝑛𝑜𝑟𝑡ℎ
• 𝑠' =< 2,0 >
• 𝑅& 𝑠, 𝑠' = 100

• Update F𝑄 < 2,1 >, 𝑛𝑜𝑟𝑡ℎ = 100

• No more moves possible, start again…

100

credit: Peter Bodí

Example of Q learning
(round 2)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 0

0
0

0 0
0

00

0
0

0 0
0

0

0
0

0 0

0 0

• Round 2: Random initial state = < 2,2 >
• Random action from 𝐴-$,$/ = 𝑛𝑜𝑟𝑡ℎ

• 𝑠' =< 2,1 >
• 𝑅& 𝑠, 𝑠' = 0

• Update F𝑄 < 2,1 >, 𝑛𝑜𝑟𝑡ℎ = 0 + 𝛾 * 100

5𝑄 𝑠, 𝑎 = 𝑅+ 𝑠, 𝑠, + 𝛾max
+!

5𝑄01# 𝑠,, 𝑎,

• Random action from 𝐴-$,#/ = 𝑛𝑜𝑟𝑡ℎ
• 𝑠' =< 2,0 >
• 𝑅& 𝑠, 𝑠' = 100

• Update F𝑄 < 2,1 >, 𝑛𝑜𝑟𝑡ℎ = 𝑠𝑡𝑖𝑙𝑙 100

• No more moves possible, start again…

100

𝛾 = 0.5

50

credit: Peter Bodí

Example of Q learning
(some acceleration…)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 0

0
0

0 0
0

00

0
0

0 0
0

0
0

0 0

0 0

5𝑄 𝑠, 𝑎 = 𝑅+ 𝑠, 𝑠, + 𝛾max
+!

5𝑄01# 𝑠,, 𝑎,

100

𝛾 = 0.5

50

50

25

• Random Initial State < 0,0 >

• Update F𝑄 < 1,1 >, 𝑒𝑎𝑠𝑡 = 50

• Update F𝑄 < 1,2 >, 𝑒𝑎𝑠𝑡 = 25

credit: Peter Bodí

Example of Q learning
(some acceleration…)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 0

0
0

0 0
0

500

0
0

0 0
0

0
0

0 25

0 0

5𝑄 𝑠, 𝑎 = 𝑅+ 𝑠, 𝑠, + 𝛾max
+!

5𝑄01# 𝑠,, 𝑎,

100

𝛾 = 0.5

50

25

100• Random Initial State < 0,2 >

• Update F𝑄 < 0,1 >, 𝑒𝑎𝑠𝑡 = 25

• Update F𝑄 < 1,0 >, 𝑒𝑎𝑠𝑡 = 100

credit: Peter Bodí

Example of Q learning
(!𝑄 after many, many runs…)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

50 100

25
12.5

25 50
25

25

12.5
6.25

12.5 25
12.5

25
25

12.5

6.25 12.5

100

50

50

25

• F𝑄 converged

• Policy is:
𝜋 𝑠 = argmax

#+,H
F𝑄(𝑠, 𝑎)

credit: Peter Bodí

Challenges for Reinforcement Learning

• When there are many
states and actions

• When the episode can
end without reward

• When there is a
‘narrow’ path to
reward

Turns Remaining: 15

Each step ~50% probability of going wrong way – P(reaching goal) ~ 0.01%Random exploring will fall off of rope ~97% of the time

credit: Peter Bodí

Memory

• Retrain on previous explorations

• Maintain samples of:
𝑃%(𝑠, 𝑠&)
𝑅%(𝑠, 𝑠&)

• Useful when
• It is cheaper to use some RAM/CPU

than to run more simulations

• It is hard to get to reward so you want
to leverage it for as much as possible
when it happens

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 100

0
0

0 0
0

00

0
0

0 0
0

0
0

0 0

0 0

0

0

100

50

25

12.5

25

50

25

50

25

50

Do an explorationReplay it a bunch of timesReplay a different explorationReplay it a bunch of times

25

credit: Peter Bodí

Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

• states
• actions
• rewards

• what is the solution? credit: Peter Bodí

Is this a solution?
+1

-1

• only if actions deterministic
• not in this case (actions are stochastic)

• solution/policy
• mapping from each state to an action

credit: Peter Bodí

State representation

• pole-balancing
• move car left/right to keep the pole balanced

• state representation
• position and velocity of car
• angle and angular velocity of pole

• what about Markov property?
• would need more info
• noise in sensors, temperature, bending of pole

• solution
• coarse discretization of 4 state variables

• left, center, right
• totally non-Markov, but still works

credit: Peter Bodí

Splitting and aggregation
• want to discretize the state space
• learn the best discretization during training

• splitting of state space
• start with a single state
• split a state when different parts of that state have different values

• state aggregation
• start with many states
• merge states with similar values

credit: Peter Bodí

Designing rewards

• robot in a maze
• episodic task, not discounted, +1 when out, 0 for each step

• chess
• GOOD: +1 for winning, -1 losing
• BAD: +0.25 for taking opponent’s pieces

• high reward even when lose

• rewards
• rewards indicate what we want to accomplish
• NOT how we want to accomplish it

• shaping
• positive reward often very “far away”
• rewards for achieving subgoals (domain knowledge)
• also: adjust initial policy or initial value function

credit: Peter Bodí

