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Course Content Plan è Regarding Tasks
q Regression (supervised)

q Learning theory

q Classification (supervised)

q Unsupervised models

q Graphical models 

q Reinforcement Learning 
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Y is a continuous

Y is a discrete

NO Y 

About f()

About interactions among Y,X1,. Xp

Learn to Interact with environment



Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Geoff Hulten
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Where Machine Learning is being used or can 
be useful?

Speech recognition

Information retrieval

Computer vision

Robotic control

Planning

Games

Evolution

Pedigree
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Rich Nguyen
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Classes of Learning Problems
Supervised Learning:

Data: (x, y)

x is data, y is label

Goal: Learn function 
to map x → y

Example:

Unsupervised Learning:

Data: x

x is data, no labels!

Goal: Learn underlying 
structure

Example:

Reinforcement Learning:

Data: state-action pairs

Goal: Maximize future 
rewards over many steps

Example:

Rich Nguyen



The Machine Learning Stack!
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What can be learned?

Rich Nguyen



Sensors
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Rich Nguyen



Representations
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Rich Nguyen



Knowledge / Reasoning
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Rich Nguyen
Rich Nguyen



Actions
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Rich Nguyen



The Full Stack
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The promise of
Deep Learning

The promise of
Deep Reinforcement Learning

Rich Nguyen



Reinforcement Learning

Agent

Environment

Action

Re
w

ar
d State

• Learning to interact with an environment
• Robots, games, process control
• With limited human training
• Where the ‘right thing’ isn’t obvious

• Supervised Learning:
• Goal: 𝑓 𝑥 = 𝑦
• Data: [< 𝑥!, 𝑦! >,… ,< 𝑥", 𝑦" > ]

• Reinforcement Learning:
• Goal:

Maximize ∑!"#$ 𝑅𝑒𝑤𝑎𝑟𝑑(𝑆𝑡𝑎𝑡𝑒!, 𝐴𝑐𝑡𝑖𝑜𝑛!)

• Data: 
𝑅𝑒𝑤𝑎𝑟𝑑!, 𝑆𝑡𝑎𝑡𝑒!%# = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡(𝑆𝑡𝑎𝑡𝑒!, 𝐴𝑐𝑡𝑖𝑜𝑛!)

credit: Geoff Hulten
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History of Reinforcement Learning

• Roots in the psychology of animal learning (Thorndike,1911).

• Another independent thread was the problem of optimal control, and its 
solution using dynamic programming (Bellman, 1957).

• Idea of temporal difference learning (on-line method), e.g., playing board 
games (Samuel, 1959).

• A major breakthrough was the discovery of Q-learning (Watkins, 1989).
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A Success Story

• TD Gammon (Tesauro, G., 1992)
- A Backgammon playing program.
- Application of temporal difference learning.
- The basic learner is a neural network.
- It trained itself to the world class level by  playing against itself and 

learning from the outcome. So smart!!
- More information: 

http://www.research.ibm.com/massive/tdl.html



TD-Gammon – Tesauro ~1995

P(win)

• Net with 80 hidden units, 
initialize to random weights

• Select move based on network 
estimate & shallow search

• Learn by playing against itself

• 1.5 million games of training
-> competitive with world class players

State: Board State
Actions: Valid Moves
Reward: Win or Lose

credit: Geoff Hulten
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Examples of Reinforcement Learning 

• How should a robot behave so as 
to optimize its “performance”? (Robotics)

• How to automate the motion of 
a helicopter? (Control Theory)

• How to make a good chess-playing 
program? (Artificial Intelligence)



Resource allocation in datacenters

• A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation
• Tesauro, Jong, Das, Bennani (IBM)
• ICAC 2006

loadbalancer

application A application B application C



Atari 2600 games

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

• Same model/parameters for 
~50 games

State: Raw Pixels
Actions: Valid Moves
Reward: Game Score

credit: Geoff Hulten



Robotics and 
Locomotion

2017 paper https://arxiv.org/pdf/1707.02286.pdf

https://youtu.be/hx_bgoTF7bs

State: 
Joint States/Velocities
Accelerometer/Gyroscope
Terrain

Actions: Apply Torque to Joints
Reward: Velocity – { stuff }

credit: Geoff Hulten



Alpha Go
• Learning how to beat humans at ‘hard’ games 

(search space too big)

• Far surpasses (Human) Supervised learning 

• Algorithm learned to outplay humans at chess in 24 
hours

State: Board State
Actions: Valid Moves
Reward: Win or Lose

https://deepmind.com/documents/119/agz_unformatted_nature.pdf

credit: Geoff Hulten



Deep Reinforcement 
Learning

• Human

4/28/22 22

• So what’s DEEP RL?
Environment

{Actions}{Raw Observation, Reward}

Adapt from Professor Qiang Yang of HK UST 
Dr Yanjun Qi / UVA CS
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Silver, David et al. (2017b). “Mastering the Game of Go without Human Knowledge”. In: Nature 550.7676, pp. 354–359.

Dr Yanjun Qi / UVA CS



AlphaGO: Learning Pipeline
• Combine Supervised Learning (SL) and RL to learn the search 

direction in Monte Carlo Tree Search

• SL policy Network
• Prior search probability or potential

• Rollout: 
• combine with MCTS for quick simulation on leaf node 

• Value Network:
• Build the Global feeling on the leaf node situation

4/28/22 24

Silver, David, et al. 2016.

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.
Dr Yanjun Qi / UVA CS



4/28/22 25Silver, David et al. (2017b). “Mastering the Game of Go without Human 

Knowledge”. In: Nature 550.7676, pp. 354–359.
Dr Yanjun Qi / UVA CS



4/28/22 26Dr Yanjun Qi / UVA CS



Eric Xing © Eric Xing @ CMU, 2006-2008 27

What is special about RL?

• RL is learning how to map states to actions, so as to maximize a numerical 
reward over time.

• Unlike other forms of learning, it is a multistage decision-making process 
(often Markovian).

• An RL agent learn by trial-and-error. (Not entirely supervised, but 
interactive)

• Actions may affect not only the immediate reward but also subsequent 
rewards (Delayed effect). 



Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Geoff Hulten
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Elements of RL

• A policy
- A map from state space to action space.
- May be stochastic.

• A reward function
- It maps each state (or, state-action pair) to
a real number, called reward. 

• A value function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that 
state (or, state-action pair).



Setup for Reinforcement Learning

Markov Decision Process (environment)
• Discrete-time stochastic control 

process

• Each time step, 𝑠:
• Agent chooses action 𝑎 from set 𝐴!
• Moves to new state with probability:

• 𝑃&(𝑠, 𝑠')
• Receives reward: 𝑅"(𝑠, 𝑠#)

• Every outcome depends on 𝑠 and 𝑎
• Nothing depends on previous 

states/actions

Policy
(agent’s behavior)
• 𝜋(𝑠) – The action to take in state 𝑠

• Goal maximize: ∑!"#$ 𝛾!𝑅%#(𝑠!, 𝑠!&')
• 𝑎$ = 𝜋 𝑠$
• 0 ≤ 𝛾 < 1 – Tradeoff immediate vs future

• 𝑉( 𝑠 =
∑)$ 𝑃( ) (𝑠, 𝑠*) ∗
( 𝑅( ) 𝑠, 𝑠* + 𝛾𝑉( 𝑠* )

Probability of moving to each state

Reward for making that move Value of being in that state
credit: Geoff Hulten



Simple Example of Agent in an Environment
State: 

Map Locations

{< 0,0 >,< 1,0 > ⋯ < 3,3 >}

Actions:
Move within map
Reaching chest ends episode

𝐴!,! = { 𝑒𝑎𝑠𝑡, 𝑠𝑜𝑢𝑡ℎ }
𝐴#,! = { 𝑒𝑎𝑠𝑡, 𝑠𝑜𝑢𝑡ℎ, 𝑤𝑒𝑠𝑡 }
𝐴$,! = 𝜙
…
𝐴$,$ = { 𝑛𝑜𝑟𝑡ℎ, 𝑤𝑒𝑠𝑡 }

Reward:
100 at chest
0 for others

𝑅%&'( < 1,0 >,< 2,0 > = 100
𝑅)*+(, < 2,1 >,< 2,0 > = 100
𝑅∗ ∗,∗ = 0

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

Score: 0Score: 100

100

credit: Geoff Hulten



Policies

𝜋 𝑠 = 𝑎

𝜋 < 0,0 > = { 𝑠𝑜𝑢𝑡ℎ }
𝜋 < 0,1 > = { 𝑒𝑎𝑠𝑡 }
𝜋 < 0,2 > = { 𝑒𝑎𝑠𝑡 }
𝜋 < 1,0 > = {𝑒𝑎𝑠𝑡 }
𝜋 < 1,1 > = { 𝑛𝑜𝑟𝑡ℎ }
𝜋 < 1,2 > = { 𝑛𝑜𝑟𝑡ℎ }
𝜋 < 2,0 > = { 𝜙 }
𝜋 < 2,1 > = { 𝑤𝑒𝑠𝑡 }
𝜋 < 2,2 > = { 𝑛𝑜𝑟𝑡ℎ }

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

1, 2 2, 20, 2

𝑉< 𝑠 =&
=>?

@

𝛾= 𝑟=AB

𝑉% < 1,0 > = 𝛾& ∗ 100

𝑉% < 1,1 > = 𝛾& ∗ 0 + 𝛾' ∗ 100

Policy Evaluating Policies

𝑅%&'( < 1,0 >,< 2,0 > = 100
𝑅)*+(, < 2,1 >,< 2,0 > = 100
𝑅∗ ∗,∗ = 0

𝛾 = 0.5

𝑉! < 0,0 > = 𝛾" ∗ 0 + 𝛾# ∗ 0 + 𝛾$ ∗ 0 + 𝛾% ∗ 100

Move to <0,1>Move to <1,1>Move to <1,0>Move to <2,0>

10012.5

50

Policy could be better

credit: Geoff Hulten



Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

• reward +1 at [4,3], -1 at [4,2]
• reward -0.04 for each step

• what’s the strategy to achieve max reward?
• what if the actions were deterministic?

credit: Geoff Hulten



Other examples

• pole-balancing
• TD-Gammon [Gerry Tesauro]
• helicopter [Andrew Ng]

• no teacher who would say “good” or “bad”
• is reward “10” good or bad?
• rewards could be delayed

• similar to control theory
• more general, fewer constraints

• explore the environment and learn from experience
• not just blind search, try to be smart about it

credit: Geoff Hulten



How Reinforcement Learning is Different

• Delayed Reward

• Agent chooses training data

• Explore vs Exploit (Life long learning)

• Very different terminology (can be confusing)

credit: Geoff Hulten



Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Peter Bodí
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The Precise Goal / Popular RL Algorithms

• To find a policy that maximizes the Value function.
• transitions and rewards usually not available

• There are different approaches to achieve this goal in various situations.

• Value iteration and Policy iteration are two more classic approaches to this 
problem. But essentially both are dynamic programming.

• Q-learning is a more recent approaches to this problem. Essentially it is a 
temporal-difference method.



(1) Dynamic programming

• main idea
• use value functions to structure the search for good policies
• need a perfect model of the environment

• two main components
• policy evaluation: compute Vp from p
• policy improvement: improve p based on Vp

• start with an arbitrary policy
• repeat evaluation/improvement until convergence



Value functions
• state value function: Vp(s)
• expected return when starting in s and following p

• state-action value function: Q-function: Qp(s,a)
• expected return when starting in s, performing a, and 

following p

• useful for finding the optimal policy
• can estimate from experience
• pick the best action using Qp(s,a)

• Bellman equation

s

a

s’

r

credit: Peter Bodí



Using DP

• need complete model of the environment and rewards
• robot in a room

• state space, action space, transition model

• can we use DP to solve
• robot in a room?
• back gammon?
• helicopter?

credit: Peter Bodí



Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Peter Bodí



Monte Carlo methods

• don’t need full knowledge of environment
• just experience, or
• simulated experience

• but similar to DP
• policy evaluation, policy improvement

• averaging sample returns
• defined only for episodic tasks

credit: Peter Bodí



Computing return from rewards

• episodic (vs. continuing) tasks
• “game over” after N steps
• optimal policy depends on N; harder to analyze

• additive rewards
• V(s0, s1, …) = r(s0) + r(s1) + r(s2) + …
• infinite value for continuing tasks

• discounted rewards
• V(s0, s1, …) = r(s0) + γ*r(s1) + γ2*r(s2) + …
• value bounded if rewards bounded

credit: Peter Bodí



Monte Carlo policy evaluation
• want to estimate Vp(s)

= expected return starting from s and following p
• estimate as average of observed returns in state s

• first-visit MC
• average returns following the first visit to state s

s0
s s

+1 -2 0 +1 -3 +5
R1(s) = +2

s0
s0
s0
s0
s0

R2(s) = +1
R3(s) = -5

R4(s) = +4

Vp(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5
credit: Peter Bodí



Maintaining exploration

• deterministic/greedy policy won’t explore all actions
• don’t know anything about the environment at the beginning
• need to try all actions to find the optimal one

• maintain exploration
• use soft policies instead: p(s,a)>0 (for all s,a)

• ε-greedy policy
• with probability 1-ε perform the optimal/greedy action
• with probability ε perform a random action

• will keep exploring the environment
• slowly move it towards greedy policy: ε -> 0

credit: Peter Bodí



Simulated experience

• 5-card draw poker
• s0: A§, A¨, 6ª, A©, 2ª
• a0: discard 6ª, 2ª
• s1: A§, A¨, A©, Aª, 9ª + dealer takes 4 cards
• return: +1 (probably)

• DP
• list all states, actions, compute P(s,a,s’)

• P( [A§,A¨,6ª,A©,2ª], [6ª,2ª], [Aª,9ª,4] ) = 0.00192 

• MC
• all you need are sample episodes
• let MC play against a random policy, or itself, or another algorithm

credit: Peter Bodí



Summary of Monte Carlo

• don’t need model of environment
• averaging of sample returns
• only for episodic tasks

• learn from sample episodes or simulated experience

• can concentrate on “important” states
• don’t need a full sweep 

• need to maintain exploration
• use soft policies

credit: Peter Bodí



Outline

• Examples of RL applications

• Defining an RL problem
• Markov Decision Processes

• Solving an RL problem
• Dynamic Programming
• Monte Carlo methods
• Temporal-Difference learning

credit: Peter Bodí



Temporal Difference Learning
• combines ideas from MC and DP

• like MC: learn directly from experience (don’t need a model)
• like DP: learn from values of successors
• works for continuous tasks, usually faster than MC

• constant-alpha MC:
• have to wait until the end of episode to update

• simplest TD
• update after every step, based on the successor

target

credit: Peter Bodí



Value functions
• state value function: Vp(s)
• expected return when starting in s and following p

• state-action value function: Q-function: Qp(s,a)
• expected return when starting in s, performing a, and 

following p

• useful for finding the optimal policy
• can estimate from experience
• pick the best action using Qp(s,a)

• Bellman equation

s

a

s’

r

credit: Peter Bodí



Optimal value functions

• there’s a set of optimal policies
• Vp defines partial ordering on policies
• they share the same optimal value function

• Bellman optimality equation

• system of n non-linear equations
• solve for V*(s)
• easy to extract the optimal policy

• having Q*(s,a) makes it even simpler

s

a

s’

r

credit: Peter Bodí



Q-learning
• before: on-policy algorithms

• start with a random policy, iteratively improve
• converge to optimal

• Q-learning: off-policy
• use any policy to estimate Q

• Q directly approximates Q* (Bellman optimality eqn)
• independent of the policy being followed
• only requirement: keep updating each (s,a) pair

• Sarsa

credit: Peter Bodí



Sarsa
• again, need Q(s,a), not just V(s)

• control
• start with a random policy
• update Q and p after each step 
• again, need e-soft policies

st st+1at st+2at+1 at+2
rt rt+1

credit: Peter Bodí



The RL Intro book
Richard Sutton, Andrew Barto
Reinforcement Learning, 
An Introduction

http://www.cs.ualberta.ca/
~sutton/book/the-book.html

credit: Peter Bodí



Summary
Agent

Environment

Action

Re
w

ar
d State

Challenges:
• When the episode can end without reward
• When there is a ‘narrow’ path to reward
• When there are many states and actions

(Simple) Approaches:
• Q-Learning 5𝑄 𝑠, 𝑎 -> discounted reward of action
• Policy Gradients -> Probability distribution over 𝐴&
• Reward Shaping
• Memory
• Lots of parameter tweaking…

Reinforcement Learning:
• Goal: Maximize ∑'(#) 𝑅𝑒𝑤𝑎𝑟𝑑(𝑆𝑡𝑎𝑡𝑒' , 𝐴𝑐𝑡𝑖𝑜𝑛')
• Data: 𝑅𝑒𝑤𝑎𝑟𝑑'*#, 𝑆𝑡𝑎𝑡𝑒'*# = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡(𝑆𝑡𝑎𝑡𝑒' , 𝐴𝑐𝑡𝑖𝑜𝑛')

Many (awesome) recent successes:
• Robotics
• Surpassing humans at difficult games
• Doing it with (essentially) zero human knowledge

credit: Geoff Hulten



credit: Geoff Hulten

https://spinningup.openai.com/en/latest/



References

• RL slides from Rich Nguven
• RL Slides from Geoff Hulten
• RL slides from Eric Xing 
• RL slides from Peter Bodik

credit: Geoff Hulten



Gym – toolkit for reinforcement learning
import gym

env = gym.make('CartPole-v0')

import random
import QLearning # Your implementation goes here...
import Assignment7Support

trainingIterations = 20000

qlearner = QLearning.QLearning(<Parameters>)

for trialNumber in range(trainingIterations):
observation = env.reset()
reward = 0
for i in range(300):

env.render() # Comment out to make much faster...

currentState = ObservationToStateSpace(observation)
action = qlearner.GetAction(currentState, <Parameters>)

oldState = ObservationToStateSpace(observation)
observation, reward, isDone, info = env.step(action)
newState = ObservationToStateSpace(observation)

qlearner.ObserveAction(oldState, action, newState, reward, …)

if isDone:
if(trialNumber%1000) == 0:

print(trialNumber, i, reward)
break

# Now you have a policy in qlearner – use it...

https://gym.openai.com/docs/

Reward +1 per step the pole remains up

Reward 200 at flag -1 per step

CartPole

MountainCar



Q learning
Learn a policy 𝜋(𝑠) that optimizes 𝑉< 𝑠 for all states, using:
• No prior knowledge of state transition probabilities: 𝑃%(𝑠, 𝑠*)
• No prior knowledge of the reward function: 𝑅%(𝑠, 𝑠*)

Approach:
• Initialize estimate of discounted reward for every state/action pair: /𝑄 𝑠, 𝑎 = 0
• Repeat (for a while):

• Take a random action 𝑎 from 𝐴!
• Receive 𝑠" and 𝑅#(𝑠, 𝑠") from environment
• Update F𝑄(𝑠, 𝑎) = (1−∝$) F𝑄%&'(𝑠, 𝑎) + ∝$ [ 𝑅# 𝑠, 𝑠" + 𝛾max#D

F𝑄%&' 𝑠", 𝑎" ]

• Random restart if in terminal state

∝$=
1

1 + 𝑣𝑖𝑠𝑖𝑡𝑠(𝑠, 𝑎)
Exploration Policy: 𝑃 𝑎(, 𝑠 = )EF(H,IJ)

∑L )
EF(H,IL)

𝑅+ 𝑠, 𝑠, + 𝛾max+!
5𝑄 𝑠,, 𝑎,

credit: Peter Bodí



Example of Q learning
(round 1)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 0

0
0

0 0
0

0

00

0
0

0 0
0

0

0
0

0 0

0 0

• Initialize 5𝑄 to 0

• Random initial state = < 1,1 >
• Random action from 𝐴-#,#/ = 𝑒𝑎𝑠𝑡

• 𝑠' =< 2,1 >
• 𝑅& 𝑠, 𝑠' = 0

• Update F𝑄 < 1,1 >, 𝑒𝑎𝑠𝑡 = 0

5𝑄 𝑠, 𝑎 = 𝑅+ 𝑠, 𝑠, + 𝛾max
+!

5𝑄01# 𝑠,, 𝑎,

• Random action from 𝐴-$,#/ = 𝑛𝑜𝑟𝑡ℎ
• 𝑠' =< 2,0 >
• 𝑅& 𝑠, 𝑠' = 100

• Update F𝑄 < 2,1 >, 𝑛𝑜𝑟𝑡ℎ = 100

• No more moves possible, start again…

100

credit: Peter Bodí



Example of Q learning
(round 2)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 0

0
0

0 0
0

00

0
0

0 0
0

0

0
0

0 0

0 0

• Round 2: Random initial state = < 2,2 >
• Random action from 𝐴-$,$/ = 𝑛𝑜𝑟𝑡ℎ

• 𝑠' =< 2,1 >
• 𝑅& 𝑠, 𝑠' = 0

• Update F𝑄 < 2,1 >, 𝑛𝑜𝑟𝑡ℎ = 0 + 𝛾 * 100

5𝑄 𝑠, 𝑎 = 𝑅+ 𝑠, 𝑠, + 𝛾max
+!

5𝑄01# 𝑠,, 𝑎,

• Random action from 𝐴-$,#/ = 𝑛𝑜𝑟𝑡ℎ
• 𝑠' =< 2,0 >
• 𝑅& 𝑠, 𝑠' = 100

• Update F𝑄 < 2,1 >, 𝑛𝑜𝑟𝑡ℎ = 𝑠𝑡𝑖𝑙𝑙 100

• No more moves possible, start again…

100

𝛾 = 0.5

50

credit: Peter Bodí



Example of Q learning
(some acceleration…)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 0

0
0

0 0
0

00

0
0

0 0
0

0
0

0 0

0 0

5𝑄 𝑠, 𝑎 = 𝑅+ 𝑠, 𝑠, + 𝛾max
+!

5𝑄01# 𝑠,, 𝑎,

100

𝛾 = 0.5

50

50

25

• Random Initial State < 0,0 >

• Update F𝑄 < 1,1 >, 𝑒𝑎𝑠𝑡 = 50

• Update F𝑄 < 1,2 >, 𝑒𝑎𝑠𝑡 = 25

credit: Peter Bodí



Example of Q learning
(some acceleration…)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 0

0
0

0 0
0

500

0
0

0 0
0

0
0

0 25

0 0

5𝑄 𝑠, 𝑎 = 𝑅+ 𝑠, 𝑠, + 𝛾max
+!

5𝑄01# 𝑠,, 𝑎,

100

𝛾 = 0.5

50

25

100• Random Initial State < 0,2 >

• Update F𝑄 < 0,1 >, 𝑒𝑎𝑠𝑡 = 25

• Update F𝑄 < 1,0 >, 𝑒𝑎𝑠𝑡 = 100

credit: Peter Bodí



Example of Q learning
( !𝑄 after many, many runs…)

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

50 100

25
12.5

25 50
25

25

12.5
6.25

12.5 25
12.5

25
25

12.5

6.25 12.5

100

50

50

25

• F𝑄 converged

• Policy is:
𝜋 𝑠 = argmax

#+,H
F𝑄(𝑠, 𝑎)

credit: Peter Bodí



Challenges for Reinforcement Learning

• When there are many 
states and actions

• When the episode can 
end without reward

• When there is a 
‘narrow’ path to 
reward

Turns Remaining: 15

Each step ~50% probability of going wrong way – P(reaching goal) ~ 0.01%Random exploring will fall off of rope ~97% of the time

credit: Peter Bodí



Memory

• Retrain on previous explorations

• Maintain samples of:
𝑃%(𝑠, 𝑠&)
𝑅%(𝑠, 𝑠&)

• Useful when
• It is cheaper to use some RAM/CPU 

than to run more simulations

• It is hard to get to reward so you want 
to leverage it for as much as possible 
when it happens

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

0 100

0
0

0 0
0

00

0
0

0 0
0

0
0

0 0

0 0

0

0

100

50

25

12.5

25

50

25

50

25

50

Do an explorationReplay it a bunch of timesReplay a different explorationReplay it a bunch of times

25

credit: Peter Bodí



Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

• states
• actions
• rewards

• what is the solution? credit: Peter Bodí



Is this a solution?
+1

-1

• only if actions deterministic
• not in this case (actions are stochastic)

• solution/policy
• mapping from each state to an action

credit: Peter Bodí



State representation

• pole-balancing
• move car left/right to keep the pole balanced

• state representation
• position and velocity of car
• angle and angular velocity of pole

• what about Markov property? 
• would need more info
• noise in sensors, temperature, bending of pole

• solution
• coarse discretization of 4 state variables

• left, center, right
• totally non-Markov, but still works

credit: Peter Bodí



Splitting and aggregation
• want to discretize the state space
• learn the best discretization during training

• splitting of state space
• start with a single state
• split a state when different parts of that state have different values

• state aggregation
• start with many states
• merge states with similar values

credit: Peter Bodí



Designing rewards

• robot in a maze
• episodic task, not discounted, +1 when out, 0 for each step

• chess
• GOOD: +1 for winning, -1 losing
• BAD: +0.25 for taking opponent’s pieces

• high reward even when lose

• rewards
• rewards indicate what we want to accomplish
• NOT how we want to accomplish it

• shaping
• positive reward often very “far away”
• rewards for achieving subgoals (domain knowledge)
• also: adjust initial policy or initial value function

credit: Peter Bodí


