# UVA CS 4774: Machine Learning

# S5: Lecture 26: Reinforcement Learning

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

# Course Content Plan Regarding Tasks

-Regression (supervised) -Learning theory Classification (supervised) **Unsupervised models** Graphical models ☐ Reinforcement Learning Y is a continuous About f() Y is a discrete NO Y About interactions among Y,X1,. Xp Learn to Interact with environment

### Outline

- Examples of RL applications
- Defining an RL problem
  - Markov Decision Processes
- Solving an RL problem
  - Dynamic Programming
  - Monte Carlo methods
  - Temporal-Difference learning

credit: Geoff Hulten

# Where Machine Learning is being used or can be useful?





# Classes of Learning Problems

### Supervised Learning:

Data: (x, y)

x is data, y is label

Goal: Learn function

to map  $x \rightarrow y$ 

Example:



This thing is an apple.

### Unsupervised Learning:

Data: x

x is data, no labels!

**Goal**: Learn underlying structure

Example:



This thing is like the other thing.

### Reinforcement Learning:

Data: state-action pairs

**Goal**: Maximize future rewards over many steps

Example:



Eat this thing because it will keep you alive.

# Environment Sensors Sensor Data **Feature Extraction** Representation : Machine Learning Knowledge 🔼 Reasoning Planning Action **Effector**

# The Machine Learning Stack!

What can be learned?



### Sensors





# Representations





# Knowledge / Reasoning

Image Recognition:
If it looks like a duck

Audio Recognition:

Quacks like a duck





Activity Recognition:
Swims like a duck





### **Actions**







# Reinforcement Learning

- Learning to interact with an environment
  - Robots, games, process control
  - With limited human training
  - Where the 'right thing' isn't obvious
- Supervised Learning:
  - Goal: f(x) = y
  - Data:  $[< x_1, y_1 >, ..., < x_n, y_n >]$
- Reinforcement Learning:
  - Goal: Maximize  $\sum_{i=1}^{\infty} Reward(State_i, Action_i)$
  - Data:  $Reward_i$ ,  $State_{i+1} = Interact(State_i, Action_i)$



credit: Geoff Hulten

# History of Reinforcement Learning

Roots in the psychology of animal learning (Thorndike, 1911).

• Another independent thread was the problem of optimal control, and its solution using dynamic programming (Bellman, 1957).

• Idea of temporal difference learning (on-line method), e.g., playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-learning (Watkins, 1989).

## A Success Story



- TD Gammon (Tesauro, G., 1992)
  - A Backgammon playing program.
  - Application of temporal difference learning.
  - The basic learner is a neural network.
  - It trained itself to the world class level by playing against itself and learning from the outcome. So smart!!
    - More information:

http://www.research.ibm.com/massive/tdl.html

### TD-Gammon – Tesauro ~1995

State: Board State Actions: Valid Moves Reward: Win or Lose



- Net with 80 hidden units, initialize to random weights
- Select move based on network estimate & shallow search
- Learn by playing against itself
- 1.5 million games of training
  -> competitive with world class players

credit: Geoff Hulten

### Examples of Reinforcement Learning

 How should a robot behave so as to optimize its "performance"? (Robotics)

 How to automate the motion of a helicopter? (Control Theory)

 How to make a good chess-playing program? (Artificial Intelligence)





Resource allocation in datacenters



- A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation
  - Tesauro, Jong, Das, Bennani (IBM)
  - ICAC 2006

## Atari 2600 games



 Same model/parameters for ~50 games



credit: Geoff Hulten

# Robotics and Locomotion



Figure 5: Time-lapse images of a representative *Quadruped* policy traversing gaps (left); and navigating obstacles (right)

#### State:

Joint States/Velocities
Accelerometer/Gyroscope
Terrain

Actions: Apply Torque to Joints

Reward: Velocity – { stuff }







https://youtu.be/hx\_bgoTF7bs

credit: Geoff Hulten

### Alpha Go

- Learning how to beat humans at 'hard' games (search space too big)
- Far surpasses (Human) Supervised learning
- Algorithm learned to outplay humans at chess in 24 hours





State: Board State Actions: Valid Moves Reward: Win or Lose



https://deepmind.com/documents/119/agz\_unformatted\_nature.pdf

# Deep Reinforcement Learning

• Human



• So what's **DEEP** RL?





Thousands of Steps

100 200 300 400 500 600 700

AlphaGo Zero

AlphaGo Lee

# AlphaGO: Learning Pipeline

 Combine Supervised Learning (SL) and RL to learn the search direction in Monte Carlo Tree Search



Silver, David, et al. 2016.

- SL policy Network
  - Prior search probability or potential
- Rollout:
  - combine with MCTS for quick simulation on leaf node
- Value Network:
  - Build the Global feeling on the leaf node situation

### AlphaGo {Fan, Lee, Master} × AlphaGo Zero:

- supervised learning from human expert positions × from scratch by self-play reinforcement learning ("tabula rasa")
- additional (auxialiary) input features × only the black and white stones from the board as input features
- separate policy and value networks × single neural network
- tree search using also Monte Carlo rollouts × simpler tree search using only the single neural network to both evaluate positions and sample moves
- (AlphaGo Lee) distributed machines + 48 tensor processing units (TPUs) × single machines + 4 TPUs
- (AlphaGo Lee) several months of training time × 72 h of training time (outperforming AlphaGo Lee after 36 h)



latest

Search docs

#### **USER DOCUMENTATION**

Introduction

Installation

**Algorithms** 

**Running Experiments** 

**Experiment Outputs** 

**Plotting Results** 

#### INTRODUCTION TO RL

Part 1: Key Concepts in RL

Part 2: Kinds of RL Algorithms

Part 3: Intro to Policy Optimization

#### **RESOURCES**

Spinning Up as a Deep RL Researcher
Key Papers in Deep RL

**Docs** » Benchmarks for Spinning Up Implementations



26

### **Benchmarks for Spinning Up Implementations**

#### **Table of Contents**

- Benchmarks for Spinning Up Implementations
  - Performance in Each Environment
    - HalfCheetah: PyTorch Versions
    - HalfCheetah: Tensorflow Versions
    - Hopper: PyTorch Versions
    - Hopper: Tensorflow Versions
    - Walker2d: PyTorch Versions
    - Walker2d: Tensorflow Versions
    - Swimmer: PyTorch Versions
    - Swimmer: Tensorflow Versions
    - Ant: PyTorch Versions
    - Ant: Tensorflow Versions
  - Experiment Details
  - PyTorch vs Tensorflow

We benchmarked the Spinning Up algorithm implementations in five environments from the MuJoCo Gym task suite: HalfCheetah, Hopper, Walker2d, Swimmer, and Ant.

#### **Performance in Each Environment**

4/28/22 Dr Yanjun Qi / UVA CS

## What is special about RL?

- RL is learning how to map states to actions, so as to maximize a numerical reward over time.
- Unlike other forms of learning, it is a multistage decision-making process (often Markovian).
- An RL agent learn by trial-and-error. (Not entirely supervised, but interactive)
- Actions may affect not only the immediate reward but also subsequent rewards (Delayed effect).

### Outline

- Examples of RL applications
- Defining an RL problem
  - Markov Decision Processes
- Solving an RL problem
  - Dynamic Programming
  - Monte Carlo methods
  - Temporal-Difference learning

### Elements of RL

- A policy
  - A map from state space to action space.
  - May be stochastic.
- A reward function
  - It maps each state (or, state-action pair) to a real number, called reward.
- A value function
  - Value of a state (or, state-action pair) is the total expected reward, starting from that state (or, state-action pair).

# Setup for Reinforcement Learning

### Markov Decision Process (environment)

- Discrete-time stochastic control process
- Each time step, s:
  - Agent chooses action a from set  $A_s$
  - Moves to new state with probability:
    - $P_a(s,s')$
  - Receives reward:  $R_a(s,s')$
- Every outcome depends on s and a
  - Nothing depends on previous states/actions

### **Policy**

(agent's behavior)

- $\pi(s)$  The action to take in state s
- Goal maximize:  $\sum_{t=0}^{\infty} \gamma^t R_{a_t}(s_t, s_{t+1})$ 
  - $a_t = \pi(s_t)$
  - $0 \le \gamma < 1$  Tradeoff immediate vs future

• 
$$V^{\pi}(s) = \sum_{s'} P_{\pi(s)}(s,s') * (R_{\pi(s)}(s,s') + \gamma V^{\pi}(s'))$$

Reward for making that move

Value of being in that state

# Simple Example of Agent in an Environment

#### State:

**Map Locations** 

$$\{<0.0>,<1.0>\dots<3.3>\}$$

#### **Actions:**

Move within map Reaching chest ends episode

```
A_{0,0} = \{ east, south \}

A_{1,0} = \{ east, south, west \}

A_{2,0} = \{ \phi \}

...

A_{2,2} = \{ north, west \}
```

#### Reward:

100 at chest 0 for others

$$R_{east}(<1,0>,<2,0>)=100$$
  
 $R_{north}(<2,1>,<2,0>)=100$   
 $R_{*}(*,*)=0$ 











### Policies

$$R_{east}$$
 (< 1,0 >,< 2,0 >) = 100  
 $R_{north}$ (< 2,1 >,< 2,0 >) = 100  
 $R_*$  (\*,\*) = 0  
 $\gamma = 0.5$ 

### Policy

$$\pi(s) = a$$

$$\pi(<0,0>) = \{south\}$$
 $\pi(<0,1>) = \{east\}$ 
 $\pi(<0,2>) = \{east\}$ 
 $\pi(<1,0>) = \{east\}$ 
 $\pi(<1,1>) = \{north\}$ 
 $\pi(<1,2>) = \{north\}$ 
 $\pi(<2,0>) = \{\phi\}$ 
 $\pi(<2,1>) = \{west\}$ 

### **Evaluating Policies**



### Robot in a room



actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP

10% move LEFT

10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?
- what if the actions were deterministic?

# Other examples

- pole-balancing
- TD-Gammon [Gerry Tesauro]
- helicopter [Andrew Ng]



- is reward "10" good or bad?
- rewards could be delayed
- similar to control theory
  - more general, fewer constraints
- explore the environment and learn from experience
  - not just blind search, try to be smart about it



# How Reinforcement Learning is Different

Delayed Reward

Agent chooses training data

Explore vs Exploit (Life long learning)

Very different terminology (can be confusing)

credit: Geoff Hulten

### Outline

- Examples of RL applications
- Defining an RL problem
  - Markov Decision Processes
- Solving an RL problem
  - Dynamic Programming
  - Monte Carlo methods
  - Temporal-Difference learning

credit: Peter Bodí

## The Precise Goal / Popular RL Algorithms

- To find a policy that maximizes the Value function.
  - transitions and rewards usually not available
- There are different approaches to achieve this goal in various situations.
- Value iteration and Policy iteration are two more classic approaches to this problem. But essentially both are dynamic programming.
- Q-learning is a more recent approaches to this problem. Essentially it is a temporal-difference method.

# (1) Dynamic programming

- main idea
  - use value functions to structure the search for good policies
  - need a perfect model of the environment
- two main components



- policy evaluation: compute V<sup>π</sup> from π
   policy improvement: improve π based on V<sup>π</sup>



- start with an arbitrary policy
- repeat evaluation/improvement until convergence

## Value functions

- state value function:  $V^{\pi}(s)$ 
  - expected return when starting in s and following  $\pi$
- state-action value function: Q-function:  $Q^{\pi}(s,a)$ 
  - expected return when starting in  $\emph{s}$ , performing  $\emph{a}$ , and following  $\pi$
- useful for finding the optimal policy
  - can estimate from experience
  - pick the best action using  $Q^{\pi}(s,a)$



$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[ r^{a}_{ss'} + \gamma V^{\pi}(s') \right] = \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

Bellman equation

# Using DP

- need complete model of the environment and rewards
  - robot in a room
    - state space, action space, transition model
- can we use DP to solve
  - robot in a room?
  - back gammon?
  - helicopter?

## Outline

- Examples of RL applications
- Defining an RL problem
  - Markov Decision Processes
- Solving an RL problem
  - Dynamic Programming
  - Monte Carlo methods
  - Temporal-Difference learning

credit: Peter Bodí

### Monte Carlo methods

- don't need full knowledge of environment
  - just experience, or
  - simulated experience
- but similar to DP
  - policy evaluation, policy improvement
- averaging sample returns
  - defined only for episodic tasks

## Computing return from rewards

- episodic (vs. continuing) tasks
  - "game over" after N steps
  - optimal policy depends on N; harder to analyze
- additive rewards
  - $V(s_0, s_1, ...) = r(s_0) + r(s_1) + r(s_2) + ...$
  - infinite value for continuing tasks
- discounted rewards
  - $V(s_0, s_1, ...) = r(s_0) + \gamma^* r(s_1) + \gamma^{2*} r(s_2) + ...$
  - value bounded if rewards bounded

## Monte Carlo policy evaluation

- want to estimate  $V^{\pi}(s)$ 
  - = expected return starting from s and following  $\pi$
  - estimate as average of observed returns in state s
- first-visit MC
  - average returns following the first visit to state s



$$V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.5$$

# Maintaining exploration

- deterministic/greedy policy won't explore all actions
  - don't know anything about the environment at the beginning
  - need to try all actions to find the optimal one
- maintain exploration
  - use *soft* policies instead:  $\pi(s,a)>0$  (for all s,a)
- ε-greedy policy
  - with probability 1-ε perform the optimal/greedy action
  - with probability ε perform a random action
  - will keep exploring the environment
  - slowly move it towards greedy policy:  $\varepsilon \rightarrow 0$

## Simulated experience

- 5-card draw poker
  - s<sub>0</sub>: A♣, A♦, 6♠, A♥, 2♠
  - $a_0$ : discard  $6 \spadesuit$ ,  $2 \spadesuit$
  - $s_1$ :  $A \clubsuit$ ,  $A \blacklozenge$ ,  $A \blacktriangledown$ ,  $A \spadesuit$ ,  $9 \spadesuit$  + dealer takes 4 cards
  - return: +1 (probably)
- DP
  - list all states, actions, compute P(s,a,s')
    - P([A♣,A♦,6♠,A♥,2♠],[6♠,2♠],[A♠,9♠,4]) = 0.00192
- MC
  - all you need are sample episodes
  - let MC play against a random policy, or itself, or another algorithm

## Summary of Monte Carlo

- don't need model of environment
  - averaging of sample returns
  - only for episodic tasks
- learn from sample episodes or simulated experience
- can concentrate on "important" states
  - don't need a full sweep
- need to maintain exploration
  - use soft policies

## Outline

- Examples of RL applications
- Defining an RL problem
  - Markov Decision Processes
- Solving an RL problem
  - Dynamic Programming
  - Monte Carlo methods
  - Temporal-Difference learning

credit: Peter Bodí

## Temporal Difference Learning

- combines ideas from MC and DP
  - like MC: learn directly from experience (don't need a model)
  - like DP: learn from values of successors
  - works for continuous tasks, usually faster than MC
- constant-alpha MC:
  - have to wait until the end of episode to update

$$V(s_t) \leftarrow V(s_t) + \alpha \left[ R_t - V(s_t) \right]$$

- simplest TD
  - update after every step, based on the successor

$$V(s_t) \leftarrow V(s_t) + \alpha \left[ r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$



## Value functions

- state value function:  $V^{\pi}(s)$ 
  - expected return when starting in s and following  $\pi$
- state-action value function: Q-function:  $Q^{\pi}(s,a)$ 
  - expected return when starting in  $\emph{s}$ , performing  $\emph{a}$ , and following  $\pi$
- useful for finding the optimal policy
  - can estimate from experience
  - pick the best action using  $Q^{\pi}(s,a)$



$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[ r^{a}_{ss'} + \gamma V^{\pi}(s') \right] = \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

Bellman equation

# Optimal value functions

- there's a set of optimal policies
  - $V^{\pi}$  defines partial ordering on policies
  - they share the same optimal value function

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

Bellman optimality equation

$$V^{*}(s) = \max_{a} \sum_{s'} P^{a}_{ss'} \left[ r^{a}_{ss'} + \gamma V^{*}(s') \right]$$

- system of n non-linear equations
- solve for V\*(s)
- easy to extract the optimal policy



having Q\*(s,a) makes it even simpler

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

credit: Peter Bodí

## Q-learning

- before: on-policy algorithms
  - start with a random policy, iteratively improve
  - converge to optimal
- Q-learning: off-policy
  - use any policy to estimate Q

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[ r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

- Q directly approximates Q\* (Bellman optimality eqn)
- independent of the policy being followed
- only requirement: keep updating each (s,a) pair
- Sarsa

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[ r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

### Sarsa

again, need Q(s,a), not just V(s)



$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[ r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

- control
  - start with a random policy
  - update Q and  $\pi$  after each step
  - again, need ε-soft policies

## The RL Intro book



Richard Sutton, Andrew Barto Reinforcement Learning, An Introduction

http://www.cs.ualberta.ca/~sutton/book/the-book.html

credit: Peter Bodí

## Summary

#### Reinforcement Learning:

- Goal: Maximize  $\sum_{i=1}^{\infty} Reward(State_i, Action_i)$
- Data:  $Reward_{i+1}$ ,  $State_{i+1} = Interact(State_i, Action_i)$

#### Many (awesome) recent successes:

- Robotics
- Surpassing humans at difficult games
- Doing it with (essentially) zero human knowledge

#### Challenges:

- When the episode can end without reward
- When there is a 'narrow' path to reward
- When there are many states and actions



#### (Simple) Approaches:

- Q-Learning  $\widehat{Q}(s,a)$  -> discounted reward of action
- Policy Gradients -> Probability distribution over A<sub>s</sub>
- Reward Shaping
- Memory
- Lots of parameter tweaking...

#### https://spinningup.openai.com/en/latest/

- Key Papers in Deep RL
  - 1. Model-Free RL
  - 2. Exploration
  - 3. Transfer and Multitask RL
  - 4. Hierarchy
  - 5. Memory
  - 6. Model-Based RL
  - o 7. Meta-RL
  - 8. Scaling RL
  - 9. RL in the Real World
  - 10. Safety
  - 11. Imitation Learning and Inverse Reinforcement Learning
  - 12. Reproducibility, Analysis, and Critique
  - 13. Bonus: Classic Papers in RL Theory or Review

credit: Geoff Hulten

### References

- RL slides from Rich Nguven
- RL Slides from Geoff Hulten
- RL slides from Eric Xing
- RL slides from Peter Bodik

credit: Geoff Hulten

#### **Algorithms Docs**

- Vanilla Policy Gradient
  - Background
  - Documentation
  - References
- Trust Region Policy Optimization
  - Background
  - Documentation
  - References
- Proximal Policy Optimization
  - Background
  - Documentation
  - References
- Deep Deterministic Policy Gradient
  - Background
  - Documentation
  - References
- Twin Delayed DDPG
  - Background
  - Documentation
  - References
- Soft Actor-Critic
  - Background
  - Documentation
  - References

## Gym – toolkit for reinforcement learning

#### CartPole



Reward +1 per step the pole remains up

#### MountainCar



Reward 200 at flag -1 per step

```
import gym
env = gym.make('CartPole-v0')
import random
import QLearning # Your implementation goes here...
import Assignment7Support
trainingIterations = 20000
qlearner = QLearning.QLearning(<Parameters>)
for trialNumber in range(trainingIterations):
    observation = env.reset()
    reward = 0
    for i in range(300):
        env.render() # Comment out to make much faster...
        currentState = ObservationToStateSpace(observation)
        action = glearner.GetAction(currentState, <Parameters>)
       oldState = ObservationToStateSpace(observation)
       observation, reward, isDone, info = env.step(action)
       newState = ObservationToStateSpace(observation)
        qlearner.ObserveAction(oldState, action, newState, reward, ...)
        if isDone:
            if(trialNumber%1000) == 0:
                print(trialNumber, i, reward)
            break
# Now you have a policy in glearner - use it...
```

# Q learning

Learn a policy  $\pi(s)$  that optimizes  $V^{\pi}(s)$  for all states, using:

- No prior knowledge of state transition probabilities:  $P_a(s,s')$
- No prior knowledge of the reward function:  $R_a(s,s')$

### Approach:

- Initialize estimate of discounted reward for every state/action pair:  $\hat{Q}(s,a)=0$
- Repeat (for a while):
  - Take a random action a from  $A_s$
  - Receive s' and  $R_a(s,s')$  from environment
  - Update  $\hat{Q}(s,a) = R_a(s,s') + \gamma \max_{a'} \hat{Q}(s',a')$
  - Random restart if in terminal state

$$\propto_v = \frac{1}{1 + visits(s, a)}$$

Exploration Policy: 
$$P(a_i, s) = \frac{k^{\widehat{Q}(s, a_i)}}{\sum_j k^{\widehat{Q}(s, a_j)}}$$

credit: Peter Bodí

# Example of Q learning (round 1)

- Initialize  $\hat{Q}$  to 0
- Random initial state = < 1,1 >
- Random action from  $A_{<1,1>} = east$ 
  - s' = < 2,1 >
  - $R_a(s,s') = 0$
- Update  $\hat{Q}(<1,1>,east)=0$
- Random action from  $A_{<2,1>} = north$ 
  - s' = < 2,0 >
  - $R_a(s, s') = 100$
- Update  $\hat{Q}(<2,1>,north) = 100$
- No more moves possible, start again...

$$\hat{Q}(s,a) = R_a(s,s') + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')$$



# Example of Q learning (round 2)

- Round 2: Random initial state = < 2,2 >
- Random action from  $A_{<2,2>} = north$ 
  - s' = < 2,1 >
  - $R_a(s, s') = 0$
- Update  $\hat{Q}(<2,1>,north) = 0 + \gamma * 100$
- Random action from  $A_{<2,1>} = north$ 
  - s' = < 2,0 >
  - $R_a(s, s') = 100$
- Update  $\hat{Q}(\langle 2,1 \rangle, north) = still 100$



No more moves possible, start again...

$$\widehat{Q}(s,a) = R_a(s,s') + \gamma \max_{a'} \widehat{Q}_{n-1}(s',a')$$

$$\gamma = 0.5$$

# Example of Q learning (some acceleration...)

$$\hat{Q}(s,a) = R_a(s,s') + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')$$

$$\gamma = 0.5$$

- Random Initial State < 0,0 >
- Update  $\hat{Q}(<1,1>,east) = 50$
- Update  $\hat{Q}(<1,2>,east)=25$



# Example of Q learning (some acceleration...)

$$\widehat{Q}(s,a) = R_a(s,s') + \gamma \max_{a'} \widehat{Q}_{n-1}(s',a')$$

$$\gamma = 0.5$$

- Random Initial State < 0.2 >
- Update  $\hat{Q}(<0.1>, east) = 25$
- Update  $\hat{Q}(<1,0>,east)=100$



# Example of Q learning $(\hat{Q} \text{ after many, many runs...})$

- $\widehat{Q}$  converged
- Policy is:

$$\pi(s) = \operatorname*{argmax}_{a \in A_s} \widehat{Q}(s, a)$$



# Challenges for Reinforcement Learning

 When there are many states and actions

 When the episode can end without reward

 When there is a 'narrow' path to reward



## Memory

- Retrain on previous explorations
  - Maintain samples of:

$$P_a(s,s')$$
  
 $R_a(s,s')$ 

- Useful when
  - It is cheaper to use some RAM/CPU than to run more simulations
  - It is hard to get to reward so you want to leverage it for as much as possible when it happens



### Robot in a room

|       |  | +1 |
|-------|--|----|
|       |  | -1 |
| START |  |    |

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP10% move LEFT10% move RIGHT



reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

- states
- actions
- rewards

what is the solution?

## Is this a solution?



- only if actions deterministic
  - not in this case (actions are stochastic)
- solution/policy
  - mapping from each state to an action

## State representation

- pole-balancing
  - move car left/right to keep the pole balanced
- state representation
  - position and velocity of car
  - angle and angular velocity of pole
- what about Markov property?
  - would need more info
  - noise in sensors, temperature, bending of pole
- solution
  - coarse discretization of 4 state variables
    - left, center, right
  - totally non-Markov, but still works



## Splitting and aggregation

- want to discretize the state space
  - learn the best discretization during training
- splitting of state space
  - start with a single state
  - split a state when different parts of that state have different values



- state aggregation
  - start with many states
  - merge states with similar values



# Designing rewards

- robot in a maze
  - episodic task, not discounted, +1 when out, 0 for each step
- chess
  - GOOD: +1 for winning, -1 losing
  - BAD: +0.25 for taking opponent's pieces
    - high reward even when lose
- rewards
  - rewards indicate what we want to accomplish
  - NOT how we want to accomplish it
- shaping
  - positive reward often very "far away"
  - rewards for achieving subgoals (domain knowledge)
  - also: adjust initial policy or initial value function