UVA CS 4774:
Machine Learning

S5: Lecture 26:
Reinforcement Learning

Dr. Yanjun Qi

University of Virginia
Department of Computer Science



Course Content Plan =2 Regarding Tasks

0. ond sed
d-Learninetheory
B-Classification sed
J Ynsupervised-models

[ Graphicat-models

1 Reinforcement Learning

4/28/22

Y is a continuous

About f()

Y is a discrete

NO'Y

About interactions among Y,X1,. Xp

Learn to Interact with environment



Outline

e Examples of RL applications

* Defining an RL problem
 Markov Decision Processes

* Solving an RL problem
* Dynamic Programming
* Monte Carlo methods
e Temporal-Difference learning

credit: Geoff Hulten



Where Machine Learning is being used or can
be useful?

Coocepe: a xiggle word > ‘Q.:_«_)
) A iy
1/
Speech i
Wavefom o
Speech
Yecronx

———

l H ! H:g:C:
BlEeh fR o

L Y (g

. 5
1le =
._0.0.¢.x;l AQ.._
*
1-$-0- ol

Urochordates o ® -
o4
o -
o
I

L %

‘ ‘ ’ : %l i X L *
Bar L |S a i Dinoflagelates

!

Chioroplasts ~ Mitochondria

Pedigree

Evolution
Planning

Eric Xing Credit: Eric Xineg @ CMUJ.



Meaningful
Compression

Structure image

Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

Classification Diagnostics
Visualistaion Reducuon Elicitation Detection :

Advertising Popularity
Preciction

Learning Learning Weather

MET = -

Growth
Prediction

Recommender Unsupervised Super\/ised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation Le a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation .
: Ao Skill Acquisition

Learning Tasks



Classes of Learning Problems

Supervised Learning:

Data: (x, y)
X is data, vy is label

Goal: Learn function
tomapx —>vy

Example:

O

This thing is an apple.

Unsupervised Learning:

Data: x
X is data, no labels!

Goal: Learn underlying
structure

Example:

® C

This thing is like
the other thing.

Reinforcement Learning:

Data: state-action pairs

Goal: Maximize future
rewards over many steps

Example:
Eat this thing because it
will keep you alive.



—————————————————

— ' Environment |

________ I_______l

Sensors

T } """"" l

Sensor Data

bmccmmmm- I ________ :

Feature Extraction

_________ .

Representation <€—

_________ T

Machine Learning

————————————————

i Knowledge

_______ .

Reasoning

v

Planning

________________

Action

v $ _______ |

Effector

The Machine Learning Stack!

What can be learned?



Feature Extraction

_________ v

5 Representation l<

_________ T

Machine Learning

————————————————

i Knowledge <

_______ i

Reasoning

v

Planning

________________

i Action

_______ ...

Effector

Stereo Camera

Sensors

Camera

(Visible, Infrared)

Microphone

Networking
(Wired, Wireless)

GPS



— | Environment !

-------- s Representations

Sensors
CAR PERSON] [ANIMAL

Output
: (object identity)
' Sensor Data |
_________ j_________l

v
Feature Extraction

_________ v

E Representation I<

_________ peoeeees

Machine Learning

3rd hidden layer

(object parts)

2nd hidden layer

(corners and

________________

i Knowledge

_______ i

contowurs)

Reasoning Ist hidden layer
# (edges)
Planning
i Action i Visible layer

(input pixels)

_______ ...

Effector




Feature Extraction

_________ v

E Representation l<

_________ il

Machine Learning

————————————————

i Knowledge <

_______ i

Reasoning

i

Planning

________________

i Action

_______ ...

Effector

Knowledge / Reasoning

Image Recognition: Audio Recognition:
If it looks like a duck Quacks like a duck

Activity Recognition:
Swims like a duck

10



Sensors

R T

Sensor Data

femmmm e I ________

Feature Extraction

_________ v

Representation '4

_________ T

Machine Learning

————————————————

i Knowledge <

_______ T-------

v

Reasoning

v

Planning

i Action
_______ L

\ 4
Effector

Actions

11



» i Environment !

________ e

Sensors

Feature Extraction

_________ v

Representation '4

_________ T

Machine Learning

————————————————

i Knowledge

_______ .

Reasoning

v

Planning

________________

i Action

_______ ...

Effector

The Full Stack

The promise of
Deep Learning

The promise of
Deep Reinforcement Learning

12



Reinforcement Learning

* Learning to interact with an environment
* Robots, games, process control
e With limited human training
* Where the ‘right thing” isn’t obvious " Agent

y

e Supervised Learning:

e Goal: f(x) =y
e Data: [< x1, Y1 >, s < X, Vi > |

Environment

e Reinforcement Learning:

* Goal:
Maximize Y;;2, Reward(State;, Action;)

e Data:
Reward;, State; , = Interact(State;, Action;)

credit: Geoff Hulten




History of Reinforcement Learning

* Roots in the psychology of animal learning (Thorndike,1911).

* Another independent thread was the problem of optimal control, and its
solution using dynamic programming (Bellman, 1957).

* |[dea of temporal difference learning (on-line method), e.g., playing board
games (Samuel, 1959).

* A major breakthrough was the discovery of Q-learning (Watkins, 1989).

Eric Xing © Eric Xineg @ CMU 2006-2008 14



A Success Story

e TD Gammon (Tesauro, G., 1992)
- A Backgammon playing program.

- Application of temporal difference learning.

- The basic learner is a neural network.

11 1

§

4202 01 2
1 2 3 4 5 &

8 1716 15 14 13

- It trained itself to the world class level by playing against itself and
learning from the outcome. So smart!!

- More information:

http://www.research.ibm.com/massive/tdl.html

© Eric Xineg @ CMU 2006-2008

15



TD-Gammon — Tesauro ~1995

il

S "
a"

il

4]

P(win)

-.

credit: Geoff Hulten

QM 0 L Z € ¥ G 9 L 86 OL LLZL €LPLSE 9L LLBL 6102 1222 €2 vZ G2 Jeqg

m"§'i"}';"v

State: Board State
Actions: Valid Moves
Reward: Win or Lose

Net with 80 hidden units,
initialize to random weights

Select move based on network
estimate & shallow search

Learn by playing against itself

1.5 million games of training
-> competitive with world class players




Examples of Reinforcement Learning

* How should a robot behave so as
to optimize its “performance”? (Robotics)

e How to automate the motion of
a helicopter? (Control Theory)

* How to make a good chess-playing
program? (Artificial Intelligence)

Eric Xing © Eric Xineg @ CMU 2006-2008

17



Resource allocation in datacenters

!

loadbalancer
g J N\ 4
Y ' h'd

application A application B application C

-

* A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation

* Tesauro, Jong, Das, Bennani (IBM)
* |CAC 2006



Atari 2600 games

raw pixels hidden layer

probability of
oving UP

* Same model/parameters for
~50 games

Video Pinball
Boxing

Breakout |}

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

Demon Attack
Name This Game
Krull

Assault

Road Runner
Kangaroo
James Bond
Tennis

Pong

Space Invaders
Beam Rider
Tutankham
Kung-Fu Master
Freeway

Time Pilot
Enduro

Fishing Derby
Up and Down
Ice Hockey
Q*bert
H.E.R.O.
Asterix

Battle Zone
Wizard of Wor
Chopper Command
Centipede
Bank Heist

River Raid |5

Zaxxon
Amidar

Alien

Venture
Seaquest
Double Dunk
Bowling

Ms. Pac-Man
Asteroids
Frostbite
Gravitar
Private Eye
Montezuma's Revenge

credit: Geoff Hulten

State: Raw Pixels
Actions: Valid Moves
Reward: Game Score

At human-level or above

Below human-level

Best linear learner

I I 1
300 400 500 600 1,000 4,500%

https://storage.googleapis.com/deepmind-media/dgn/DQNNaturePaper.pdf



Robotics and
Locomotion

Figure 5: Time-lapse images of a representative Quadruped policy traversing gaps (left); and
navigating obstacles (right)

State:
Joint States/Velocities
Accelerometer/Gyroscope
Terrain

Actions: Apply Torque to Joints

Reward: Velocity — { stuff }

credit: Geoff Hulten

2017 paper https://arxiv.org/pdf/1707.02286.pdf



Alpha Go

* Learning how to beat humans at ‘hard’” games

(search space too big)

e Far surpasses (Human) Supervised learning

e Algorithm learned to outplay humans at chess in 24

hours

5000
4000
3000

2000

Elo Rating
=)
8

0 <
-1000 -
-2000
| == Reinforcement Learning
~3000 == Supervised Learning
=== AlphaGo Lee
-4000 - |

0 10 20 30 40 50 60 70
Training time (hours)

- N W e e N

ABCDEFGHJKLMNOPQRST

State: Board State
Actions: Valid Moves
Reward: Win or Lose

<& 1°

1#”’. Ju
%

17
s 16

Elo Rating

credit: Geoff Hulten

-1000 4

-2000 -

40 days — AlphaGo Zero surpasses all
previous versions, becomes the best
Go playerin the world

36 hours — AlphaGo Zero
reaches level of Alpha Go
Lee, which beat world
champion Lee Sedol in 2016

72 hours — AlphaGo Zero
beats Alpha Go Lee, 100:0

Training days

r T y T T T T r 1
0 5 10 15 20 25 30 35 40

w= AlphaGo Zero 40 blocks s»+ AlphaGo Lee  ««e«« AlphaGo Master

https://deepmind.com/documents/119/agz_unformatted_nature.pdf



Deep Reinforcement e R

_earning i
* Human
| Environment |

e So what’s DEEP RL?

{Raw Observation, Reward} {Actions}

32 4x4 filters 256 hidden units Fully-connected linear

16 8x8 filters
4x84x84

%

Stack of 4 previous Fully-connected layer

4/28/22 frames Dr Yam mf)myA CS fcre:vc;! dln:r): = of rectified linear units 22
Adapt from Professor Qiang Yang of HK UST




Shogi

5000 Chess | . —— —
4000 + _
3000
2000 + AlptiaZero | —— AlphaZero
1000 7 —— Stockfish — Elmo

0 | | - e * * ’ ! ‘ ’ ’

0 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700
Thousands of Steps Thousands of Steps
Go

—— AlphaZero
—— AlphaGo Zero
—— AlphaGo Lee

0 100 200 300 400 500 600 700
Thousands of Steps

4/28/22 Dr Yanjun Qi / UVA CS 23
Silver, David et al. (2017b). “Mastering the Game of Go without Human Knowledge”. In: Nature 550.7676, pp. 354—359.



4/28/22

AlphaGO: Learning Pipeline

* Combine Supervised Learning (SL) and RL to learn the search
direction in Monte Carlo Tree Search

Rollout policy SL policy network RL policy network Value network

P Vg

%g}
\ /

}IOMI8U [eineN

eleq

Human expert positions Self-play positions Silve I, DaVid, et al- 2016

e SL policy Network
* Prior search probability or potential

e Rollout:
e combine with MCTS for quick simulation on leaf node

* Value Network:
* Build the Global feeling on the leaf node situation

Dr Yanjun Qi / UVA CS
Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.

24



4/28/22

AlphaGo {Fan, Lee, Master} x AlphaGo Zero:

supervised learning from human expert positions x from
scratch by self-play reinforcement learning (“tabula rasa”)
additional (auxialiary) input features x only the black and
white stones from the board as input features

separate policy and value networks X single neural network
tree search using also Monte Carlo rollouts x simpler tree

search using only the single neural network to both evaluate
positions and sample moves

(AlphaGo Lee) distributed machines + 48 tensor processing
units (TPUs) x single machines + 4 TPUs

(AlphaGo Lee) several months of training time x 72 h of
training time (outperforming AlphaGo Lee after 36 h)

Silver, David et al. QOUb)szﬁ"ﬁ}Sﬁ“&ﬁ }ma&e of Go without Human

Knowledge”. In: Nature 550.7676, pp. 354—-359.

25



4/28/22

OpenAl
Spinning Up

latest

( Search docs

USER DOCUMENTATION

INTRODUCTION TO RL

RESOURCES

Docs » Benchmarks for Spinning Up Implementations

C) Edit on GitHub

Benchmarks for Spinning Up Implementations

Table of Contents

e Benchmarks for Spinning Up Implementations

o Performance in Each Environment

HalfCheetah: PyTorch Versions
HalfCheetah: Tensorflow Versions
Hopper: PyTorch Versions
Hopper: Tensorflow Versions
Walker2d: PyTorch Versions
Walker2d: Tensorflow Versions
Swimmer: PyTorch Versions
Swimmer: Tensorflow Versions
Ant: PyTorch Versions

Ant: Tensorflow Versions

o Experiment Details
o PyTorch vs Tensorflow

We benchmarked the Spinning Up algorithm implementations in five environments
from the MuJoCo Gym task suite: HalfCheetah, Hopper, Walker2d, Swimmer, and Ant.

Performance in Each Environment

Dr Yanjun Qi / UVA CS

26



What is special about RL?

* RLis learning how to map states to actions, so as to maximize a numerical
reward over time.

* Unlike other forms of learning, it is a multistage decision-making process
(often Markovian).

 An RL agent learn by trial-and-error. (Not entirely supervised, but
interactive)

e Actions may affect not only the immediate reward but also subsequent
rewards (Delayed effect).

Eric Xing © Eric Xineg @ CMU 2006-2008 77



Outline

e Examples of RL applications

* Defining an RL problem
 Markov Decision Processes

* Solving an RL problem
* Dynamic Programming
* Monte Carlo methods
e Temporal-Difference learning

credit: Geoff Hulten



Elements of RL

* A policy
- A map from state space to action space.
- May be stochastic.
* A reward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* A value function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

Eric Xing © Eric Xineg @ CMU 2006-2008

79



Setup for Reinforcement Learning

Policy
Markov Decision Process (environment)  (agent’s behavior)
* Discrete-time stochastic control * t(s) — The action to take in state s

process

* Goal maximize: X.¢20 ¥ Rq, (St) St+1)

* ap = 1(se)
e 0 <y < 1-Tradeoff immediate vs future

* Each time step, s:
* Agent chooses action a from set Ag
* Moves to new state with probability:

 P,(s,s")

* Receives reward: R,(s,s") * V(s) =

25t Pr(s)(s,8")
e Every outcome depends on s and a (Rr(s)(s,s) +yVT™(s'))

* Nothing depends on previous
states/actions /

cadit. o L= o W EPN
CTCeUTC O T OUTT T 1aTceTT




Simple Example of Agent in an Environment

State:
Map Locations

Score: 100

{<0,0><10> <33 >} o

Actions:
Move within map
Reaching chest ends episode

Apo = { east,south }
Aq o = { east, south,west }

Az,o ={¢}

Ay, = {north,west }

Reward:
100 at chest
O for others

Reast (< 1,0 >,< 2,0 >) =100

Ruortn(<2,1>,<2,0>) =100
R.(%%) =0

credit: Geoff Hulten



Policies

Policy
w(s) =a

n(< 0,0 >) = {south}
n(<0,1>) = {east }
n(<0,2>) = {east }
n(< 1,0 >) = {east }
n(< 1,1 >) = {north}
n(< 1,2 >) = {north}

n(<20>)={ ¢ }
n(<2,1>) = {west }
n(< 2,2 >) = {north}

Policy could be better

Regst (<1,0>,<2,0>) =100
Ruoren(<2,1>,<2,0>) =100
R. (%,%)

y =0.5

=0

Evaluating Policies

(<1,

V) = ) VT
=0

(< 1,0 >) =y° %100

) =y2x 0+ y1 %100

VT(< 0,0 >) =

y?x0

_|_

y' x0

_|_

y? x0

credit: Geoff Hulten

_|_

Move togWbve todUdve toOqldre to2,0>

y3 *100




Robot in a room

START

e reward +1 at [4,3], -1 at [4,2]
* reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

upP

80%
10%
10%

move UP
move LEFT
move RIGHT

* what’s the strategy to achieve max reward?

what if the actions were deterministic?

kX



Other examples

pole-balancing
TD-Gammon [Gerry Tesauro]

* helicopter [Andrew Ng]

* no teacher who would say “good” or “bad”
e isreward “10” good or bad?
* rewards could be delayed

e similar to control theory
* more general, fewer constraints

explore the environment and learn from experience
* not just blind search, try to be smart about it

credit: Geoff Hulten



How Reinforcement Learning is Different

* Delayed Reward
* Agent chooses training data
* Explore vs Exploit (Life long learning)

 Very different terminology (can be confusing)



Outline

e Examples of RL applications

* Defining an RL problem
 Markov Decision Processes

* Solving an RL problem
* Dynamic Programming
* Monte Carlo methods
e Temporal-Difference learning

credit: Peter Bodi



The Precise Goal / Popular RL Algorithms

* To find a policy that maximizes the Value function.
* transitions and rewards usually not available

* There are different approaches to achieve this goal in various situations.

* Value iteration and Policy iteration are two more classic approaches to this
problem. But essentially both are dynamic programming.

* Q-learning is a more recent approaches to this problem. Essentially it is a
temporal-difference method.

Eric Xing © Eric Xineg @ CMU 2006-2008 37



(1) Dynamic programming

* main idea
* use value functions to structure the search for good policies
* need a perfect model of the environment

* two main components
* policy evaluation: compute V* from 7t
g * policy improvement: improve © based on V" 5

 start with an arbitrary policy
* repeat evaluation/improvement until convergence



Value functions

e state value function: V#(s)
e expected return when starting in s and following ©

e state-action value function: Q-function: Q%(s,a)

» expected return when starting in s, performing a, and
following 7t
S

 useful for finding the optimal policy a
e can estimate from experience r
 pick the best action using Q™(s,a)

)

S

VT(s) = Zw(s, a) ZPSO’S/ [rg’s, + ’yVW(s/)] = Zw(s, a)Q"(s,a)

* Bellman equation

credit: Peter Bodi



Using DP

* need complete model of the environment and rewards

* robotin aroom
* state space, action space, transition model

e can we use DP to solve
* robotin a room?
* back gammon?
* helicopter?



Outline

e Examples of RL applications

* Defining an RL problem
 Markov Decision Processes

* Solving an RL problem
* Dynamic Programming
* Monte Carlo methods
e Temporal-Difference learning

credit: Peter Bodi



Monte Carlo methods

e don’t need full knowledge of environment
* just experience, or
e simulated experience

* but similar to DP
* policy evaluation, policy improvement

e averaging sample returns
» defined only for episodic tasks

credit: Peter Bodi



Computing return from rewards

e episodic (vs. continuing) tasks
e “game over” after N steps
e optimal policy depends on N; harder to analyze

* additive rewards
* V(sg, Sq, -r) = 1(Sg) + r(sq) +r(s,) + ...
* infinite value for continuing tasks

e discounted rewards
* V(Sg, Sq, ...) =(Sq) + V¥r(sy) + y2*r(s,) + ...
* value bounded if rewards bounded

credit: Peter Bodi



Monte Carlo policy evaluation

e want to estimate V7(s)
= expected return starting from s and following &
* estimate as average of observed returns in state s

e first-visit MC
e average returns following the first visit to state s

S S
5000000100_200000”0 0_30 0+l Ri(s) = +2
So O——0—0—0—0—0—0—0—0—0—0—0—0—0—0—1i
5 —0— —i— ———— —i— ——@—— —i— R,(s) = +1
Sg ——@—— —o— —o— —— —— —— —o— R5(s) = -5
So O——0—0—0—0—0—0—0—0—0—0—0—— 01
So O——0—o—0—0—0—0—0—0—0—0—0—0—0—o—11 R4(s) = +4

Vr(s) = (2+1-5+4)/4=0.5

credit: Peter Bodi



Maintaining exploration

e deterministic/greedy policy won’t explore all actions

 don’t know anything about the environment at the beginning
* need to try all actions to find the optimal one

* maintain exploration
e use soft policies instead: nt(s,a)>0 (for all s,a)

 ¢e-greedy policy
e with probability 1-€ perform the optimal/greedy action
* with probability € perform a random action

* will keep exploring the environment
* slowly move it towards greedy policy: € -> 0



Simulated experience

e 5-card draw poker
* s A, AG, A AV, 24
* 3y discard 64, 24
* s A%, Ae,Av, AN, OA + dealer takes 4 cards
* return: +1 (probably)

e DP
e |ist all states, actions, compute P(s,a,s’)
e P([A%,A®,646 Av,24] [6M,24], [AN9A,4])=0.00192

* MC

* all you need are sample episodes
* let MC play against a random policy, or itself, or another algorithm

credit: Peter Bodi



Summary of Monte Carlo

* don’t need model of environment
e averaging of sample returns
* only for episodic tasks

* learn from sample episodes or simulated experience

e can concentrate on “important” states
e don’t need a full sweep

* need to maintain exploration
* use soft policies

credit: Peter Bodi



Outline

e Examples of RL applications

* Defining an RL problem
 Markov Decision Processes

* Solving an RL problem
* Dynamic Programming
* Monte Carlo methods
 Temporal-Difference learning

credit: Peter Bodi



Temporal Difference Learning

e combines ideas from MC and DP

 |ike MC: learn directly from experience (don’t need a model)
* |ike DP: learn from values of successors
e works for continuous tasks, usually faster than MC

e constant-alpha MC:
* have to wait until the end of episode to update

V(St)<—V(8t)—|—a[Rt—V(St)] | —— —— —O— —O—

| I
—~—— target

* simplest TD
* update after every step, based on the succesgor

V(st) «— V(st) + Oél[rt-|-1 + 'YV(St-l—l)l — V(St)]

credit: Peter Bodi



Value functions

e state value function: V#(s)
e expected return when starting in s and following ©

e state-action value function: Q-function: Q%(s,a)

» expected return when starting in s, performing a, and
following 7t
S

 useful for finding the optimal policy a
e can estimate from experience r
 pick the best action using Q™(s,a)

)

S

VT(s) = Zw(s, a) ZPSO’S/ [rg’s, + ’yVW(s/)] = Zw(s, a)Q"(s,a)

* Bellman equation

rredit: Peter Rodfi



Optimal value functions

e there’s a set of optimal policies

» /™ defines partial ordering on policies
* they share the same optimal value function

V*(s) = max V7(s)

* Bellman optimality equation
V*(s) = mc?xz PZ, [rgs, + "}/V*(S/)} S

8/
e system of n non-linear equations

e solve for V*(s) r
* easy to extract the optimal policy

* having Q*(s,a) makes it even simpler

7*(s) = arg max Q*(s,a)

credit: Peter Bodi



Q-learning

* before: on-policy algorithms

e start with a random policy, iteratively improve
e converge to optimal

e Q-learning: off-policy

* use any policy to estimate Q
Q(st, at) — Q(s, ar)Fa [rig1 +vMaxQ(si1,a) — Qlsy, ar)

e Qdirectly approximates Q* (Bellman optimality eqgn)
* independent of the policy being followed
e only requirement: keep updating each (s,a) pair

* 5arsa
Q(st,ar) — Q(st, ar)+a |re + ¥Q(s141, ar1) — Qlst, ar)|



Sarsa

* again, need Q(s,a), not just V(s

Q(st, ar) — Qsy, ar)+a [re +1Q(se41, arg1) — Q(st,ar) |

Sa

rt+1

e control
 start with a random policy
e update Q and m after each step
* again, need e-soft policies

credit: Peter Bodi



The RL Intro book

Reinforcement
Learning

Richard Sutton, Andrew Barto
= Reinforcement Learning,
An Introduction

http://www.cs.ualberta.ca/
~sutton/book/the-book.html

Richard S. Sutton and Andrew G, Barto

credit: Peter Bodi




Summary

A 4

Agent
Reinforcement Learning:
* Goal: Maximize };;2; Reward(State;, Action;)
* Data: Reward,;,,State; .1 = Interact(State;, Action;)
Environment <«———

Many (awesome) recent successes:
* Robotics
e Surpassing humans at difficult games
« Doing it with (essentially) zero human knowledge (Simple) Approaches:

« Q-Learning Q(s, a) -> discounted reward of action

* Policy Gradients -> Probability distribution over Ag
Challenges: * Reward Shaping
* When the episode can end without reward * Memory
* When thereis a ‘narrow’ path to reward e Lots of parameter tweaking...

* When there are many states and actions

credit: Geoff Hulten



https://spinningup.openai.com/en/latest/

e Key Papers in Deep RL
o 1. Model-Free RL
o 2. Exploration
o 3. Transfer and Multitask RL
o 4, Hierarchy
o 5. Memory
o 6. Model-Based RL
o /. Meta-RL
o 8. Scaling RL
o 9. RL in the Real World
o 10. Safety
o 11. Imitation Learning and Inverse Reinforcement Learning
o 12. Reproducibility, Analysis, and Critique
o 13. Bonus: Classic Papers in RL Theory or Review

credit: Geoff Hulten



Algorithms Docs

¢ Vanilla Policy Gradient
o Background
Refe re n Ce S o Documentation
o References

e Trust Region Policy Optimization
o Background

* RL slides from Rich Nguven R
* RL Slides from Geoff Hulten " Reterences

Proximal Policy Optimization

o Background

* RL slides from Eric Xing e
* RL slides from Peter Bodik " feferences

Deep Deterministic Policy Gradient

o Background
o Documentation
o References

Twin Delayed DDPG
o Background

o Documentation

o References
Soft Actor-Ciritic

o Background

credit: Geoff Hulten o Documentation
o References



Gym — toolkit for reinforcement learning

CartPole
import gym

env = gym.make('CartPole-v@")

import random

import QLearning # Your implementation goes here...
import Assignment7Support

trainingIterations = 20000

glearner = QLearning.QLearning(<Parameters>)

for trialNumber in range(trainingIterations):
observation = env.reset()
reward = 0@
for i in range(300):
Reward +1 per step the pole remains up env.render() # Comment out to make much faster...

currentState = ObservationToStateSpace(observation)
action = glearner.GetAction(currentState, <Parameters>)
MountainCar

oldState = ObservationToStateSpace(observation)
observation, reward, isDone, info = env.step(action)
newState = ObservationToStateSpace(observation)

glearner.ObserveAction(oldState, action, newState, reward, ..)

if isDone:
if(trialNumber%1000) == 0:
print(trialNumber, i, reward)
break

# Now you have a policy in qlearner - use it...

Reward 200 at flag -1 per step

https://gym.openai.com/docs/




Q learning

Learn a policy m(s) that optimizes V™ (s) for all states, using:
 No prior knowledge of state transition probabilities: P, (s, s")
 No prior knowledge of the reward function: R (s, s")

Approach:

e Initialize estimate of discounted reward for every state/action pair: Q(s,a) = 0
e Repeat (for a while):

* Take a random action a from Ag

* Receive s" and R (s, s’) from environment

* Update Q(s,a) = Ra(s,s) +ymaxQ(s',a)

e Random restart if in terminal state

1

ka(s'ai)
1+ visits(s,a)

Xy

Exploration Policy: P(a;, s) =

ZJ ka(s’aj)

credit: Peter Bodi



Example of Q learning
(round 1)

* Initialize Q to O
e Random initial state=< 1,1 >

* Random action from Ao, ;5 = east
e s'=<2,1>
* R,(s,5")=0

« Update 0(< 1,1 >, east) =0
* Random action from A., ;= = north

e s'=<2,0>
* R,(s,s") =100

* Update (< 2,1 >,north) = 100

* No more moves possible, start again...

O(s,a) = R, (s,s") +y max Q,_.(s',a")

credit: Peter Bodi



Example of Q learning
(round 2)

 Round 2: Random initial state =< 2,2 >

* Random action from A, > = north
e s'=<2,1>
* R,(s,5")=0

 Update (< 2,1 >,north) = 0+y * 100

* Random action from A., ;= = north
 5'=<2,0>
* R,(s,s") =100

« Update Q(< 2,1 >,north) = still 100

No more moves possible, start again...

Q(s,a) = Ry (s,s") + ymax Q,_,(s',a’) y =05
a

credit: Peter Bodi



Example of Q learning
(some acceleration...)

e Random Initial State < 0,0 >

 Update Q(< 1,1 >, east) = 50

 Update O(< 1,2 >, east) = 25

Q(s,a) = R, (s,s") +y max Q,,_.(s',a")

y =0.5

credit: Peter Bodi



Example of Q learning
(some acceleration...)

e Random Initial State < 0,2 >

 Update 0(< 0,1 >, east) = 25

 Update O(< 1,0 >, east) = 100

Q(s,a) = R, (s,s") +y max Q,,_.(s',a")

y =0.5

credit: Peter Bodi



e Policy is:

E>A<ample of Q learning
(Q after many, many runs...)

« (Q converged

n(s) = argmax Q (s, a)
aeA;

credit: Peter Bodi



Challenges for Reinforcement Learning

* When there are many
states and actions

Turns Remaining: 15

* When the episode can
end without reward

* When there is a

‘narrow’ path to
reward

Random exploring will fall off of rope ~97% of the time

credit: Peter Bodi



Memory

* Retrain on previous explorations

* Maintain samples of:
P,(s,s")
Rq(s,s")

e Useful when

* Itis cheaper to use some RAM/CPU
than to run more simulations

Replay it a bunch of times |

* |tis hard to get to reward so you want
to leverage it for as much as possible

when it happens

credit: Peter Bodi



Robot in a room

actions: UP, DOWN, LEFT, RIGHT

upP

-1 80% move UP
10% move LEFT
10% move RIGHT

START reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step
e states
* actions
* rewards

e what is the solution? et peter Bod



Is this a solution?

-

-

-

*

*

e only if actions deterministic
* not in this case (actions are stochastic)

* solution/policy
* mapping from each state to an action




State representation

pole-balancing
* move car left/right to keep the pole balanced

state representation
e position and velocity of car
* angle and angular velocity of pole

what about Markov property?
* would need more info
* noise in sensors, temperature, bending of pole

solution
* coarse discretization of 4 state variables
* left, center, right
* totally non-Markov, but still works

credit: Peter Bodi




Splitting and aggregation

e want to discretize the state space
* |learn the best discretization during training

* splitting of state space
 start with a single state
* split a state when d|fferentpart5 of that state have d|fferenl;va|ues

e®e %o 2% %2 °.

—oTTThTT T mmp .«

° PP - P go—

* state aggregation
 start with many states
* merge states with similar values

- Ly -
2 ot - N o ‘e alae

creqi. peter Bodi




Designing rewards

robot in a maze
* episodic task, not discounted, +1 when out, O for each step

chess
 GOOD: +1 for winning, -1 losing

e BAD: +0.25 for taking opponent’s pieces
* high reward even when lose

rewards
e rewards indicate what we want to accomplish
* NOT how we want to accomplish it

shaping
* positive reward often very “far away”
* rewards for achieving subgoals (domain knowledge)
 also: adjust initial policy or initial value function

credit: Peter Bodi



