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09/30/2025 Assignments

* HW2 is due this coming Sunday midnight!
* Using HW1 code pieces as components;
* Ifyou struggle with HW1, please contact TA @Haochen ASAP

* HW1 grading is work-in-progress,
* Grades will be released by next Tuesday class time
* We posted the guide from TA in Canvas

* Course vote:

* New Survey that needs your vote on

* 1. back to lecture in-person twice a week?

* 2. If not, best way to use the in-person session:
* Quiz to continue
* + Project discussions

* Interested in Shark Tank alike setup? idea screening, pitch
talk, demo ...
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Project Process

* Format:
e Team, individual ...

e Shark Tank alike Screening ? —
https://en.wikipedia.org/wiki/Shark Tank

* Next week — Idea collection

* Final deliverables:
* (1) Code (Github PR to course project repo)
* (2) Poster presentation class wide (Date: TBD)
* (3) Video Demo (TBD)
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https://en.wikipedia.org/wiki/Shark_Tank

09/30/2025 Roadmap

*TA to go over HW1 T

*One UVA ML club to introduce
their setups and projects

QQS
*Review Q4
*Review QA for L5-L7




L7: Regularized multivariate linear regression

Data: X

1

Task: vy

1

Representation: :

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

X, f()

—

10/22/2025

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

Sum of Squared Error (Least
Squared) + Regularization

Revised Normal Equation /
revised iD / SGD

Regression weights and bias =>

éRegularlzed Robust / Interpretable

____________________________________________________



L7: Regularized multivariate linear regression

We aim to make our trained model

1. Generalize Well

e 2. Computational Scalable and Efficient

3. Trustworthy: Robust / Interpretable
* Especially for some domains, this is about trust!
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Regularized multivariate linear regression

. Model: Y:/Bo"'ﬂlxl"'"'_'_ﬂpxp T
2

* LR estimation: argminZLY_ YJ
? ( )
n " p
* LASSO estimation: arg mankY — YJ -+ AZ ,Bj
i=1 j=1
p
* Ridge regression estimation: argmanLY YJ + AZIBZ
J
g .

9/54

Error on data + Regularization
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Ridge Regression / L2 Regularized Regression

-

* If notinvertible, a classical solution is to add a small positive element to
diagonal

B = (XTX+/II)_1 X"y

I~

[ By convention, the bias/intercept term is typically not regularized.

Dr.Yanjun Qi / UVA CS 10
Here we assume data has been centered ... therefore no bias term



Overfitting: Can be Handled by Regularization

A regularizer is an additional criteria
to the loss function to make sure 5
that we don’t overfit. It’s called a
regularizer since it tries to keep the
parameters more normal/regular

° from sklearn.linear model import Ridge
model = make pipeline(GaussianFeatures(30), Ridge(alpha=0.1))
basis_plot(model, title='Ridge Regression')

G Ridge Regression

coefficient

0 2 4 6 8 10
basis location



WHY and How to Select A?

* 1. Generalization ability
=» k-folds CV to decide

e 2. Control the bias and Variance of the model (details in future lectures)

2
L2: Squared weights penalizes large values more ,Bj

L1: Sum of weights will penalize small values more

B
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Regularization

path of

a Ridge 5 G}b‘

Regression ,,, |
| § 2

w;%:ﬁ =)\ 6”9

0.6

Weight Decay

lcawvol

WHY and How to Select A?
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A —>0

An example with 8 features




when varying A,
how (3 varies.
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Overfitting: Can be Handled by Regularization

15

A regularizer is an additional criteria to the loss functionto

make sure that we don’t overfit. It’s called a regularizer

05

0.0

since it tries to keep the parameters more normal/regular -

-1.0

code-run:

https://github.com/qiyaniju

=15

n/2025Fa||_UVA_CS_ ° from sklearn.linear model import Ridge

MachinelLearningDeep/blo
b/main/notebook/L7 regul
arizedRegression 06 Linea
r Regression.ipynb

model = make pipeline(GaussianFeatures(30), Ridge(alpha=0.1))
basis_plot(model, title='Ridge Regression')

Ridge Regression

1 ]
> 0
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(Extra) Lasso (least absolute shrinkage and
selection operator) / Squared Loss+L1

* The lasso is a shrinkage method like ridge, but acts in a nonlinear manner
on the outcomey.

* The lasso is defined by

~(y,—x' Y

AI »
p7 =argmin(y—-X B) (y—X p)
[ |<s

J

L \ [ YA

{ By convention, the bias/intercept term is typically not regularized. }
Here we assume data has been centered ... therefore no bias term

subjectMo




Lasso _— Ridge

~, . I
P y - LY
Estimat ) )
stimator Regression .
P { e I
AP ; - _'x..l
o [ - |
/ ', / . ,
V. /’ e /
e A . 7 ____f e F
l .-_.-" Fa P .-__’ ‘ F __,'f f"" __.-"' F
B, A S B, S AN S
3 B
.-"':__f./ I_" l.‘..__-';_’__.-"" o
| f, " [ ey 4
/ ‘ |_ e
| h e -
II- .--__-'-..
w - '
S S
. -
B1 Bl

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and BF + B2 < t°, respectively,
while the red ellipses are the contours of the least squares error function.



minJ(f) = i(Y— )A’) +/1(le:,b’;.1)”q

Today: Regularized multivariate linear regression

Data: X

1

Task: vy

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

X: Tabular

1

Regression: y continuous

1

Y = Weighted linear sum of Xs

—

a i Sum of Squared Error (Least

Squared) + Regularization

Revised Normal Equation /
revised iD / SGD

Regression weights and bias =>

10/22/2025

ﬁiRegularized: Robust / Interpretable



More: A family of shrinkage estimators

p=argmin Zl(yi—xfﬂ)z
. subjectfol ,qugs

q
e for g >=0, contours of constant value of ZJ.‘,BJ- are shown for the case

of two inputs.

- Con Ve X
|

_///_ . - :B ) .
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FIGURE 3.12. Contours of constant value of ), |B;|? for given values of q.



A L1 regularization B

AT

L2 regularization

AZ2

due to the nature of L_1 norm, the viable solutions are
limited to corners, which are on a few axis only

- in the above case x1. Value of x2 = 0. This means that the
solution has eliminated the role of x2, leading to sparsity
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L,-regularized loss function F’ (1-) — f ( 1-_) + )\” T || 1 is non-smooth. It's
not differentiable at 0. Optimization theory says that the optimum of a
function is either the point with o-derivative or one of the irregularities
(corners, kinks, etc.). So, it's possible that the optimal point of Fis o0 even if
0 isn't the stationary point of f. In fact, it would be o if ), is large enough
(stronger regularization effect). Below is a graphical illustration.

http://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization

Two L, -regularized i¥nctions with different 7.
14- T T T T T T T
(x-1)% + 0.5]x]
12 \ 1% + 2% H
10 . . : .
In mathematics, particularly in
calculus, a stationary point or
= 8 | critical point of a
? differentiable function of one
o variable is a point of the
= 6 4 domain of the function where
= the derivative is zero
(equivalently, the slope of the
s minimum miniom E graph at that point is zero).
7
2 —
u L 1 1 1 L L 1
2 15 44 05 0 05 1 15 2 21
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Least Angle Regression (LARS)

(State-of-the-art LASSO solver)

2 X2
p o

http://statweb.stanford.edu/~tibs/ftp/lars.pdf
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L8: K-nearest-neighbor(regressor or classifier)

Data: X

1

Task: vy

1

Representation: : X, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters

X: Tabular

1

Classification or regression

1

_) Local Smoothness / Training

‘i Samples

EPE with L2 loss =»
conditional mean (Extra)

1

NA

1

Training Samples

YanjunQi @ UVA CS 24



Code run: https://github.com/giyanjun/2025Fall-UVA-CS-

MachinelLearningDeep/blob/main/notebook/L8 Knearest.ipynb

[42] # import regressor

G

from sklearn.neighbors import KNeighborsRegressor
# instantiate with K=5

knn = KNeighborsRegressor(n_neighbors=5)

# fit with data

knn.fit(X, v)

KNeighborsRegressor(algorithm='auto', leaf size=3
metric_params=None, n_jobs=No
weights='uniform')

##
¥fit = np.linspace(3, 10,
yfit =knn.predict(Xfit)

1000) .reshape(-1, 1)

# Plot outputs
plt.scatter(X, y, color='red')
plt.plot(Xfit, yfit, color='blue', linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()

ACS

[44] # import regressor

C»

from sklearn.neighbors import KNeighborsRegressor
# instantiate with K=5

knn = KNeighborsRegressor(n_neighbors=100)

# fit with data

knn.fit (X, vy)

KNeighborsRegressor(algorithm='auto', leaf size=3(
metric_params=None, n_jobs=Nor
weights='uniform')

i
¥fit = np.linspace(3, 10,
yfit =knn.predict (Xfit)

1000) .reshape(-1, 1)

# Plot outputs
plt.scatter(X, y, color='red’)
plt.plot(Xfit, yfit, color='blue', linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()

® e e 20 .ra.
LN
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https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb
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K Nearest neighbor (Testing Mode)

Training Mode:
It Needs: - (Naive) version: DO
1. The set of stored NOTHING !!!!
training samples
2. Distance metric to Testing Model: To classify unknown
compute distance sample:
between samples e Stepl: Compute distance to all

. training records
3. Thevalue of k, i.e., 5

the number of
nearest neighbors to
retrieve

e Step2: Identify k nearest neighbors

* Step3: Use class labels of nearest
neighbors to determine the class
label of unknown record (e.g., by
taking majority vote)

YanjunQi @ UVA CS 26



We can divide the large variety of supervised
classifiers into roughly three major types

+

1. Discriminative + 4 _~
directly estimate a decision rule/boundary -

e.g., support vector machine, decision tree,
e.g. logistic regression, neural networks (NN), deep NN ,F ( /:j "x)

2. Generative:

build a generative statistical model /F( xl 43_ C)

e.g., Bayesian networks, Naive Bayes classifier

» 3. Instance based classifiers \ @
- Use observation directly (no models)

- e.g. K nearest neighbors

YanjunQi @ UVA CS 27






Model Selection for
Nearest neighbor classification

* Choosing the value of k:
* |f k is too small, sensitive to noise points

* |f kis too large, neighborhood may include points from
other classes

*Bias and variance tradeoff DHW-{‘F&
*A small neighborhood = large varian éﬁmreliabl estimation
*A large neighborhood > large bias eﬁnaccurat’e_‘[estimation HMW(H;

YanjunQi @ UVA CS



We aim to make our trained model

1. Generalize Well

e 2. Computational Scalable and Efficient

* 3. Trustworthy: Robust / Interpretable
* Especially for some domains, this is about trust!



Computational Time Cost

- Tt ()

Linean Vo4&l O(Y\sz?3> O(P>
KN N Re@ O(D O(HP}{-




NN Search by KD Tree

Using the distance bounds and the bounds of the
data below each node, we can prune parts of the
tree that could NOT include the nearest neighbor.

Yanjun Qi @ UVA CS



KNN as the Most critical component in Retrieval
Augmented Generation System, e.g.:

[m Proprietary Data} 1::> 4 h % ©

Embedding Model Vector
Search Database

[!} User Quastinn] —> =

—

op K relevant documents
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09/30/2025 Roadmap

*TA to go over HW1 T

*One UVA ML club to introduce
their setups and projects

QQS
*Review Q4
*Review QA for L5-L7




10/07

10/22/2025

Dr.Yanjun Qi / UVA CS
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10/07 /2025 Assignments

HW?2 is grading started ..

* = HW?2 key walk-through next Thursday online zoom

HW3 will get posted by tomorrow
* Deep NN on Imaging task / Kera / mostly about learning modern DNN library
* Programming + QA (like calculating marginal prob...)

Next Tuesday is reading day
- = we will host makeup-Quiz Q7 next Thursday online

Course format survey:
e https://forms.gle/PkKWGMkwHhawgf8QR8
 Now go over the results:
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https://forms.gle/PkWGMkwHhawqf8QR8
https://forms.gle/PkWGMkwHhawqf8QR8

Project Process

* Format:
e Team (1~4 students)
* Shark Tank alike Screening — https://en.wikipedia.org/wiki/Shark Tank
* This week: signup sheet for your team’s screening sessions!
* Next week: Initial project idea collecting!
* TA Guangzhi will announce the process and signup sheet URL!

* Final deliverables:
* (1) Code (Github PR to course project repo)
* (2) Poster presentation class wide (Date: 12/09 TBD)
* (3) Video Demo (after final exam)
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10/07 /2025 Roadmp

Review L5-L8 questions

Quick Review L9-L10

Review Q5

Then Q6

quite disturbing for staying
students around the right after
quiz period

So we will host quiz after review
/ before project screening for all
coming in-person sessions



Questions on L5-L8

Set 1: Bias—Variance, Overfitting, and Model Complexity

*How do bias and variance contribute to generalization error, and how do we find the “sweet
spot” without knowing the true distribution?

*What are practical indicators of underfitting vs. overfitting (from graphs, learning curves, or
error plots), and how do we fix each?

*How does cross-validation (choice of K) approximate generalization error, and what are the
trade-offs (bias vs variance, LOOCYV vs k-fold)?

*Why does zero training error often generalize poorly, and how is this linked to variance?
*Would we ever prefer high bias or high variance, and how do we reduce one while controlling
the other?

Set 2: Regularization (LASSO, Ridge, Elastic Net, Generalizations)

*What are the key differences between L1 (LASSO), L2 (Ridge), and Elastic Net in terms
of sparsity, robustness, computational cost, and when to use each?

*Why do L1 penalties set coefficients to zero, while L2 does not? What happens

when p>np>n or when features are highly correlated?

*How does the choice of A affect bias—variance, and how do we select it (cross-validation,
validation curves)?

*Are there equivalent closed-form solutions for LASSO like Ridge has? Why are L1 and L2
chosen—what about higher-order penalties?

*When is Elastic Net preferable (e.g., grouped correlated features), and can we always
default to it?



Questions on L5-L8

Set 3: k-Nearest Neighbors (kNN) and Instance-Based Learning

*How do we pick the best k (odd vs even, weighted vs unweighted, trade-offs with noisy data)?
*What is the computational cost of kNN (sorting term, memory cost), and can it overfit?

*How does the distance metric affect performance, and how are ties handled in classification?

*What are the advantages/disadvantages of kNN vs gradient descent or regularized linear
models?

*In practice, how large must the dataset be to offset outliers, and is kNN more effective for
regression or classification?

Set 4: Maximum Likelihood Estimation (MLE) and Probability Foundations

*Why do we usually maximize the log-likelihood instead of the likelihood itself, and how does
this connect to squared error in linear regression?

*How does MLE extend from discrete distributions (e.g., coin flips) to continuous (e.qg.,
Gaussians)?

*Why is the MLE for Bernoulli just the sample proportion, and what happens with small
samples or noisy data?

*What makes MLE consistent and efficient, and are there situations where maximum likelihood
may not yield the most “ideal” parameter?

*How does the bias—variance decomposition change with different loss functions (e.g., 0—1
loss, Laplace errors)?



10/07 /2025 Roadmp

Review L5-L8 questions

Quick Review L9-L10

Review Q5

Then Q6

quite disturbing for staying
students around the right after
quiz period

So we will host quiz after review
/ before project screening for all
coming in-person sessions



Lecture 10: Maximum Likelihood Estimation (MLE)
=» Probability Review

—

The big picture
Events and Event spaces
Random variables

Joint probability, Marginalization,
conditioning, chain rule, Bayes Rule, law of
total probability, etc.

Structural properties, e.g., Independence,
conditional independence

Maximum Likelihood Estimation

-



If hard to directly estimate from data, most likely we

can estimate

1. Joint probability
e Use Chain Rule

» 2. Marginal probability

» Use the total law of probability

3. Conditional probability
e Use the Bayes Rule

10/21/19 Dr. Yanjun Qi / UVA CS
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One Example

Assume we have a dqu box with 3 red balls and 1 blue ball. That is,
we have the set {r,r,,b}. What is the probability of drawing 2 red balls
in the first 2 tries?

P(B,=r,B,=r) = P(B=1) P (B=v|B=V) = L
S

¥+ 3
P(BQ — T) = F( B =t. 82=r)"'P(Br=\))Bz=Y)

P(B, =7|By=r) o PG B2=f)
P(By=1 )
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MVLE idea is to

v assume a particular model with unknown parameters, &

v’ we can then define the probability of observing a given event
conditional on a particular set of parameters. P(Z;0)

v" We have observed a set of outcomes in the real world.

v’ It is then possible to choose a set of parameters which are
most likely to have produced the observed results.

é = argmax P(ZlZn‘H) <Like|ihood
6

This is maximum likelihood.
In most cases this scorer is both consistent and efficient.

log(L(0)) = 2 log(P(Zi|6’)< Log-Likelihood
=1

It is often convenient to work with the Log of the likelihood function.



Deriving the Maximum Likelihood Estimate for
Bernoulli

log(L(p) T
—log|[ | _p-pyi

= Yi1(zilogp + (1 — zplog(1 — p))
=logp Yic,1z; +log(1—p) YL, (1—z)
=xlog p + (n — x)log (1 — p)

Observed data = x
heads-up from n trials



Deriving the Maximum Likelihood Estimate for Bernoulli

&5&;:1(19)&: &Pj?h{—xlog(p)—(n—x)log(l—p)j

dp p l-p §=—x+pn
X Nn—x L . bal
0=_2_ Minimize the negative log-likelihood
2l p 1_p =>» MLE parameter estimation
—x(1— _ A X
0= X(l p)+p(n X) p — — i.e.Relative
o p(]_ — p) frequency of a
binary event

=—X+px+pn—px

[ND
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DETOUR: Probabilistic
Interpretation of Linear Regression

e Let us assume that the target variable and the inputs are related by
the equation:
RN/ S A~ N (7 2>
y. =0'x, +¢ K 2 N(D] 0

where € is an error term of unmodeled effects or random ngise

* Now assume that ¢ follows a Gaussian N(0,o0), then we have:

1 —0"x)?
p<yi|xj;0):\/§(yexp(_ (yl 202 Z) j

N Y|x8 ~ N (8% )




L9: Complexity / Goodness of Fit / Generalization

1 Training data N Too simple?
Y y 3 undc’/r- i€
® ® _ -
@ e_ - —_ —
® .o °° ® ® o eo”
° () ° 4J: -~ - éﬁ/\?l
o 1--q High Bias
X X >
\ .
/ "\ Too complex ? About rieht ?
\ | A
y P
- : \ ! \ n \/
Oq \ A |l ‘p ',. \0 'b‘\. 'I _e___ o
n ) ® ! v 1 L Q- e @ ~_
n!® @ Ly e’ @ ~Q
£ nl 1 1 V1 \ I .// ~

ntoov o IR 7

al v \ 7 /
Vo s _ 7@
O] » ,/ >

I X X
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High Variance

What ultimately matters: GENERALIZATION

49



Statistical Decision Theory (Extra) {HH

10/22

e
TH
T

Pt , t

*Random input vector: X

Random output variable: Y
Y @“'\j)
Joint distribution: Pr(X)Y ) —)

| oss function L(Y, f(X))

XH ) qﬂ)

*Expected prediction error (EPE):

EPE(f) =E(L(Y, f(X))) = LL(y, f(x))Pr(dx,dy)

c.g.= [{_)_/ —f (x&z(Pr(dx,dy?
<TAT>

One way to define
generalization: by
considering the

joint population
distribution

e.g. Squared error loss (also called L2 loss )

/2025




Decomposition of EPE

* When additive error model: Y = f(X)+e e~ (0, 0.2)

* Notations
« Output random variable: Y
e True function: f — “rue

* Prediction estimator: f"‘
- Do ?

EPE(z ) = E[(Y —PD?X ==z ]
= E((Y-H+U-NIX==z]
= EBl(Y-N?X=z 4+E[(f-D?X==x
: .(‘_‘E )<l ‘L&f%[gwﬂ| ]
= 02+&/’ar(f)+8ia52(f

|

Irreducible / Bayes error
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Bias-Variance Trade-off for EPE:

-

EPE (x) = noise? + bias? + variance

\ Error due to variance

Unavoidable Error due to of training samples
error incorrect
assumptions

10/22/2025 52



Extra, But VERY IMPORTANT

BIAS AND VARIANCE TRADE-OFF for Parameter Estimation

0 : true value (normally unknown)
0 : estimator
0: = E[é] (mean, i.e. expectation of the estimator)
*Bias E[(0 —0)?]
* measures or of the estimator

* l[ow bias implies on average we will accurately estimate true
parameter from training data

*Variance E[(§ — §)?]
* Measures or of the estimator

* Low variance implies the estimator does not change much as
the training set varies

10/22/2025



Model “bias” & Model “variance”

red
° M |d d | e R FD Low Variance High Variance

us.
« TRUE function (onfor
* Error due to bias: ?!
* How far off in general from the
middle red
— 2 . -
E[(@ - 0)?) e
* Error due to variance:
* How wildly the blue points =
spread

E[(6 - 6)?]

10/22/2025 54




need to make assumptions that
are able to generalize

* Underfitting: model is too “simple” to represent all the relevanﬂ
characteristics

* High bias and low variance

* High training error and high test error

* Qverfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
* Low bias and high variance
* Low training error and high test error



Bias Variance Tradeoff

(1) Randomness of Training Sets T

*(2) Training error can always be reduced when
increasing model complexity

*(3) Randomness in the Testing Error!!!

* (4) Cross Validation Error as good
approximation for Expected Test error -- good
appx of generalization



Review:
One important Control of Bias Variance Tradeoff

=>» Model Complexity
ErmY

* bias decrease ETE
with model gets
more complex; -
VAran®
* Variance
increase with
bigger model
capacity
2
e Sum of ‘ Bf({_s
BiasA2+Variance
>

Tﬁ“d (owy [EX\'{'y C‘MIDE](
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Another important Control of Bias Variance Tradeoff
=» Training Size (Extra)

Typical learning curve for high bias: Q@n zf (Ve

A
Q @/«S S NW{&

% Test error
\_.Zf{\

Training error

error

o

/ Desired performance

[~

m (training set size)

e Even training error is unacceptably high.
* Small gap between training and test error.

10722202 High training error and high test error s



Another important Control of Bias Variance Tradeoff
=>» Training Size (Extra)

Typical learning curve for high variance: Q@m‘zf (Ve

Test error

error

Desired performance

///7 Training error

m (training set size)
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How to reduce Model High Variance?

e Choose a simpler classifier
e Regularize the parameters

* Get more training data
* Try smaller set of features ’{Y@N’M’ S‘dbﬁm N < /F

* Try feature engineering

* Try multiple models and then use all as ensemble

10/22/2025 60



Take Away : Three types of plots

e (1) Sanity check (S)GD type Optimization

* Train / Vali Loss vs. Epochs to help you

* https://scikit-learn.org/stable/auto examples/linear model/plot sgd early stopping.html#sphx-glr-auto-examples-
linear-model-plot-sgd-early-stopping-py

* (2) Sanity check hyperparameter tuning (validation curve)

* Train / Vali Loss vs. hyperparameter Values
from sklearn.model_selection import validation curve

* (3) Sanity check if your current model overfits or underfits
* Train / Vali Loss vs. Varying Size of Training (learning curve)

» https://scikit-learn.org/stable/auto_examples/model selection/plot learning curve.html#sphx-glr-auto-examples-
model-selection-plot-learning-curve-py

10/22/2025 61
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| will Code run: https://github.com/qgiyanjun/2025Fall-UVA-CS-

MachinelLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb

10 /
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2
o
]
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= training score
— validation score
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degree

(1) Validation curve

By scikitlearn Validation_curve function
(normalize all metrics to positive range
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;\ n=49 h,.;';uﬂ

poly order vs training_loss and validation_loss
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(1) Validation curve

By our HW2 ( more close to
modern deep learning
library style )

62


https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html#sklearn.model_selection.validation_curve
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html#sklearn.model_selection.validation_curve

degree = 1
10
—— training score

= validation score

08

IS o
=] =]
] b

04

0.2

0.0

15 20 5 30 35 40
training size

degree = 9
1.0
08
0.6
04
0.2
= training score
—— validation score
0.0
15 20 25 30 35 40
training size

(1) Learning Curves for polynomial regression (up) and classification (down)

/ by scikitlearn

Learning Curves (Naive Bayes)

Learning Curves (SVM, RBF kernel, y=0.001)
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https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html#sklearn.model_selection.validation_curve

© x2, y2 = make data(200)

deg
tra

ree = np.arange(200)
in score2, val score2 = validation curve(PolynomialR
'polynomial

plt.plot(degree, np.median(train_score2, 1), color='blu
plt.plot(degree, np.median(val_score2, 1), color='red',
plt.legend(loc='lower center')
plt.ylim(0, 1)
plt.xlabel( 'degree')
plt.ylabel( 'score');
10
0.8
0.6
g
Q
b
0.4
0.2
—— training score
— validation score
0.0

0 25 50 75 100 125 150 175 200
degree

D x2, y

make data(200)

degree np.arange(21)

train_score2, val_score2 = validation_curve(PolynomialReg
'polynomialfe

plt.plot(degree, np.median(train_score2, 1), color='blue'
plt.plot(degree, np.median(val_score2, 1), color='red', 1
plt.plot(degree, np.median(train_score, 1), color='blue',
plt.plot(degree, np.median(val_score, 1), color='red',6 al
plt.legend(loc='lower center')

plt.ylim(0, 1)

plt.xlabel( 'degree')

plt.ylabel('score');

10

0.8

0.6

score

04

0.2
—— training score

— validation score

0.0
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degree

Interesting Relation between
the right range of model complexity
the number of training points .



s the bias-variance trade off dependent ?’1/
on the number of samples? (EXTRA) VArY(An 2 //

—
In the usual application of linear regression, your coefficient estimators are unbiased so
sample size is irrelevant. But more generally, you can have bias that is a function of

sample size as in the case of the variance estimator obtained from applying the
population variance formula to a sample (sum of squares divided by n).....

... the bias and variance for an estimator are generally a decreasing function of training size n.
Dealing with this is a core topic in nonparametric statistics. For nonparametric methods with
tuning parameters a very standard practice is to theoretically derive rates of convergence (as
sample size goes to infinity) of the bias and variance as a function of the tuning parameter, and
then you find the optimal (in terms of MSE) rate of convergence of the tuning parameter by
balancing the rates of the bias and variance. Then you get asymptotic results of your estimator
with the tuning parameter converging at that particular rate. Ideally you also provide a data-
based method of choosing the tuning parameter (since simply setting the tuning parameter to
some fixed function of sample size could have poor finite sample performance), and then show
that the tuning parameter chosen this way attains the optimal rate.
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https://www.reddit.com/r/statistics/comments/6uajyr/is_the_biasvariance_trade_off_dependent_on_the/
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Agenda

* Going over HW2 Solution
* A tutorial talk on Huggingface.co



Course Content Plan =» Regarding Tasks

P resresson tsperised
D-kearringtheory

1 Classification (supervised)

J Unsupervised models

\EI Graphical models

J Reinforcement Learning

10/22/2025

Y is a continuous

About f()

Y is a discrete

NO'Y

About interactions among Y,X1,. Xp

Learn to Interact with environment

68



Course Content Plan =» Regarding Data

Xi Xz -~ Xp

S

Q Tabular / Matrix [

Sn !

2D Grid Structured: Imaging [x r:_f‘gl

1 1D Sequential Structured: Text
J Graph Structured (Relational)

[ Set Structured /3D /

10/22/2025



Today: Logistic Regression Classifier

Data: X

1

Task: vy

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters, metrics

10/22/2025

X: Tabular

1

Binary Classification

ﬁ Log-odds vy = linear function of Xs

MLE

1

Iterative (Newton) method
/ SGD

1

Logistic weights
/ Accuracy / F1



Lecture 11: Logistic Regression

Bayes Classifiers — Predict via MAP Rule

Task: Classify a new instance X: X=<)(1>X29' ' "XP> T

based on:

Chrrap :argmaXP(Cj |x1’x29"'9xp) < MAP Rule

CJ-DC \

MAP = Maximum Aposteriori Probability

10/22/201

71

Please read extra slides for how to get MAP-rule from minimize EPE-0/1




Our Whole Section 2: X . C : /P((l)(\

e
— Discriminative Classifiers < (x)
argmax P(c [ X), [l ={c [, }
[?] cC
P(c, Ix) P(c,1x) P(c, 1x) ( v
7 eee G RUEIX)

Discriminative
Probabilistic Classifier

N IR

X=(x,,x,, [k )

10/22/2025 72
Adapt from Prof. Ke Chen NB slides



Today: Logistic Regression Classifier P(y = l‘x) =

1+
— el
Data: X X: Tabular
Task: vy Binary Classification

1 1

Representation: : x, f() =3 [0g-0ddsy = linear function of Xs

1 1

Score Function: L() i MLE

| |

Seaq rch/Optimization : lterative (Newton) method

. i / SGD
argmin() ; 1
1 Logistic weights

Models, Parameters, metrics

/ Accuracy / F1

'P('j- ol t~ 2 Xy



Logistic Regression p(y|x)
P (Heal X)]

& S

_ 11j(Py(;|(3() _ = ,80 +,6’1x1 +,6’2x2 + ...+,Bpxp

(" ,

Lo W& l ,F (C ' X)
A(rerd)

e ,BO +0, X+ fX,F et ,Bpxp 1

In

= P(y[x)= >

o 1+ eﬂ0+ﬂ1x1+ﬁ2x2+...+,8pxp - 1+ e_(ﬂoJWBTX)

10/22/2025



View |V: Logistic Regression models\
a linear classification boundary!

S

QAR ‘P(’b\?g

e fo. 1 ¥
= ecigjn Bndtr
Pt o - P llx) r}(«fﬂ’\"x) \3
?('3 %) —*-T_;__ ?(‘J o)

2222222222



Extra

Summary: MLE for Logistic Regression Training

Let’s fit the logistic regression model for K=2, i.e., number of classes is 2

For Bernoulli distribution

p(y|xy (1-p)”

(conditional ) [(ﬂ):ﬁ {]ngr(y: yi |X= Xi)}
Log-likelihood: -1

=ﬁ Y. log(Pr(Y=1|X=x))+(1- y.)log(Pr(Y =0]| X =x))

i=1

Training set: (x; vi), i=1,...,N

A exp(f'x,) B 1
_,gl(y"log1+exp(,BTxl,))+(1 yi)log1+exp(ﬂTxi))
=[] (y,8"x,~log(1+exp(f x,)))

i=1
x; are (p+1)-dimensional input vector with leading entry 1
\beta is a (p+1)-dimensional vector

We want to maximize the log-likelihood in order to estimate \beta

See Extra Slides How to used Newton-Raphson optimization



One “Neuron”: Block View of Logistic Regression

Input X
p=3

+1

Multiply by
weights

p =P(Y=1|x,w)

Summing Sigmoid
Function Function
Z=W'-X+b
eZ
y = sigmoid(z) =

1+ e?

77
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Agenda

*HW3 is due T

*Please select your Project’s Shark Tank
Sessions ASAP

*Today:

* Review MLP / DNN / CNN / PCA / Word
Embedding, Transformer

* Quiz 8 Today



Takeaway: Logistic Regression Classifier

 View I: logit(y) as linear of Xs

* View II: model Y as Bernoulli with p(y=1|x) as p(Head)
* View Ill: S" shape function compress to [0,1]

* View |V: models a linear classification boundary!

* View V: Two stages: summation + sigmoid

10/22/2025 80



Lecture 12: Neural Network (NN) and More: BackProp

Today: Basic Neural Network Models

Data: X

Task: y

}

Representation: : X, f()

Score Function: L()

|

Search/Optimization :
argmin()

}

Models, Parameters, metrics

10/22/2025

}

Classification / Regression

}

Multilayer Network

topiogy

neg Log-likelihood , Cross-
Entropy / MSE / Many more

—

—
—>

SGD / Backprop

a: Weights and biases in NN Layers

/ Accuracy / F1

___________________________________________
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Building Deep Neural Nets

EGEIN 7 = g
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http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf



Neuron Representation

Xy
Wi
W)
X X5
X3 :
From here on, we leave out bias

square for simple visualization

The linear transformation and nonlinearity together is typically considered a single neuron
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Multi-Layer Perceptron (MLP)- (Feed-Forward NN)

dh ]11"9&'-" h,
W,

X %
) 1 'an Output Layer

7= VVIT X hllgjeern hl';tj:rn for Binary Classification
hidden layer 1 output —/1; = sigmoid(z;) A

2 =WI'h, — R L‘ ; :
hidden layer 2 output ——/1, = sigmoid(z,) x W, %' | L 32 AZ, = H

25 =wl I, 2 W

= sigmoid(z3) .







Recap: Multi-Class Classification Loss

W,
)

/i

\

EL )

/

N\

b

AEE
S

Cross Entropy Loss

YN

Zz e"‘"

\

u\

P(yi=11x)

“Softmax” function.

Normalizing function which
converts each class output to

E=loss =-y y,log

a probability.

X

“0” for all except true class
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e.g., “Block View” of multi-layered multi-class NN

W is a matrix zis a vector
AN Z
W, Zl/ hl W, z hz Wi " ”SOftmaX” A
’.—’ J.\;:,V‘ y N
' f . I I»._' g E(Yy)
1st znd
hidden layer hidden layer Output layer Loss Module

s, S S E(RY



argmin_w {f,(f;(f2(f1())} )
Ext e
xtra | _____[_n_put Output Local Gradl_e_nEiOutput /@Input
R %Az, | B, b2 | F=W
-_—
5 hi= T7 p(p()) -311. E'z. hl 51\2 ‘éﬂb‘!?# hl (’-‘“>
= ST

S $=hpws +hpws + bs mz_ % Bﬁ/g“rldg
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Lecture 13: Supervised Image Classification and Convolutional Neural Networks

, Arch

ImageNet Challenge M

e 2010-11: hand-crafted

computer vision pipelines 0.3 o8
e 2012-2016: ConvNets S . ‘,
o 2012: AlexNet o
m major deep learning success S 0.2 -
o 2013: ZFNet b= '
m improvements over AlexNet = 022
o 2014 @ 01 0.07
m VGGNet: deeper, simpler < 0.036 (.03
m InceptionNet: deeper, faster O . ] 0028
o 2215ResNet' even deeper 2010 2011 2012 2013 2014 2015 2016 2017
o 2016 ILSVRC year
m ensembled networks
o 2017

m Squeeze and Excitation Network

89
Adapt from From NIPS 2017 DL Trend Tutorial



Lecture 13: Supervised Image Classification and Convolutional Neural Networks

Metric Formula Interpretation
TP + TN
Accuracy + Overall performance of model
TP + TN+ FP 4+ FN
. TP .. _
Precision How accurate the positive predictions are
TP + FP
TP "
Recall Coverage of actual positive sample
TP + FN
Sensitivity
Specificit TN C f actual ti 1
ecifici overage of actual negative sample
P Y TN + FP veras SALIVE STP
2TP
F1 score ed classes
2TP + FP + FN actual
_I_ S
predicted+ | 1P | FP
10/22/2025 prediCted_ FN TN 90




Lecture 13: Supervised Image Classification and Convolutional Neural Networks

Today: Convolutional Network Models on 2D Grid / Image

Data: X

1

Task: vy

1

Representation: : x, f()

1

Score Function: L()

1

Search/Optimization :
argmin()

1

Models, Parameters, metrics

X: 2D Grid Imaging

1

Classification

1

Neural Networks

!

Cross Entropy Loss

1

SGD / Backprop

q Convolutional

—

weights, bias /
architecture /

/ Accuracy / F1



Building Deep Neural Nets

EGEIN 7 = g
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http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf



CNN models Locality and Translation Invariance

Important Block: Convolutional Neural Networks (CNN)

* Prof. Yann LeCun invented CNN in 1998
* First NN successfully trained with many layers

The bird occupies a local area and looks the same in different parts of an image.
We should construct neural nets which exploit these properties!

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

93

Adapt from From NIPS 2017 DL Trend Tutorial



TF Keras Sample Code

https://www.kaggle.com/code/shawon10/covid-19-

diagnosis-from-images-using-densenet121

Pytorch Sample Code

import torch.nn as nn
import torch.nn.functional as |

class ThreeLayerNet(torch.nn.Module}:
def __init__ (self, d_in, d_hidden, d_out}):
super().__init__()
self.wl nn.Linear(d_in,d_hidden)
self.wW2 nn.Linear {d_hidden,d_hidden)
self.w3 = nn.Linear(d_hidden,d_out}
self.nonlinear = nn.Sigmoid()

def forward(self, x):
hi self.nonlinear(self.Wl{x))
h2 self.nonlinear(self.W2(h1))
y_hat = self.nonlinear(self.w3(h2})
return y_hat

model = ThreelLayerNet(2,3,1)
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a whole CNN

Property 1

» Some patterns are much
smaller than the whole image

Property 2

» The same patterns appear in
different regions.

Fully Connected

Feedforward
network » Subsampling the pixels will

0 4 not change the object

| Can
repe
man
time

Property 3

Flatten

95
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. network structure and input format
CNN in Keras etwork structure Lo

(vector -> 3-D tensor)

1x28x28

model?2.add( Convolution2D (
input shape=(_,

How many parameters
for each filter? .
model?2 .add (MaxPooling2D ((~,~7)))

25x13x13

model?2.add (Convolution2D (

225=25*% 50 x 11 x 11

model?2.add (MaxPooling2D((~,")))

50x5x5

96
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Imagenet Top 1 Accuracy (%)

-1
(=)

74
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Number of Parameters (Millions)

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

180
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CNN in Keras (.)nly modified the network structure and
input format (vector -> 3-D tensor)

input

1x28x28 .v

25 X 26 X .v

Fully Connected 26 -RM

Feedforward
25 x13 x

.adﬂ}ﬁéﬁég(output_dim= ))
.add (Activation ( )) 13
.add (Dense (output dim=10)j

.add (Activation ( )) 50 x 11 X

11

1250 50x5x5
e

model?2.add (Flatten())

98
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Lecture 14: Dimension Reduction

Today: Dimensionality Reduction (Two Ways)

Feature selection: chooses a
subset of the original features.

—

L1
L2 Tk2
X p— I X/ f—
€T
_;UI?_ | LYEK

K<<N

Pattern Recognition Chapter 3 (Duda et al.) — Section 3.8




Summary: Feature Selection
=> filters vs. wrappers vs. embedding

= Main goal: rank subsets of useful features

All features

All features

All features

10/22/2025

| Feature Predict
—_— — > subset
Multiple
Feature »| Predictor
subsets
Wrapper
P ——
Feature
subset
Embedded |
" method
\.Predictor

Dr.Yanjun Qi/ UVA CS
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(1) Filtering : (many choices)

| Method X V' |Comments
|Name |Formula| B|M|C|B|M|C|
Bayesian accuracy Eq. 31 |+ = +| 8 | | Theoretically the golden standard, rescaled Bavesian relevance Eq. 3.2.
Balanced accuracy Eq. 3.4 +|s| |+|s| |Average of sensitivity and specificity; used for unbalanced dataset,
||| | | |same as AUC for binary targets.
Bi-normal separation Eq. 3.5 |+ s +| & | |Used in information retrieval.
F-measure v Eq. 3.7 |+ s + Harmonic of recall and precision, popular in information retrieval.
Odds ratio \/ Eq. 3.6 |+ s| |4|s| |Popular in information retrieval.
Means separation Eq. 31004+ i |+ 1+ Based on two class means, related to Fisher's eriterion.
T-statistics Eq. 3.11/4+ i |+/+ Based also on the means separation.
Pearson correlation \/ Eq. 3.9 |+ i |+ 4| i |+|Linear correlation, significance test Eq. 3.12, or a permutation test.
Group correlation \V4 Eq. 3134+ i |+ +| 1 |+|Pearson’s coeflicient for subset of features.
x> —_— \/ |Eq 38 +|s| |+|s| |Results depend on the number of samples m.
Relief Eq. 3.15/4+ s |+|+| 8 |+|Family of methods, the formula is for a simplified version ReliefX,
captures local correlations and feature interactions.
sSeparability Split Value Eq. 341+ s |+ /4| s | |Decision tree index.
Kolmogorov distance Eq. 3.16/4+ s |[+|+| s |+|Difference between joint and product probabilities.
Bayesian measure Eq. 3.16/4+ s |+ |+ s | +|Same as Vajda entropy Eq. 3.23 and Gini Eq. 3.39.
Kullback-Leibler divergence|Eq. 3.20 +| s |+ +| s |+|Equivalent to mutual information.
Jeffreys-Matusita distance |Eq. 3.22/+ s |+|+| s |+|Rarely used but worth trving.
Value Difference Metric Eq. 3.22/4| s +| s | |Used for symbolic data in similarity-based methods,
[ | | | | |and symbolic feature-feature correlations.
Mutual Information V Eq. 3.29/4+ s | +|4+| 5 | +|Equivalent to information gain Eq. 3.30.
Information Gain Ratio Eq. 3.32 +| s |+|+| 5 | +|Information gain divided by feature entropy, stable evaluation.
Symmetrical Uncertainty  |Eq. 3.35 4 s [+|4+| s |+|Low bias for multivalued features.
J-measure Eq. 3.36/4+ s | +|4+| 5 | +|Measures information provided by a logical rule.
Weight of evidence Eq. 3.37/4+ s |+|4+| 5 |+[50 far rarely used. -Eli .
I"-'ID%. 1072272025 Eg. 3.38/+|s| |+|s| Low Tids %ar altivalued features. Guyon-Elisseef} jMéﬂ 2004

Springer 2006




(2) Wrapper : Feature Subset Selection

Wrapper Methods

10/22

/2025

Learner is considered a black-box T

Interface of the black-box is used to score subsets of
variables according to the predictive power of the
learner when using the subsets.

Results vary for different learners

Dr.Yanjun Qi/ UVA CS 102
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(b). Search: even more search
strategies for selecting feature subset

/‘? _ Z{P ge,n‘ure SeubsetS T

= Forward selection or backward elimination.
= Beam search: keep k best path at each step.

= GSFS: generalized sequential forward selection — when (n-k)

features are left try all subsets of g features. More trainings at each
step, but fewer steps.

= PTA(l,r): plus |, take away r — at each step, run SFS | times
then SBS r times.

" Floating search: One step of SFS (resp. SBS), then SBS (resp.
SFS) as long as we find better subsets than those of the same
size obtained so far.

10/22/2025 Dr.Yanjun Qi/ UVA CS 103
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(3) Embedded

*Embedding approach: T

uses a predictor to build a (single) model
with a subset of features that are internally
selected.

10/22/2025 Dr. Yanjun Qi/ UVA CS



Today: Dimensionality Reduction (Two Ways)

Feature extraction: finds a set of new
features (i.e., through some mapping f())
from the existing features.

)

The mapping f()
could be linear or

non-linear
_371_ _}11 |
L2 f() hg
| Lp W

K<<N

Pattern Recognition Chapter 3 (Duda et al.) — Section 3.8

Feature selection: chooses a
subset of the original features.

K<<N

Lk1
L2




Feature Extraction (linear or nonlinear)

 Linear combinations are particularly attractive because they are
simpler to compute and analytically tractable.

e Given x € RP, find an N x K matrix U such that:

y =U™x e R¥where K<P

Thisis a
projection
from the N- 1 "Ry
dimensional UT
space to a K-
dimensional
space.

106
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Feature Extraction (cont’d)

e Commonly used linear feature extraction methods:

* Principal Components Analysis (PCA): Seeks a projection that
preserves as much information in the data as possible.

* Linear Discriminant Analysis (LDA): Seeks a projection that best
discriminates the data.

e Recent nonlinear feature extraction methods:
* Like Word Embedding / Autoencoder / ...

107
Pattern Recognition Chapter 3 (Duda et al.) — Section 3.8



Principal Component Analysis

Task

\ 4
Representation

v
Score Function

v
Search/Optimization

\4

Models,
Parameters

10/22/2025

Dimension Reduction

1

Gaussian assumption

Direction of maximum

i . R e
: varian
\_g

Eigen-decomp

1

Principal
components

Dr.Yanjun Qi / UVA CS 108



How does PCA work? Explaining Variance

* Each PC always explains some proportion of the total variance in the
data. Between them they explain everything

e PC1 always explains the most
e PC2 is the next highest etc. etc.

Second principal component

Data points

Pattern Recognition Chapter 3 (Duda et al.) — Section 3.8

? —> PG

First principal component

Original axes



Data

1

Task

1

Representation

v
Score Function

v
Search/Optimization

Models,
Parameters

10/22/2025

Auto Encoder

X: Tabular/ 2D/ 1D/ 3D / Graph /

!

Dimension Reduction /
Representations Learning

1

Gaussian assumption

Reconstruction Error /
Variational MLE

SGD

1

' Disentangled Representations

Dr.Yanjun Qi / UVA CS 110



Autoencoders: structure

e Encoder: compress input into a latent-space of usually smaller
dimension. h =f(x)

* Decoder: reconstruct input from the latent space. r = g(f(x)) with r as
close to x as possible

Original Input Latent Representation Reconstructed Output
q —  Encoder —> —  Decoder — q
X h r

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f



an auto-encoder-decoder is trained to reproduce the input

-

encode
Input

output - 2
Tdecode I Minimize diff
hidden - fl ‘5(,'_\)- f‘
X

l Reconstruction Log force the ‘hidden layer” units to become good
/ reliable feature detectors

10/30/19 Yanjun Qi / UVA CS 112
https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt



10/28
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S3: Lecture 18:
Deep Neural Networks for Natural Language Processing

How to Represent A Word in DNN:

Feature Extraction / Embedding T

* Basic approach — “one hot vector”
* Binary vector
* Length = | vocab |
* 1in the position of the word id, the rest are 0
* However, does not represent word meaning
- Extremely high dimensional (there are over 200K words in the English language)
- Extremely sparse

* Solution:
Distributional Word Embedding Vectors

10/22/2025 Yanjun Qi/ UVA CS 114



Popular word embeddings

e GloVe (Global Vectors)

©)

Pennington et al., 2014

e fasttext

O

Bojanowski et al., 2017

However, Natural language is

* Variable-length

 Composition of multiple words

 Word meaning is contextual

e Elmo

©)

Peters, 2018

e BERT

©)

Devlin et al., 2018

"the film is palpable evil genius"”

(User Review X

------------------------------------------------
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$3: Lecture 18:
Deep Neural Networks for Natural Language Processing

10/22/2025 Dr.Yanjun Qi/ UVA CS 116
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