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09/30/2025 Assignments  

• HW2 is due this coming Sunday midnight! 
• Using HW1 code pieces as components; 
• If you struggle with HW1, please contact TA @Haochen ASAP

• HW1 grading is work-in-progress, 
• Grades will be released by next Tuesday class time
• We posted the guide from TA in Canvas 

• Course vote: 

• New Survey that needs your vote on

• 1. back to lecture in-person twice a week? 
• 2. If not, best way to use the in-person session: 

• Quiz to continue
• + Project discussions 

• Interested in Shark Tank alike setup? idea screening, pitch 
talk, demo …  
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Project Process

• Format: 

• Team, individual … 

• Shark Tank alike Screening ? – 
https://en.wikipedia.org/wiki/Shark_Tank 

• Next week – Idea collection 

• Final deliverables: 

• (1) Code (Github PR to course project repo) 
• (2) Poster presentation class wide (Date: TBD)

• (3) Video Demo (TBD) 
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09/30/2025 Roadmap 

•TA to go over HW1 
•One UVA ML club to introduce 
their setups and projects 

•Q5 
•Review Q4 
•Review QA for L5-L7 
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L7: Regularized multivariate linear regression

Regression: y continuous

Y = Weighted linear sum of Xs 

Sum of Squared Error (Least 
Squared) + Regularization 

Revised Normal Equation / 
revised GD / SGD 

Regression weights and bias => 
Regularized: Robust / Interpretable 

10/22/2025 6

Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular



L7: Regularized multivariate linear regression
 
We aim to make our trained model 

•1. Generalize Well 

•  2. Computational Scalable and Efficient

•  3. Trustworthy: Robust / Interpretable 
• Especially for some domains, this is about trust! 
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Large p, small n: How?  

X
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Regularized multivariate linear regression

10/22/2025 Dr. Yanjun Qi / UVA CS 

9/54

• Model: pp xxY
^

11

^

0

^^

 +++= 

• Ridge regression estimation:

• LR estimation:

• LASSO estimation:

		

argmin Y -Y
^æ

è
ç

ö

ø
÷

2

å

argmin Y -Y
^æ

è
ç

ö

ø
÷

2

i=1

n

å + l b
j

j=1

p

å

		

argmin Y -Y
^æ

è
ç

ö

ø
÷

2

i=1

n

å +l b
j

2

j=1

p

å



Ridge Regression /  L2 Regularized Regression 

• If not invertible, a classical solution is to add a small positive element to 
diagonal

10/22/2025 Dr. Yanjun Qi / UVA CS 10By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 



Overfitting: Can be Handled by Regularization

A regularizer is an additional criteria 
to the loss function to make sure 
that we don’t overfit.  It’s called a 
regularizer since it tries to keep the 
parameters more normal/regular



WHY and How to Select λ? 

• 1. Generalization ability 
➔ k-folds CV to decide 

• 2. Control the bias and Variance of the model (details in future lectures) 
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L2: Squared weights penalizes large values more

L1: Sum of weights will penalize small values more

	

b
j

j

å

b 2

j

j

å



10/22/2025 Dr. Yanjun Qi / UVA CS 13

Regularization 
path of 
a Ridge 
Regression

→ l = 0

Weight Decay

An example with 8 features  

WHY and How to Select λ? 
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Regularization 
path of a Lasso 
Regression 

→ l = 0

when varying λ, 
how βj varies. 

An example with 8 features  



Overfitting: Can be Handled by Regularization

A regularizer is an additional criteria to the loss function to 
make sure that we don’t overfit.  It’s called a regularizer 
since it tries to keep the parameters more normal/regular

code-run:

https://github.com/qiyanju
n/2025Fall-UVA-CS-
MachineLearningDeep/blo
b/main/notebook/L7_regul
arizedRegression_06_Linea
r_Regression.ipynb 

https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L7_regularizedRegression_06_Linear_Regression.ipynb


(Extra) Lasso (least absolute shrinkage and 
selection operator) / Squared Loss+L1

• The lasso is a shrinkage method like ridge, but acts in a nonlinear manner 
on the outcome y.

• The lasso is defined by

10/22/2025 Dr. Yanjun Qi / UVA CS 16

b̂ lasso = argmin( y - X b)T( y - X b)

subject		to		 b
j
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By convention, the bias/intercept term is typically not regularized. 
Here we assume data has been centered … therefore no bias term 
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Ridge 
Regression

Lasso 
Estimator 

ss



Today: Regularized multivariate linear regression

Regression: y continuous

Y = Weighted linear sum of Xs 

Sum of Squared Error (Least 
Squared) + Regularization 

Revised Normal Equation / 
revised GD / SGD 

Regression weights and bias => 
Regularized: Robust / Interpretable 
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Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular
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More: A family of shrinkage estimators

• for q >=0,  contours of constant value of                   are shown for the case 
of two inputs.
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due to the nature of L_1 norm, the viable solutions are 
limited to corners, which are on a few axis only 
- in the above case x1. Value of x2 = 0. This means that the 
solution has eliminated the role of x2, leading to sparsity
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http://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization

In mathematics, particularly in 
calculus, a stationary point or 
critical point of a 

differentiable function of one 
variable is a point of the 
domain of the function where 
the derivative is zero 
(equivalently, the slope of the 

graph at that point is zero).
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Coordinate 
descent based 
Learning of 
Lasso

soft-thresholding

Coordinate descent 
(WIKI)➔ one does 

line search along one 
coordinate direction 

at the current point in 
each iteration. 

One uses different 
coordinate directions 
cyclically throughout 

the procedure.



Least Angle Regression (LARS) 
(State-of-the-art LASSO solver)
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http://statweb.stanford.edu/~tibs/ftp/lars.pdf



L8: K-nearest-neighbor(regressor or classifier)

Classification or regression

24

Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters

Data: X  X: Tabular

Local Smoothness / Training 
Samples

EPE with L2 loss ➔ 
conditional mean (Extra)

NA

Training Samples

Yanjun Qi @ UVA CS
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Code run: https://github.com/qiyanjun/2025Fall-UVA-CS-
MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb 

https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb
https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L8_Knearest.ipynb


K Nearest neighbor (Testing Mode)
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Training Mode: 

• (Naïve) version: DO 
NOTHING !!!! 

It Needs: 

1. The set of stored 
training samples

2. Distance metric to 
compute distance 
between samples

3. The value of k, i.e., 
the number of 
nearest neighbors to 
retrieve

Testing Model: To classify unknown 
sample:

• Step1: Compute distance to all  
training records

• Step2: Identify k nearest neighbors 

• Step3: Use class labels of nearest 
neighbors to determine the class 
label of unknown record (e.g., by 
taking majority vote)



We can divide the large variety of supervised 
classifiers into roughly three major types 
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 1. Discriminative

  directly estimate a decision rule/boundary

  e.g., support vector machine, decision tree, 

  e.g. logistic regression, neural networks (NN), deep NN 

 
 2. Generative:

            build a generative statistical model

            e.g., Bayesian networks, Naïve Bayes classifier

      

  3. Instance based classifiers

          - Use observation directly (no models)

          - e.g. K nearest neighbors
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Less 
complex

More
complex



Model Selection for 
Nearest neighbor classification

• Choosing the value of k:
• If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points from 
other classes
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•Bias and variance tradeoff
•A small neighborhood → large variance → unreliable estimation 
•A large neighborhood → large bias → inaccurate estimation



We aim to make our trained model 

•1. Generalize Well 

•  2. Computational Scalable and Efficient

•  3. Trustworthy: Robust / Interpretable 
• Especially for some domains, this is about trust! 
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Computational Time Cost
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NN Search by KD Tree
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KNN as the Most critical component in Retrieval 
Augmented Generation System, e.g.: 
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09/30/2025 Roadmap 

•TA to go over HW1 
•One UVA ML club to introduce 
their setups and projects 

•Q5 
•Review Q4 
•Review QA for L5-L7 
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10/07
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10/07 /2025 Assignments  

• HW2 is grading started ..
• ➔ HW2 key walk-through next Thursday online zoom 

• HW3 will get posted by tomorrow
• Deep NN on Imaging task / Kera / mostly about learning modern DNN library 
• Programming + QA (like calculating marginal prob…) 

• Next Tuesday is reading day

• ➔we will host makeup-Quiz Q7 next Thursday online 

• Course format survey: 
• https://forms.gle/PkWGMkwHhawqf8QR8
• Now go over the results: 
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https://forms.gle/PkWGMkwHhawqf8QR8
https://forms.gle/PkWGMkwHhawqf8QR8


Project Process

• Format: 

• Team (1~4 students)  

• Shark Tank alike Screening  – https://en.wikipedia.org/wiki/Shark_Tank 

• This week: signup sheet for your team’s screening sessions! 
• Next week: Initial project idea collecting! 

• TA Guangzhi will announce the process and signup sheet URL! 

• Final deliverables: 

• (1) Code (Github PR to course project repo) 

• (2) Poster presentation class wide (Date: 12/09 TBD)

• (3) Video Demo (after final exam) 
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https://en.wikipedia.org/wiki/Shark_Tank


10/07 /2025 Roadmp
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Review L5-L8 questions 

Quick Review L9-L10 

Review Q5 

Then Q6 

quite disturbing for staying 
students around  the right after 
quiz period 

So we will host quiz after review 
/ before project screening for all 
coming in-person sessions
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Questions on L5-L8
Set 1: Bias–Variance, Overfitting, and Model Complexity

•How do bias and variance contribute to generalization error, and how do we find the “sweet 

spot” without knowing the true distribution?

•What are practical indicators of underfitting vs. overfitting (from graphs, learning curves, or 

error plots), and how do we fix each?

•How does cross-validation (choice of K) approximate generalization error, and what are the 

trade-offs (bias vs variance, LOOCV vs k-fold)?

•Why does zero training error often generalize poorly, and how is this linked to variance?

•Would we ever prefer high bias or high variance, and how do we reduce one while controlling 

the other?

Set 2: Regularization (LASSO, Ridge, Elastic Net, Generalizations)

•What are the key differences between L1 (LASSO), L2 (Ridge), and Elastic Net in terms 

of sparsity, robustness, computational cost, and when to use each?

•Why do L1 penalties set coefficients to zero, while L2 does not? What happens 

when p>np>n or when features are highly correlated?

•How does the choice of λ affect bias–variance, and how do we select it (cross-validation, 

validation curves)?

•Are there equivalent closed-form solutions for LASSO like Ridge has? Why are L1 and L2 

chosen—what about higher-order penalties?

•When is Elastic Net preferable (e.g., grouped correlated features), and can we always 

default to it?
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Questions on L5-L8
Set 3: k-Nearest Neighbors (kNN) and Instance-Based Learning
•How do we pick the best k (odd vs even, weighted vs unweighted, trade-offs with noisy data)?
•What is the computational cost of kNN (sorting term, memory cost), and can it overfit?
•How does the distance metric affect performance, and how are ties handled in classification?
•What are the advantages/disadvantages of kNN vs gradient descent or regularized linear 
models?
•In practice, how large must the dataset be to offset outliers, and is kNN more effective for 
regression or classification?

Set 4: Maximum Likelihood Estimation (MLE) and Probability Foundations

•Why do we usually maximize the log-likelihood instead of the likelihood itself, and how does 

this connect to squared error in linear regression?

•How does MLE extend from discrete distributions (e.g., coin flips) to continuous (e.g., 

Gaussians)?

•Why is the MLE for Bernoulli just the sample proportion, and what happens with small 

samples or noisy data?

•What makes MLE consistent and efficient, and are there situations where maximum likelihood 

may not yield the most “ideal” parameter?

•How does the bias–variance decomposition change with different loss functions (e.g., 0–1 

loss, Laplace errors)?



10/07 /2025 Roadmp
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Review L5-L8 questions 

Quick Review L9-L10 

Review Q5 

Then Q6 

quite disturbing for staying 
students around  the right after 
quiz period 

So we will host quiz after review 
/ before project screening for all 
coming in-person sessions



Lecture 10: Maximum Likelihood Estimation (MLE)
➔ Probability Review

10/21/19 Dr. Yanjun Qi / UVA CS 

• The big picture

• Events and Event spaces

• Random variables

• Joint probability, Marginalization, 
conditioning, chain rule, Bayes Rule, law of 
total probability, etc.

• Structural properties, e.g., Independence, 
conditional independence

• Maximum Likelihood Estimation



If hard to directly estimate from data, most likely we 
can estimate  

• 1. Joint probability 
• Use Chain Rule

• 2. Marginal probability 
• Use the total law of probability 

• 3. Conditional probability 
• Use the Bayes Rule 
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One Example
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It is often convenient to work with the Log of the likelihood function.

MLE idea is to 

✓ assume a particular model with unknown parameters, 
✓we can then define the probability of observing a given event 

conditional on a particular set of parameters.
✓  We have observed a set of outcomes in the real world.
✓  It is then possible to choose a set of parameters which are 

most likely to have produced the observed results.

This is maximum likelihood. 
In most cases this scorer is both  consistent and efficient.

q
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Deriving the Maximum Likelihood Estimate for 
Bernoulli

10/21/19 Dr. Yanjun Qi / UVA CS 
Observed data ➔ x 
heads-up from n trials 

log(𝐿(𝑝ሻ  

= log ෑ
𝑖=1

𝑛

𝑝𝑧𝑖 1 − 𝑝 1−𝑧𝑖

= σ𝑖=1
𝑛 (𝑧𝑖log 𝑝 + 1 − 𝑧𝑖 log(1 − 𝑝ሻሻ 

=log 𝑝 σ𝑖=1
𝑛 𝑧𝑖  + log 1 − 𝑝 σ𝑖=1

𝑛 (1 − 𝑧𝑖ሻ 

=xlog 𝑝 + (n − xሻlog (1 − 𝑝ሻ
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Deriving the Maximum Likelihood Estimate for Bernoulli

		

-l(p)= -log n

x
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p(1- p)

		0= -x + px + pn- px

		0= -x + pn

   

ˆ p =
x

n
The proportion of positives!

Minimize the negative log-likelihood

➔ MLE parameter estimation 

i.e. Relative 
frequency of a 
binary event



DETOUR: Probabilistic 
Interpretation of Linear Regression

• Let us assume that the target variable and the inputs are related by 
the equation:

where ε is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian N(0,σ), then we have:

• By IID assumption:
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L9: Complexity / Goodness of Fit / Generalization

10/22/2025 49

x

y

x

y

x

y

x

y

Too simple?

Too complex ? About right ?

Training data

What ultimately matters: GENERALIZATION

High Bias

High Variance
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Statistical Decision Theory (Extra)

•Random input vector: X

•Random output variable: Y

•Joint distribution: Pr(X,Y )

•Loss function L(Y, f(X))

•Expected prediction error (EPE):

   

EPE( f ) = E(L(Y, f (X))) = L(y, f (x))ò Pr(dx,dy)

               e .g. = (y - f (x))2ò Pr(dx,dy)

e.g. Squared error loss (also called L2 loss )

One way to define 
generalization: by 
considering the 
joint population 

distribution 
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Decomposition of EPE

• When additive error model: 

• Notations

• Output random variable:

• True function: 

• Prediction estimator: 

Irreducible / Bayes error

Extra



Bias-Variance Trade-off for EPE: 
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EPE (x) = noise2  + bias2 + variance

Unavoidable 
error

Error due to 
incorrect 

assumptions

Error due to variance 
of training samples

Slide credit: D. Hoiem



BIAS AND VARIANCE TRADE-OFF for Parameter Estimation 

• Bias
• measures accuracy or quality of the estimator
• low bias implies on average we will accurately estimate true 

parameter from training data

• Variance
• Measures precision or specificity of the estimator
• Low variance implies the estimator does not change much as 

the training set varies
10/22/2025 53

Extra, But VERY IMPORTANT



Model “bias” & Model  “variance” 

• Middle RED: 
• TRUE function

• Error due to bias:
• How far off in general  from the 

middle red

• Error due to variance:
• How wildly the blue points 

spread 

10/22/2025 54



need to make assumptions that 
are able to generalize 

• Underfitting: model is too “simple” to represent all the relevant 
characteristics

• High bias and low variance

• High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data

• Low bias and high variance

• Low training error and high test error

10/22/2025 55

Slide credit: L. Lazebnik



Bias Variance Tradeoff

•(1) Randomness of Training Sets 

•(2) Training error can always be reduced when 
increasing model complexity

•(3) Randomness in the Testing Error!!! 

•  (4) Cross Validation Error as good 
approximation for Expected Test error -- good 
appx of generalization
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• bias decrease 
with model gets 
more complex; 

• Variance 
increase with 
bigger model 
capacity

• Sum of 
Bias^2+Variance

Review: 
One important Control of Bias Variance Tradeoff
➔ Model Complexity



Another important Control of Bias Variance Tradeoff
➔ Training Size (Extra)
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• Even training error is unacceptably high.
• Small gap between training and test error.

High training error and high test error
Slide credit: A. Ng



Another important Control of Bias Variance Tradeoff
➔ Training Size (Extra)

10/22/2025 59

Slide credit: A. Ng



How to reduce Model High Variance?

• Choose a simpler classifier 

• Regularize the parameters

• Get more training data

• Try smaller set of features

• Try feature engineering 

• Try multiple models and then use all as ensemble

10/22/2025 60

Slide credit: D. Hoiem



Take Away : Three types of plots 

• (1) Sanity check (S)GD type Optimization 
• Train / Vali Loss vs. Epochs to help you
• https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_early_stopping.html#sphx-glr-auto-examples-

linear-model-plot-sgd-early-stopping-py 

• (2) Sanity check hyperparameter tuning (validation curve)
• Train / Vali Loss vs. hyperparameter Values 

• (3) Sanity check if your current model overfits or underfits
• Train / Vali Loss vs. Varying Size of Training (learning curve)
• https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html#sphx-glr-auto-examples-

model-selection-plot-learning-curve-py 
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from sklearn.model_selection import validation_curve
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I will Code run: https://github.com/qiyanjun/2025Fall-UVA-CS-
MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb 

(1) Validation_curve

By scikitlearn Validation_curve function 
(normalize all metrics to positive range 

https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-
parameter-defining-model-evaluation-rules 

(1) Validation_curve

By our HW2 ( more close to 
modern deep learning 
library style ) 

https://github.com/qiyanjun/2025Fall-UVA-CS-MachineLearningDeep/blob/main/notebook/L9-LearningCurves.ipynb
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(1) Learning Curves for polynomial regression (up) and classification (down) 
/ by scikitlearn

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html#sklearn.model_selection.validation_curve
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Interesting Relation between 
• the right range of model complexity 
• the number of training points
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https://www.reddit.com/r/statistics/comments/6uajyr/is_the_biasvariance_trade_off_dependent_on_the/

Is the bias-variance trade off dependent 
on the number of samples? (EXTRA)

In the usual application of linear regression, your coefficient estimators are unbiased so 
sample size is irrelevant. But more generally, you can have bias that is a function of 
sample size as in the case of the variance estimator obtained from applying the 
population variance formula to a sample (sum of squares divided by n)….. 

… the bias and variance for an estimator are generally a decreasing function of training size n. 
Dealing with this is a core topic in nonparametric statistics. For nonparametric methods with 
tuning parameters a very standard practice is to theoretically derive rates of convergence (as 
sample size goes to infinity) of the bias and variance as a function of the tuning parameter, and 
then you find the optimal (in terms of MSE) rate of convergence of the tuning parameter by 
balancing the rates of the bias and variance. Then you get asymptotic results of your estimator 
with the tuning parameter converging at that particular rate. Ideally you also provide a data-
based method of choosing the tuning parameter (since simply setting the tuning parameter to 
some fixed function of sample size could have poor finite sample performance), and then show 
that the tuning parameter chosen this way attains the optimal rate.

https://www.reddit.com/r/statistics/comments/6uajyr/is_the_biasvariance_trade_off_dependent_on_the/
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Agenda

•  Going over HW2 Solution 

•  A tutorial talk on Huggingface.co  
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Course Content Plan ➔ Regarding Tasks 

❑ Regression (supervised)

❑ Learning theory

❑ Classification (supervised)

❑ Unsupervised models

❑ Graphical models 

❑ Reinforcement Learning 
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Y is a continuous

Y is a discrete

NO Y 

About f()

About interactions among Y,X1,. Xp

Learn to Interact with environment



Course Content Plan ➔ Regarding Data 

❑ Tabular / Matrix 

❑ 2D Grid Structured: Imaging 

❑ 1D Sequential Structured: Text 

❑ Graph Structured (Relational)

❑ Set Structured / 3D / 
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Today: Logistic Regression Classifier

Binary Classification

70

Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters, metrics

Data: X  X: Tabular

Log-odds y = linear function of Xs 

Iterative (Newton) method 
/ SGD

MLE

Logistic weights  

/ Accuracy / F1

  

P( y = 1 x) =
e

b
0
+bT x

1+ e
b

0
+bT x

10/22/2025



Bayes Classifiers – Predict via MAP Rule

Task: Classify a new instance X: 

based on: 
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X = X1, X2,…, Xp

cMAP = argmax
c j ÎC

P(c j | x1, x2,…, xp )

MAP = Maximum Aposteriori Probability 

MAP Rule

Adapt From Carols’ prob tutorial Please read extra slides for how to get MAP-rule from minimize EPE-0/1

Lecture 11: Logistic Regression
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Our Whole Section 2: 

     
– Discriminative Classifiers

			
x = (x

1
,x
2
,×××,x

p
)

Discriminative 
Probabilistic Classifier

1x 2x 	
x

p

)|( 1 xcP )|( 2 xcP )|( xLcP

•••

•••

Adapt from Prof. Ke Chen NB slides

			
argmax

cÎC

P(c | X),			C = {c
1

,×××,c
L
}



Today: Logistic Regression Classifier

Binary Classification

73

Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters, metrics

Data: X  X: Tabular

Log-odds y = linear function of Xs 

Iterative (Newton) method 
/ SGD

MLE

Logistic weights  

/ Accuracy / F1

  

P( y = 1 x) =
e

b
0
+bT x

1+ e
b

0
+bT x
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Logistic Regression p(y|x)
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P(y x)=

e
b
0
+b

1
x
1
+b

2
x
2
+...+b

p
x

p

1+e
b
0
+b

1
x
1
+b

2
x
2
+...+b

p
x

p

=
1

1+e
-(b

0
+bT X )

		

ln
P( y |x)

1-P( y x)

é

ë

ê
ê

ù

û

ú
ú

= b
0

+b
1
x
1

+b
2
x
2
+ ...+b

p
x

p
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View IV: Logistic Regression models 
a linear classification boundary! 
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Summary: MLE for Logistic Regression Training

		

l(b)= {logPr(Y = y
i
|X = x

i
)}

i=1

N

å

= y
i
log(Pr(Y =1|X = x

i
))+(1- y

i
)log(Pr(Y =0|X = x

i
))

i=1

N

å

= ( y
i
log

exp(bT x
i
)

1+exp(bT x
i
)
)+(1- y

i
)log

1

1+exp(bT x
i
)
)

i=1

N

å

= ( y
i
bT x

i
- log(1+exp(bT x

i
)))

i=1

N

å

Let’s fit the logistic regression model for K=2, i.e., number of classes is 2

Training set: (xi, yi), i=1,…,N

(conditional ) 
Log-likelihood:

We want to maximize the log-likelihood in order to estimate \beta

xi are (p+1)-dimensional input vector with leading entry 1
\beta is a (p+1)-dimensional vector

p(y | x)y(1- p)1-y

For Bernoulli distribution 

How?

Extra

See Extra Slides How to used Newton-Raphson optimization  



One “Neuron”: Block View of Logistic Regression
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x1

x2

x3

Σ

+1

z

z = wT . x + b

y = sigmoid(z) =
ez

1 + ez

p = 3

w1

w2

w3

b1
Summing
Function

Sigmoid
Function

Multiply by 
weights

ŷ = P(Y=1|x,w)

Input x
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Agenda

•HW3 is due 

•Please select your Project’s Shark Tank 
Sessions ASAP 

•Today: 
• Review MLP / DNN / CNN / PCA / Word 

Embedding, Transformer
• Quiz 8 Today 
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Takeaway: Logistic Regression Classifier

• View I: logit(y) as linear of Xs

• View II: model Y as Bernoulli with p(y=1|x) as p(Head)

• View III: S" shape function compress to [0,1] 

• View IV: models a linear classification boundary! 

• View V: Two stages: summation + sigmoid 
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81

Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters, metrics

Data: X  X: Tabular / 2D / 1D / 3D / Graph /…

Weights and biases in NN Layers  

/ Accuracy / F1

10/22/2025

Today: Basic Neural Network Models

neg Log-likelihood , Cross-
Entropy / MSE / Many more  

SGD / Backprop

Classification / Regression

Multilayer Network 
topology

Lecture 12: Neural Network (NN) and More: BackProp



Building Deep Neural Nets
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http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf

f
x

y



Neuron Representation

83

Σ

The linear transformation and nonlinearity together is typically considered a single neuron 

ŷ

x1

x2

x3

x

w1

w2

w3

From here on, we leave out bias 
square for simple  visualization 



Multi-Layer Perceptron (MLP)- (Feed-Forward NN) 

84

1st 

hidden 
layer

2nd 

hidden
layer

Output Layer 
for Binary Classification

x1

x2

x3

x ŷ

W1

w3

W2

h1 h2

z1 =WT x

h1 = sigmoid(z1)

z2 =WT h1 

h2 = sigmoid(z2)

z3 =wT h2 

ŷ = sigmoid(z3)

1

2

3

hidden layer 1 output

hidden layer 2 output
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z1

z2

z3

Recap: Multi-Class Classification Loss
Cross Entropy Loss

86

x1

x2

x3

x

Σ

Σ

Σ

ŷ1

ŷ2

ŷ3

“Softmax” function. 
Normalizing function which 
converts each class output to 
a probability.

E = loss = -     yj log ŷjΣ
j = 1...K

= P( yi = 1 | x )

W1 W3

W2

ŷi 

“0” for all except true class

K = 3

0
1
0

0.1
0.7
0.2

ŷ y 



e.g., “Block View” of multi-layered multi-class NN

x

1st 

hidden layer
2nd 

hidden layer
Output layer

87

*

W1

*

W2

*

W3z1 z2 z3
h1 h2

Loss Module

“Softmax” 

E (ŷ,y)
ŷ

W is a matrix z is a vector
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z1 = x1w1 + x2w3 + b1

z2 = x1w2 + x2w4 + b2

h1 =
exp(z1)

1 + exp(z1)

exp(z2)

1 + exp(z2)
h2 =

ŷ = h1w5 + h2w6 + b3
 

E = ( y - ŷ )2

 

f1

f2

f3

f4

argmin_w { f4 ( f3 ( f2 ( f1 ( )))) }

 

 

Input Output
Local Gradients=    Output /   Input

, w1, …

w5, 

Extra
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Adapt from From NIPS 2017 DL Trend Tutorial  

Lecture 13: Supervised Image Classification and Convolutional Neural Networks
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Lecture 13: Supervised Image Classification and Convolutional Neural Networks



Today: Convolutional Network Models on 2D Grid / Image

Classification

91

Task: y

Representation: :   x, f() 

Score Function: L() 

Search/Optimization : 
argmin()  

Models, Parameters, metrics

Data: X  X: 2D Grid Imaging

Convolutional Neural Networks

SGD / Backprop

Cross Entropy Loss

weights, bias / 
architecture /   

/ Accuracy / F1

Lecture 13: Supervised Image Classification and Convolutional Neural Networks



Building Deep Neural Nets
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http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf

f
x

y



Important Block: Convolutional Neural  Networks (CNN)

• Prof. Yann LeCun invented CNN  in 1998 
• First NN successfully trained with many layers 

93

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Adapt from From NIPS 2017 DL Trend Tutorial  

CNN models Locality and Translation Invariance 



Pytorch Sample Code
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https://www.kaggle.com/code/shawon10/covid-19-
diagnosis-from-images-using-densenet121 

TF Keras Sample Code

https://www.kaggle.com/code/shawon10/covid-19-diagnosis-from-images-using-densenet121
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https://www.kaggle.com/code/shawon10/covid-19-diagnosis-from-images-using-densenet121
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a whole CNN

Convolution

Max 
Pooling

Convolution

Max 
Pooling

Flatten

Can 
repeat 
many 
times

➢ Some patterns are much 
smaller than the whole image

➢The same patterns appear in 
different regions.

➢ Subsampling the pixels will 
not change the object

Property 1

Property 2

Property 3

Adapted Dr. Hung-yi Lee’s CNN slides

Fully Connected 
Feedforward 

network

cat dog ……

A new 
image

A new 
image

softmax



network structure and input format 
(vector -> 3-D tensor)

CNN in Keras

Convolution

Max 
Pooling

Convolution

Max 
Pooling

input
1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5

How many parameters 
for each filter?

9

Dr. Hung-yi Lee’s CNN slides
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225= 25*
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https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html



Only modified the network structure and 
input format (vector -> 3-D tensor)

CNN in Keras

Convolution

Max 
Pooling

Convolution

Max 
Pooling

input

1 x 28 x 28

25 x 26 x 
26

25 x 13 x 
13

50 x 11 x 
11

50 x 5 x 5
Flatten

1250

Fully Connected 
Feedforward 

network

output

Dr. Hung-yi Lee’s CNN slides
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Today: Dimensionality Reduction (Two Ways)

Feature extraction: finds a set of new 
features (i.e., through some mapping f()) 
from the existing features.

Feature selection: chooses a 

subset of the original features.

The mapping f() 
could be linear or 
non-linear

K<<N K<<N

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8

f() 

Lecture 14: Dimension Reduction



Summary: Feature Selection
=> filters vs. wrappers vs. embedding

◼ Main goal: rank subsets of useful features 

From Dr. Isabelle Guyon 

10/22/2025 Dr. Yanjun Qi / UVA CS 100



(I) Filtering : (many choices)

Dr. Yanjun Qi / UVA CS 10/22/2025 101
Guyon-Elisseeff, JMLR 2004; 
Springer 2006



102/54

Wrapper Methods
• Learner is considered a black-box

• Interface of the black-box is used to score subsets of 
variables according to the predictive power of the 
learner when using the subsets.

• Results vary for different learners

(2) Wrapper : Feature Subset Selection

10/22/2025 Dr. Yanjun Qi / UVA CS 102



(b). Search: even more search 
strategies for selecting feature subset

▪   Forward selection or backward elimination.

▪   Beam search: keep k best path at each step. 

▪   GSFS: generalized sequential forward selection – when (n-k) 
features are left try all subsets of g features. More trainings at each 
step, but fewer steps.

▪   PTA(l,r): plus l , take away r – at each step, run SFS l times 
then SBS r times.

▪   Floating search: One step of SFS (resp. SBS), then SBS (resp. 
SFS) as long as we find better subsets than those of the same 
size obtained so far.

From Dr. Isabelle Guyon 
10/22/2025 Dr. Yanjun Qi / UVA CS 103



(3) Embedded

•Embedding approach:

uses a predictor to build a (single) model 
with a subset of features that are internally 
selected.

10/22/2025 Dr. Yanjun Qi / UVA CS 104
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Today: Dimensionality Reduction (Two Ways)

Feature extraction: finds a set of new 
features (i.e., through some mapping f()) 
from the existing features.

Feature selection: chooses a 

subset of the original features.

The mapping f() 
could be linear or 
non-linear

K<<N K<<N

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8

f() 
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Feature Extraction (linear or nonlinear) 

• Linear  combinations are particularly attractive because they are 
simpler to compute and analytically tractable.

• Given x ϵ Rp, find an N x K matrix U such that: 

                     y = UTx  ϵ RK where K<P 

UT

This is a 
projection 
from the N-
dimensional 
space to a K-
dimensional 
space.

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Feature Extraction (cont’d)

• Commonly used linear feature extraction methods:
• Principal Components Analysis (PCA): Seeks a projection that 

preserves as much information in the data as possible.

• Linear Discriminant Analysis (LDA): Seeks a projection that best 
discriminates the data.

• Recent nonlinear feature extraction methods:
• Like Word Embedding / Autoencoder / … 

107
Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Principal Component Analysis

Dimension Reduction 

Gaussian assumption 

Direction of maximum 
variance 

Eigen-decomp

Principal 
components

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

10/22/2025 Dr. Yanjun Qi / UVA CS 108



How does PCA work? Explaining Variance

• Each PC always explains some proportion of the total variance in the 
data. Between them they explain everything

• PC1 always explains the most

• PC2 is the next highest etc. etc.

Original axes

**

*
*

*
*

* *

*

*

*
*

*

*

*

*

*
* *

*
*

*

*
*

Data points

First principal componentSecond principal component

Pattern Recognition  Chapter 3 (Duda et al.) – Section 3.8



Auto Encoder

Dimension Reduction / 
Representations Learning

Gaussian assumption 

Reconstruction Error  / 
Variational MLE

SGD 

Disentangled Representations

Task 

Representation 

Score Function 

Search/Optimization 

Models, 
Parameters

10/22/2025 Dr. Yanjun Qi / UVA CS 110

Data 
X: Tabular / 2D / 1D / 3D / Graph /…



Autoencoders: structure

• Encoder:  compress input into a latent-space of usually smaller 
dimension.  h = f(x)

• Decoder: reconstruct input from the latent space.   r = g(f(x)) with r as 
close to x as possible

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f



an auto-encoder-decoder is trained to reproduce the input

10/30/19 Yanjun Qi / UVA CS 112

Reconstruction Loss: force the ‘hidden layer’ units to become good 
/ reliable feature detectors

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt

Ԧ𝑥

Ԧො𝑥

ℎ | Ԧො𝑥- Ԧ𝑥|

Minimize diff
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How to Represent A Word in DNN: 
Feature Extraction / Embedding  

• Basic approach – “one hot vector”
• Binary vector

• Length = | vocab |

• 1 in the position of the word id, the rest are 0

• However, does not represent word meaning

• Extremely high dimensional (there are over 200K words in the English language)

• Extremely sparse

• Solution: 
Distributional Word Embedding Vectors

10/22/2025 Yanjun Qi/ UVA CS 114

S3:  Lecture 18: 
Deep Neural Networks for Natural Language Processing



Popular word embeddings

● GloVe (Global Vectors)
○ Pennington et al., 2014

● fasttext
○ Bojanowski et al., 2017

● Elmo
○ Peters, 2018

● BERT
○ Devlin et al., 2018

However, Natural language is 

• Variable-length
• Composition of multiple words
• Word meaning is contextual

115
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S3:  Lecture 18: 
Deep Neural Networks for Natural Language Processing
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